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Langevin molecular dynamics of interfaces: Nucleation versus spiral growth
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A simulation of surface growth is reported that directly introduces dynamics and thermal noise
within a classical Langevin molecular-dynamics scheme. Using recent advances in massively paral-
lel computation, extensive simulations on large two-dimensional lattices are possible. Surface
growth is modeled by a dynamic solid-on-solid model, analogous to a discrete two-dimensional
sine-Gordon equation. The inhuence of both homogeneous (thermal) nucleation and Frank-Read
sources of spiral growth patterns are incorporated and compared. A phase diagram is described in
the space of temperature and chemical potential difference between surface and vapor. At
sufficiently high temperatures, a surface-roughening transition occurs. Finally, the same model is
applied to other two-dimensional contexts: charge-density-wave materials in an electric field, and a
two-dimensional Josephson junction in a perpendicular current.

I. INTRODUCTION

The role of coherent localized and extended defects
such as vortices, dislocations, domain walls, grain boun-
daries, etc. , in the dynamical properties of materials is an
interesting and fascinating subject which is not yet very
well understood. These kinds of defects play important
roles in modifying both equilibrium (e.g. , strength) and
nonequilibrium (e.g. , response) properties of materials.

This paper is devoted to the simulation of spiral growth
patterns produced by the existence of dislocation defects,
as an important example of coherent structures. Such
patterns appear in different fields of nonlinear science.
Here, we analyze their inhuence on several dynamical
properties in the context of the two-dimensional (2D)
discrete sine-Gordon equation which can model various
physical systems. For instance, "whisker" crystal-growth
dynamics has been shown to be an excellent example of
this behavior, and extensively studied experimentally and
theoretically. Spiral growth from Frank-Read (FR)
sources (two emergent screw dislocation in the surface)
was early predicted theoretically. ' Monte Carlo (MC)
simulations supported the validity of such a scenario.
This FR dynamical mechanism has also been suggested
for the depinning of charge-density waves (CDW) by an
electric field. Here dislocations with opposite Burgers
vectors in the CDW lattice form a FR source and facili-
tate charge Aow. On the other hand, reaction-diffusion
systems are examples of systems exhibiting similar self-
organizing structures. For example, inorganic reactions
(such as the Belousov-Zhabotinskii reaction) and
enzyme-catalyzed reactions show periodic behavior
strongly related with the appearance of spatial structures
and the formation of spiral waves.

Our aim here is to use Langevin molecular dynamics to
directly simulate the dynamic processes without the

artificial time steps inherent in MC schemes. Advances
in computational techniques discussed below now allow
access to nonequilibrium processes at finite temperature
on systems of substantial size.

Dynamic problems couched in the language of the 2D
sine-Gordon system lend themselves to a very easy and
efficient implementation on novel parallel computer ar-
chitectures of the fine-grained SIMD (single instruction
multiple data) type, like the Connection Machine 2.
There are several reasons for this: First, large systems
are necessary to obtain good statistics for temperature-
dependent phenomena; second, interactions are often lo-
cal in nature with only nearest- or next-nearest-neighbor
interactions, which makes the communication topology
between processors very simple. We have implemented a
set of stochastic Runge-Kutta methods, proposed by
Greenside and Helfand to integrate nonlinear Langevin
equations in a code, SLaP (Simplified Langevin Program-
ming), which runs on the Connection Machine 2(CM-2).
The performance is very good (approximately 300
MFlops on a 16000 processor CM-2) and it allows us to
study large systems (e.g., 512X512 square lattices) with
only 10—15 min CPU time per run. We have applied
sLap in our study of spiral growth reported here, but the
code is quite flexible and application to other problems
(e.g. , large arrays of Josephson junctions) is in progress
and will be reported elsewhere.

The structure of this paper is as follows: In Sec. II, we
introduce our model for spiral growth dynamics and the
Langevin MD simulation procedure. Derivations in the
context of surface physics, charge-density waves, and
Josephson junctions are outlined. In Sec. III we show
different dynamical regimes for growth (spiral or nu-
cleation) and discuss the crossover between them. An es-
timation of the roughening transition temperature is ob-
tained in Sec. IV. Finally, a dynamical "phase diagram"
is proposed and discussed in Sec. V.
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II. EQUATION OF MOTION

A. Crystal growth

We use as an example for the simulation of spiral pat-
terns the phenomenon of crystal growth. Crystal surface
processes have been modeled by so-called "solid-on-
solid" (SOS) models in which one considers a discrete in-

teger variable h, , representing the height of the column i
over a Bat surface. The energy of interaction between
columns is given generally by

H= —,
' g (P,. P~)

—+co—s(P;)+I gg;, (la)

with P a continuous variable. The second term in (la)
favors P; to be 2vrn (n integer), so we can make the
identification $=2vrh The last .term is a uniform driving
force which corresponds to the chemical potential
difference between the surface and the vapor. The Ham-
iltonian (la) is nothing but the discrete version of the
driven sine-Gordon equation in two space dimensions,
i.e., the two-dimensional Frenkel-Kontorova model. The
Langevin equations of classical motion for P following
from (la) read

Where g runs over nearest neighbors, eP is a damping
term (e can be identified with the equilibrium evaporation
rate ), and g, (t ) is thermal white noise which couples the
system to a heat bath at temperature T (in units of ke).
Note that using this Hamiltonian our temperature units
are 4~ times ones often used in the literature. ' The
continuous, static (Q=O, I=O) equation following from
(2) is V /=sing. This has, for example, one-dimensional

E= g F(h; —h ).
(I,j&

Here F is an arbitrary function and the summation ex-
tends over nearest neighbors. Burton, Cabrera, and
Frank' introduced this model with F(x ) = ~x ~

and h, =0
or 1. With this choice, the Hamiltonian (1) is equivalent
to an Ising model and a roughening transition occurs
with temperature which has Ising character. A more
general (and still solvable) possibility is to allow the vari-
able h; to take all integer values and to consider the in-
teraction F(x ) =x . This is called the "discrete Gaussian
SOS" (DGSOS) model and has interesting implications.
Some time ago, it was shown that this model is dual to
the planar XY magnet and neutral Coulomb gas models,
as far as equilibrium properties are concerned. This
means that the roughening transition is of Kosterlitz-
Thouless type —i.e., driven by vortex-antivortex unbind-
ing rather than discrete symmetry breaking as in the Is-
ing case. A considerable body of work has been
developed studying the static and MC dynamical proper-
ties of this model. (See, e.g., Ref. 7.)

As a way to study the nonequilibrium dynamics in the
DGSOS model we consider the modified Hamiltonian

domain wall solutions and approximate spherical cluster
ones.

We are also interested in the dynamics of a surface in
the presence of emergent screw dislocations which play
an important role in whisker crystal-growth mechanisms.
A screw dislocation is given approximately by

$0(x,y ) = tan
x

where x,y are the Cartesian coordinates in the continu-
um limit. However, this function is not a solution of the
static undriven sine-Gordon equation so it is not a suit-
able initial condition for the equations of motion (2).
(The dislocation is not a static solution, which is not
physically acceptable. ) We can simulate the presence of
the dislocation configuration by forcing the surface P to
grow relatiue to the dislocation Po, i.e., replacing P(r, t)
by [P(r, t ) —$0(r ) ] in the sine term of equation of motion.
This results in the following modified equation of motion:

P,
—eP, = g(P, +z P, )+si—n(P;.

—
$0, )+I+(,(t) . . (4)

Now the static equation is V P =sin(P —$0). In our
simulation of Eq. (4), we have used for Po the function
representing a pair of fixed screw dislocations with oppo-
site Burger vectors, i.e., a Frank-Read source for crystal
growth.

B. Josephson junction and COW

Here we derive our equation of motion for either Aat or
spiral surface growth in the context of two other types of
systems —Josephson junctions, and CDW dynamics.

Consider first the case of a Josephson junction centered
at a plane z =0 separating two bulk superconductors. A
"Hat" boundary corresponds to boundary conditions with
currents J,J —+0 far from the junction, i.e., magnetic
fields are parallel to the junction and are confined to be
near the junction by Meissner currents. A "spiral"
boundary allows for a pair of opposite Aux lines to
penetrate the junction from one side, say z &0. The
boundary condition for x~ —~ is a Rat one while
x~ co the phase P(x,y, z) of the order parameter ap-
proaches

Pb(x, y ) =tan
x xp

—tan '
x +xp

so that f Vpb (x,y ) dl =+2' with the integral circling in
the x,y plane around each vortex at (+xo,0).

We now rederive Josephson's equation' for these
boundary conditions. The free energy of each supercon-
ductor is given by

F=f d r[h /8m+(A' /2m )n, (VP —2eA /h'c) ], (6)

where h(r)=VX A is the internal magnetic field, n, is
the density of superconducting electrons, and A is the
electromagnetic vector potential. The equation for the
current J follows from 5F/5 A =0, i.e.,

J=(c/4m)VXh=(eiri/2m)n, (Vp —2e A/iric) . (7)
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The Josephson phase PJ(x,y) contains a nonsingular
function P(x,y) as well as the singular part Pb(x, y),
where

VP(x,y, z) —2e A/Pic = '0

Consider an area perpendicular to y with width dx in
the x direction and extending to ~ in the z direction.
Choosing a gauge A, =O, the Aux through this area can
be written in the form

h'"(x,y)dx =dx f h~(x, y, z)dz

=f A dl =[2 (x,y, ~ ) —2 (x,y, —~ )]dx

=dx(Ac /2e ) [P(x,y ) —Pb(x, y )] .
Bx

(10)

A similar equation follows for h„'"(x,y), i.e., h„(x,y, z)
integrated on z. Thus the z dependence can be eliminated
by using the integrated 2D fields h'" = (h '",h '") for which

h'"(x, y ) =(A'c/2e )z X V[/(x, y ) —Pb(x, y )], (11)

where z is a unit vector normal to the junction.
The z component of the equation of motion, Eq. (7), be-

comes

(c/4')[ —B~h (x,yz)+8 h~(x, y, z)]

=(eA/2m )n,
aa(x, y, z)

az
(12)

Integrating z yields the Josephson phase P(x,y) on the
right-hand side. The junction effect' is to replace tI)J by—sinPJ, so that observables are periodic in P and spatial
variations in P are important only where $%2rr. Substi-
tuting (10) into the z integrated (12) and use of PJ(x,y)
[Eq. (8)] finally yields

V P(x,y ) =(1/A J ) sin[/(x, y )+PI, (x,y )], (13)

P(x,y ) =P(x,y, ~ ) —P(x,y, —oo ),
&PJ(x,y)=$(x,y)+&/&(x, y) .

The boundary conditions for the currents J,J~ in Eq. (7)
correspond to

F= ,'e—of d r'[V„P(r')] (14)

where r &, =x /g», r2 =y /g~, r3, =z /g„with g, = u~ /b, ,
are transverse coherence lengths,

co=6, g„g~g,/e~b a, u~ is the Fermi velocity, eF is the
Fermi energy, 6 is the gap in the electron spectrum, a is
the lattice constant in the z direction, and b a is the
volume of the unit cell.

The energy (14) has to be supplemented by the pres-
ence of dislocations-defect lines around which

f VP(r).dI =+2'. Since the CDW is periodic only in
one direction it restricts Burgers vectors to be parallel to
q; the corresponding dislocations are either screw or edge
type. '" We consider a "junction" on a plane perpendicu-
lar to q, between two CDW formations; one is, say, slid-
ing and the other static. The junction plane can have
many dislocation loops, yet there are paths across the
junction which favor the phase difference across the junc-
tion [Eq. (8)] to be a multiple of 2m. This nonlocal effect
results in a coupling which is periodic in P(x,y ), as in Eq.
(13).

A more quantitative derivation follows the route of
He, an equivalent system with a complex order parame-
ter. The He problem has been shown' to be equivalent
to that of charged particles coupled to a gauge field a(r).
The related XY model on a lattice has also been
transformed into a gauge theory' ' which in terms of a
disorder field f= ~g~e'r has the form'

F, = f d r'[ —,'~V„y(r')—e*a(r')~ + —,'[V„.Xa(r')] ]

(15)

assuming a constant ~g~.
The CDW problem is now formally equivalent to that

of Eq. (2) with the temperature T'=eo/T for the super-
conductor Eq. (15) and the charge e*=2&m. The line
singularities of V X VP in the CDW problem correspond
to line singularities of V X (Vy —e *a) and hence to mag-
netic Aux lines in the superconductors. Flat boundaries
correspond then to no dislocations far from the junction,
while spiral boundaries correspond to a pair of screw
dislocations parallel to z. The latter case is precisely the
Frank-Read source for generation of dislocation loops in
the junction plane.

Repeating the steps in Eqs. (3)—(9) we obtain

where XJ is the Josephson penetration length. Note that
no assumption on an exponential decay of h(x, y, z ) in the
z direction (as in usual derivations' ) has been made.

We consider next the CDW problem in which the phe-
nomena of a sliding CDW and generation of current os-
cillations by a dc field have been associated with the for-
mation of dislocations, '" vortices, ' or phase slip de-
fects. ' Matching of a sliding CDW with a static one
near an external contact' defines a plane which, as
demonstrated below, acts as a Josephson junction.

A CDW describes density modulations of the form
cos[q r+P(r)] with r=(x,y, z) and q, incommensurate
with the underlying lattice, so that sliding in the z direc-
tion due to an external force is relatively easy. The elas-
tic energy due to phase deformations is '

V y(x, y)=(1/A, *) sin[y(x, y)+P„(x,y)], (16)

where A,
" =g le * . Equations (13) and (16) show that

the static equation for crystal growth is equivalent to that
of a Josephson junction and of a CDW "junction. " We
next propose that the dynamics of these systems is given
by Eq. (4).

The force I and the growth rate ( P ) (( ) denotes space
average) have different interpretations in the three sys-
tems. For the Josephson junction case I and ( p ) are the
current density and voltage across the junction, respec-
tively. In the CDW case I is the electric field while (P)
is the current carried by the sliding CDW. The actual
transformation to Eq. (15) in presence of I is not obvious
since its energy I P(r) is unbounded; instead we use the



8084 F. FALO, A. R. BISHOP, P. S. LOMDAHL, AND B.HOROVITZ 43

analogy of Vy —e*a with VP to obtain a force I in Eq.
(16). As for the original P equation the free energy
which corresponds to (16) involves an energy scale (analo-
gous to the Josephson current) which requires a separate
calculation. Finally, in the crystal-growth problem I is
the solid-vapor chemical potential difference and (t is the
growth rate of the surface.

III. SPIRAL GROWTH DYNAMICS

Direct simulation of equations (4) gives clear evidence
of the Frank-Read source mechanism for crystal growth.

Figure 1(a) shows snapshots from the time evolution of
the initial condition: a pair of screw dislocations given by
Eq. (5). Here, the separation between dislocations (2xo)
is 100 lattice units and I=0.8. Figure 1(b) shows
snapshots from the time evolution of the growth rate (P):
The spiral growth is especially clear. Finally, Fig. 1(c)
shows snapshots from the time evolution of a simulation
at finite temperature (T= 1.0,I=0.65): In this case
spiral growth is still present, but homogeneous nucleation
is also beginning to appear. At a slightly higher tempera-
ture nucleation dominates the growth process. Accord-
ing to the Cabrera and Levine continuum theory' for

K M ~I I El t tkaol ~ 'C~

c
C ~ I l8 i@a,~

itr' '~
HS i $ 0I% I!

(a)

FIG. 1. Snapshots from the time evolution of two counter rotating spirals (a Frank-Read source). Panels (a), where I=0.8,
@=1.0, and T=O, show P for four different time snapshots. Panels (b) show the growth rate P for the same parameter values. Finally
panels (c) show the growth of P at a finite temperature just below the crossover to nucleation dominated growth (I=0.65, e = 1.0, and
T=1.0). Note in addition to the spiral a large nucleation cluster near the (periodic) boundary. The times are the same as for panels
(a) and {b). The color bar at the bottom of each panel gives the magnitude of the growth (growth rate) increasing from left to right.
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FICx. 4. (a) (P(t)) vs time at T=O in the spiral growth re-
gime; (b) the same as (a) but in the nucleation regime.

FIG. 5. (a) (((I(t) ) vs time at T=1.0 in the spiral growth re-
gime; (b) the same as (a) but in the nucleation regime.

giving a signature of the crossover region.
In the underdamped regime (e ((I) the dynamics is

substantially more complicated, but spiral growth is still
possible. For instance, for @=0.1 we have found that the
dynamics leads to irregular shapes of emerging rings gen-
erated by the spiral growth. This is due in part to the
complicated dynamics during the collision of two counter
rotating spirals which, in the underdamped case, is more
like a regular sine-Gordon kink-antikink collision, while
the overdamped dynamics behaves more like an annihila-
tion process.

IV. ROUGHENING TRANSITION

For high fields and/or high temperatures, nucleation
processes dominate and the presence of the dislocations is
unimportant (although we have observed that they act as
preferential nucleation regions). For high enough tem-

perature the surface melts in the sense there is no energy
cost to create steps (i.e., there is a roughening transition).
According to the duality mapping between DGSOS mod-
el and XY models for I=0, this transition at temperature
Tz should have a Kosterlitz-Thouless (KT) character. In
fact, renormalization group (RG) recursion equations for
Hamiltonian (1) (I=0) are the same as the KT ones.
One way to locate the transition temperature is to investi-
gate the height-height correlation function given by

(17a)

C(r)= ln(r)=2'(T)ln((r),A (T)
(17b)

For T) Tz and I=0 the cosine term in the Hamiltonian
(la) is irrelevant under renormalization, and therefore
reduces to a pure 2D Gaussian model behavior. Thus the
correlation function becomes
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FIG. 7. Semisc hematic phase diagram, showing spiral
growth, nucleation, discreteness pinned, and melted regimes.

where A(t) is a function of temperature. Below TR, we
have a finite correlation length g and the correlation
function is

C(r)= A(T)in[(r +g )]
1

2&
(17c)

Thus, for R ~ oo, C(r ) =in'. We can use the RG expec-
tations that A(Tz )=8m in our variables and is a univer-
sal quantity. Figure 6 shows the correlation function for
temperatures near our numerically estimated T~ =24. 5.
For finite systems the crossover between forms (17b) and
(17c) is smooth; this estimation has been made by using
the universal value rt(Ttt )=4. RG analysis for the con-
tinuum model gives Tz =8~=25. 13, in fair agreement
with our numerical results.

V. DISCUSSION

We can summarize the foregoing results in a schematic
phase diagram (Fig. 7) for the different dynamical re-
gimes. As we have described in Sec. II, the presence of
dislocation-like defects dramatically changes the dynam-
ics at low temperatures and driving forces. Several re-
gions are well defined in the presence of such defects: A
spiral growth mechanism is developed —strongly de-
creasing the critical field for surface growth. A crossover
between spiral and nucleation growth is obtained with in-
creasing temperatures for I ( 1.

Different condensed matter systems can exhibit the
kind of dynamics we have discussed. For instance, dislo-
cations in a charge-density-wave lattice can act as a
Frank-Read source giving a reduced value for the critical
electric depinning field. A similar mechanism can be in-
voked in thin film superconductors or large Josephson
junctions for Aux motion. The dynamics of the spiral
growth regime is characterized by the nonlinear behavior
(( P )) =I which should be experimentally accessible. At

finite temperature the crossover broadens but it is still
possible to distinguish both spiral and nucleation mecha-
nisms. Below the equilibrium roughening temperature
T~ and in the nucleation regime, the growth rate is given
by ((P)) =exp( —c/I). Above T~ a linear behavior
( (( p )) =I ) has been found as predicted in RG theory. s

In conclusion, we have studied a model which can
simulate spiral and nucleative growth patterns. We have
calculated dynamical properties of this model using a
Langevin MD method obtaining, in a dynamical sense,
the phase diagram for crystal growth. The great variety
of systems which present this kind of coherence structure
leads us to expect that new applications will occur in
such different fields as material science, chemistry, and
biology. Furthermore, the opportunity to study these
processes with Langevin MD rather than MC techniques
is now greatly enhanced because of access to massively
parallel computing capabilities like the CM-2. We be-
lieve that a synergistic combination of large-scale com-
puting and techniques from nonlinear science opens qual-
itatively new opportunities to study nontrivial microscop-
ic dynamical processes and their relation to macroscopic
response properties.
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