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The theory of forming a coherent twin band and its relation to the parent-product interface in a
martensitic transition is studied. We find that the twin band is stabilized by a long-range elastic in-
teraction between the twin boundaries, which is mediated via the parent phase. The mean distance l
between twin boundaries is then l —QL~, with L2 the size of a twin boundary, i.e., the product
"grain" size. The collective twin-boundary oscillations ("dyadons") have unusually low frequencies
and a limiting dispersion of frequency, which goes as the square root of the wave vector. Explicit
results are given for a tetragonal-to-orthorhornbic transition. We also show that dyadons cause the
specific heat to change from a T' temperature dependence to T at lower temperatures and to allow
for a linear temperature dependence of the resistivity to extend to low temperatures. We compare
our results with data on conventional martensites and on the more recent ceramic superconductors.

I. INTRODUCTION

Martensitic transitions form a unique class of phase
transitions in the sense that a local free energy is not
sufficient to describe them. A martensitic transition in-
volves a structural transition whose transformation coor-
dinate (or order parameter) is a lattice strain'
—Bu(r)/c)r, with u the displacement of the center of
mass of the unit cell at coordinate r. A constant strain in
the transformed lower-symmetry phase implies that
u(r) —r is diverging with the size of the specimen and
that the macroscopic boundary conditions of the crystal
become involved. The resulting macroscopic changes, in
some cases, are manifested by the so-called shape-
memory effect. In general, however, the bulk or macro-
scopic boundary conditions are fixed, and to relieve the
above-mentioned real-space divergence, the system forms
domains. This is the case if the martensitic phase is sur-
rounded by an unstrained parent phase.

A key feature of a martensitic transition is then the
formation of domains, inhomogeneities with structure on
a scale much larger than the lattice constant. The crys-
tallographic symmetry of the parent (untransformed)
phase generally allows for formation of a few distinct
variants or "twins" of the product (transformed) phase.
A martensitic transition can then form a coherent array
of twins such that the average strain on its boundaries
vanishes. This then allows one to match the product
phase with the parent phase, the crystal boundaries, or
any other unstrained phase. The boundary at which this
matching can occur is called an "invariant strain plane"
or a habit plane. This type of "twinning" martensite is
the common form for low-strain structural transitions.

The coexistence of two twins results in a localized twin
boundary. It has been shown that a static solution for
a twin boundary or for a periodic array of twin boun-
daries can be produced by a continuous displacive distor-
tion of the parent phase without any need for disloca-
tions. Explicit solutions were given in a continuum
theory by allowing for both nonlinear elasticity and for
nonlocal strains (i.e. , strain gradients). The significance
of this description, as will emerge below, is that large-
scale motion at low frequency is allowed by the coherent
twin structure. Note that this motion results from rear-
ranging a displacement field, i.e., each atom moves by a
distance usually much smaller than the lattice constant.
This is very different from the dynamics of dislocations
whose motion involves discontinuities in the strain field,
motion of atomic vacancies, and hence drag and damp-
ing.

In the present work we study the energetics involved in
the formation of a twin band in a host matrix, a study
which was brieAy described earlier. ' While the funda-
mental reason for the occurrence of a twin lattice with a
habit plane has been understood, ' we are not aware of
any quantitative studies of this phenomenon which ac-
count for the inherent nonlinearities.

In Sec. II we consider a parent-product interface and
derive the parent displacive response to the nonlinear
strains in the product twin band. This response is a
long-range elastic field which provides an effective in-
teraction between the twin boundaries and determines
their equilibrium spacing. In Sec. III we consider the
motion of twin boundaries, which results in a highly non-
local response. We find the proper normal modes for
these twin-boundary oscillations —the dyadons' —and
their spectrum.
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In Sec. IV we study some physical observables which
can probe dyadons. These include elastic vibrations and
waves, scattering experiments, specific heat, and, via
electron-dyadon coupling, a contribution to the resistivi-
ty. In the Appendixes we consider the explicit case of the
tetragonal-to-orthorhombic transition. In Appendix A
we derive the orientation of the habit plane and in Ap-
pendix B the static response of the parent (tetragonal)
phase to the twin-boundary lattice in the product (ortho-
rhombic) phase.

We note that the tetragonal-orthorhombic transition
and related twin boundaries are of particular interest
since they were observed in some of the copper oxide
high-T, superconductors. " In Sec. V we discuss some
implications for the properties of these materials.

II. TWIN BOUNDARIES: STATICS

Structural transitions which lower the point-group
symmetry can result in a few degenerate variants or
twins. For example, the cubic-tetragonal (C-P transition
has three variants (by choosing each one out of three
cube sides to change), while the tetragonal-orthorhombic
(T-O) has two variants (by choosing either of two square
sides to increase). The boundary between adjacent twins
is called a twin boundary. Geometrical considerations
determine the plane across which two twins are compati-
ble; ' for the C-T and T-0 transitions twin boundaries
are the I 110I planes.

Continuum models with nonlinear elasticity and with
nonlocal strains (i.e., strain gradients) have been studied
for the C-T and T-0 transitions and static solutions of a
twin boundary or a periodic array of twin boundaries
have been found. These solutions describe a continu-
ous displacive distortion of the high-symmetry phase
without any need for dislocations.

The local elastic free energy F in terms of an order pa-
rameter e (a strain component) has degenerate minima for
the strain values corresponding to the allowed twins.
Figure 1 shows the T 0case with m-inima at e =+e/v'2,
with e being the I 110I shear. A twin boundary is
describable by a topological displacement soliton which
interpolates (in space) between two degenerate minima.
The continuum model then yields a one-dimensional solu-
tion e (s) with e (s —+ ~ ) =e/&2 and e (s —+ —oo )= —e/&2, with s the space coordinate perpendicular to

the twin boundary.
The total free energy is also minimized by periodic

twin-boundary lattice (TBL) solutions whose periodicity
2/ may lie in some finite range. In itself any one of these
one-dimensional solutions does not determine a preferred
value of l. In fact, since the absolute ground state is that
of a homogeneous uniform strain, two adjacent twin
boundaries can in principle annihilate each other and
thereby reduce the total energy of the system. Hence
these TBL solutions are unstable.

To account for the existence of TBL's we must intro-
duce another phase coexisting with the product phase,
e.g. , a parent-product coexistence such that the interface
is continuous with no loss of material. The parent prod-
uct matching along a habit plane is then the raison d' etre
for the twin array. With only one variant on the product
side the mismatch of lattice constants would increase the
strain indefinitely along the habit plane. With a TBL,
however, a habit plane can be found such that average
lattice constants along the habit plane directions are
equal on both sides of the interface. This then guarantees
that all strains near the habit plane are finite and that
dislocations can be avoided.

The construction of a habit plane ' yields its orienta-
tion relative to the twin boundaries and also the thickness
ratio of the two variants participating in the TBL. In
Appendix A we derive the habit plane of a T-0 transi-
tion. We find that, unlike in other structural transitions,
there is a solution for any thickness ratio; the latter is
then determined by dynamic or thermodynamic con-
siderations.

The next step is to evaluate the interface energy, i.e.,
the amount of free energy stored in the elastic field fring-
ing from the product into the parent phase. The
geometry is illustrated in Fig. 2; the normal to the habit
plane is in the x direction, and x =0 defines the habit
plane. The intersection of the twin boundaries with the
habit. plane defines the z direction (perpendicular to the
plane of the figure), while the remaining perpendicular
direction y has an angle 8 with the coordinate s along
which the one-dimensional TBL modulation u(s) is
defined.

We now face the problem of solving for the elastic dis-
placement field w(x, y, z) in the parent phase x &0, with
the boundary conditions

w(x, y, z) ~ 0,
and along the habit plane

w(0, y =s/cos9, z) =u(s) .

(la)

(lb)

Consider first the situation far from the habit plane
where w~0 and linear elasticity should be valid. As ar-
gued below, this regime will give the dominant elastic en-
ergy. Linear elasticity then shows that the small dis-
placement elastic normal modes have a wave vector k,
and their frequencies squared, co, are proportional to the
eigenvalues of the ChristofI'el tensor:

FIG. 1. Schematic form of a strain-dependent free energy.
The degenerate minima at +e/&2 correspond to twins.

T, =gC... kk, ,
j, l

(2)



43 TWIN BANDS IN MARTENSITES: STATICS AND DYNAMICS 1023

where C;.I are elastic constants in the x,y, z coordinates
of Fig. 2, which are not necessarily crystallographic sym-
metry axes. The local stability of the parent phase en-
sures that all the eigenvalues are co )0 for k real. Our
static problem with no applied body forces requires the
solution for T; u =0, i.e., . d.et(T;, )=0. The boundary
condition (lb) implies that k is real, to allow for a
periodic strain pattern along the y direction. Similarly,
k, is real; in fact, if y is a symmetry direction of the crys-
tal a, z dependence is not generated and k, =0.
To allow for decay in the x direction [Eq. 1(a)], we
must have an imaginary k„with Imk & 0 so that

oo

u(k)- exp(ik r) —exp[ —(Imk, )x ] = 0. Such a
solution can indeed satisfy det(T, )=0; in fact, t"he homo-
geneity of Eq. (2) implies the relation

ak, Re (3)

FIG. 2. Habit plane (dashed line) separates a twinned-
product phase (on right) from the parent phase (on left).
L ),L2, L3 are dimensions of the product phase (L3 is perpendic-
ular to drawing). The separation between twin boundaries is I
and their width is g. The direction s is perpendicular to the
twin boundaries, x is perpendicular to the habit plane, z is the
intersection of twin boundaries with the habit plane, and y is
perpendicular to x and z.

where a depends on ratios of elastic constants C; I . The
number of solutions w' satisfying (3) equals the dimen-
sionality of u, e.g. , for a two-component field j =1,2.
Since the boundary condition (lb) is a vector equation, a
single solution is determined. We note that for k =0 the
exponential decay should become a linear one; thus for-
mally we exclude k =0 and consider only ~k~ ~

)2'/Li.
The result (3) is derived explicitly for the T Oin-terface in
Appendix B.

The solution in the parent phase, far from the habit
plane, then has the form (suppressing the z dependence
for simplicity)

w(x, y)= g w'(k )e ' ' ' (x &0) . (4)
i, k

The remarkable feature of Eq. (4) is that the elastic field
does not decay exponentially with x & 0. The decay
lengths I/(a;k ) diverge as k —+0, and by expanding
w'(k ) in powers of k it is seen that, in fact, w(x, y) de-
cays as a power of 1/x. Hence the fringing elastic field in
the parent phase is of long range.

If Eq. (4) were valid at the habit plane, the boundary
condition (lb) would yield

g w'(k~ ) =u(k~/cos8),

where u(k) is the Fourier transform of u(s). We need,
however, to account for the transition region near the ha-
bit plane which connects the nonlinear region of u(s)
with the linear regime of Eq. (4). The thickness t of this
transition region is either g, the width of a twin boundary
which is a typical length scale for variations in the non-
linear field, or el, which is the maximal displacement in
each twin. In the following we assume g« l and e«1
so that t « l. Hence u(x;k /cos0) at x = t is needed-
in Eq. (5). By expanding in both k and x and noting
that a k =0 component is not needed (uniform shift of
the TBL), the lowest-order correction to (5) is -k t. In
the following we mostly need ~k~~ &7r~/; hence k~t &&1
and (5) can be used.

The interface energy involves the elastic energy of the
linear regime which has the form

E;„=g—'C; f dx f" dy f" dz(a, ~, +a, ~, )(a, ~ +a ~, ),
ij lm

with w, (x,y) the components of w(x, y). By using Eq. (3)
the derivatives give a k dependence; however, the x in-
tegration involves

f dx exp(2a, k x)-k
Using Eq. (5), we obtain the general form of the interface
energy as

E;„=L,L3 g a,l g ~
k

~ u;(k)uj ( k), —
i,j k

with 0;; of the order of elastic constants in the parent
phase and dependent on the orientation angle 0 of the ha-
bit plane. A typical term in (7) is u;(k)=el, k —1/1, so

that in the ground state we expect

E;„=acL&L3l,

with a =0(a,- ); a more explicit derivation is given below.
We return now to the neglected transition region—t & x & 0, which involves energy densities of order ee

in a volume L,L3t. Since t «(, the dominant interface
energy is that of the long-range elastic field, i.e. , Eq. (8).

The elastic free energy within the product phase in-
volves the creation energy per unit area Eo of a twin
boundary. Except very near the transition temperature,
all terms in the (nonlinear) expansion of the free energy
are comparable so that Eo —-ae g. This relation assumes



1024 B. HOROVITZ, G. R. BARSCH, AND J. A. KRUMHANSL 43

a proper ferroelastic material (i.e., strain is the primary
order parameter); otherwise, Eo depends primarily on the
energies of a finite wave vector or optic-phonon mode
which represents the primary order parameter. The free
energy of a TBL solution can be separated into the free
energy of L, cosO/l =N~B independent twin boundaries,
i.e., EoL, /l (with Eo =Eo cos9), and the remainder being
classified as the "interaction" between twin boundaries.
Since the twin-boundary strains are exponentially local-
ized in a width g, their mutual interaction for l ))g
becomes of order exp( —1 /g). Hence the static energy of
forming a TBL is

0.8—

g (p.m)

0.5—

0.3
IO

Ern~ =EQ, L~Ls /1 [1+0(e ' ~)] . (9) Lz (p.m)

The total I-dependent parent-product energy is the sum
of Eqs. (8) and (9). Although Eq. (8) is a habit-plane (i.e.,
surface) energy, for all practical purposes it dominates
over the bulk interaction energy in Eq. (9), i.e.,
(g/l) exp( —l /g) ((l /L 2, even for an extremely low
value of" l//=10 this implies 1/L2))10 and with
l =100 A one needs L2 &&10 A, consistent with typical
grain sizes L2 of order 1 pm.

Minimizing the sum of Eqs. (8) and (9) yields the op-
timal value of the TBL periodicity:

l =[EoL2/(ae )]' =Q/L2 . (10)

This central result shows that the TBL is a finite-size
effect and its periodicity increases with the size of the
martensite inclusion, i.e., the grain size L2. Note that Eo
and o; are temperature dependent, and that close to the
transition temperature or for improper ferroelastic mar-
tensites the second part of Eq. (10) does not hold. How-
ever, all other results below are valid for both proper and
improper martensites. Equation (10) has been given pre-
viously' by phase-space arguments in Fourier space;
however, the actual displacement field was not derived,
and so it is not obvious whether that method contains our
long-range effect.

We have analyzed data for twin bands resulting from a
C-T transition in In-Tl. ' The data show ten bands with
L2 in the range 2.7 to 10.5 pm and with l in the range
0.38 to 0.82 pm. A power law l —(Lz) is a reasonable fit
(see Fig. 3) with o =0.4—0. 5. The ratio l /L =g is
-600 A, implying fairly wide twin boundaries. Data on
YBa2Cu30 (x =6.5 —7) show grain sizes of —1 pm and

FIG. 3. Log-log plot of data on twin spacing l as function of
twin-band size Lz from Ref. 14. The line describes l —QLz.

twin bands related to a T-0 transition with spacings of
200 —1000 A. The data show that l increases with L2, but
a quantitative analysis is not useful as the oxygen content
is not well controlled. The ratio l /L2 is on the atomic
scale; high-resolution electron microscopy" has indeed
shown very sharp twin boundaries with width within the
unit cell. Thus the theory gives relationships between
twin spacing l, grain size L2, and twin-boundary thick-
ness which are in reasonable agreement with experiment.

While the main physical features of a static TBL are
contained in the above discussion, we present now an ex-
plicit form of a TBL and consider (i) a more quantitative
analysis of the static energetics, (ii) general (nonperiodic)
stacking, and (iii) the dynamic properties of the TBL.
The explicit TBL form assumes (a) sharp twin boun-
daries, i.e., l ))g, (b) a one-component field u (s) to de-
scribe the TBL (e.g. , the transverse displacement in the
T Osystem), an-d (c) strains equal but opposite in sign in
alternating twins. The description is, however, fairly gen-
eral in that it is independent of the details of the structur-
al transition. If assumption (c) is relaxed, we expect some
minor modifications, as mentioned below.

We define S„(n=0, 1, . . . , M) to be collective coordi-
nates for the location of each twin boundary in the s
direction. The displacement field between S„1and S, is
—

(
—I )"e(s —S„,)+u (S„,), i.e.,

u (s)= .

r

e(s —So )+u, So ~ s ~ S, ,
n —1—

(
—1 )"e(s —S„,) —g ( —1 )'e(S, —S, , ) +u,

j=1
S„,~s ~S„(n =2, 3, . . . , M),

with u =u (So) an overall shift. When all S„=nl these are equidistant twin boundaries; the form of u (s) is then a
periodic zigzag. We allow, however, S„ to vary from their expected positions and define displacement coordinates 5„
via

S„=nl +5„. (12)

We further assume an even number M of twin boundaries with fixed overall length S~ =So+Ml (Ml =L &cosg) and
impose periodic boundary condition for u (s), i.e., u (SM ) = u (So ). Equation (12) then implies 5o =5M and
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( —1) 5 =() The values of l, u, and 5„are left as variational parameters which minimize the total elastic energy.
t is useful to evaluate the Fourier transform u(q) of u(s) with q values satisfying exp(iqMl)=l. Since the q =0

term does not contribute to the energy [Eq. (7)] we evaluate u (q) for q&0, which after some algebra becomes

Sm
u (q) —J u (s)e ' 'ds/Ml =—

0 Ml „) q2
(13)

We next expand to second order in 5„and Fourier transform (
—1)"5„=gq 5(q) exp(iqnl) with lql

~ ~/l [the reason for
the ( —l )" becomes clear below] to obtain

2E $2 )
u (q)

l g 5, (2 +1)/I
—5(q') ——X 5(")5(q' —k)

vr (2p+1)
(14)

Here p is an integer and q'=q+2~p/I, with p such that lq'l (m. /I in the second term or lq k
1
&vr/1 in the third one,

and 5k q
a Kronecker 5 function.

The interface energy [Eq. (7)] has then the form [to second order in 5(q)]
2

26E;„=aL]L3 1

~'l2p + 1 l' lq+2~p/l l

1 5q5 q (15)

We note that the summation on p, in both terms, con-
verges rapidly as p . For example,g" o(2p+1) =1.05, just 5% above the p =0 term.
Hence the high-momenta components of (7) have a small
effect, which a posteriori justifies the neglect of the transi-
tion region in evaluating the interface energy. We note
also that there are no terms linear in 5(q) and the
coefficient of 5(q)5( —q) is positive. Hence the periodic
TBL with S„=nl (i.e., 5„=0) is a configuration with
minimum energy. For this case the energy is

E n 0 27QC L ]L 3 I )

which up to the numerical prefactor is the same as Eq.
(8). The l —QL2 relation Eq. (10) then follows with an
additional prefactor of (0.27) ' = 1.92.

We note finally that the coefficient of 5(q)5( —q) in Eq.
(15) diverges for q ~0. As we show in Sec. III, when the
proper normal modes are used, all restoring forces as well
as the eigenfrequencies are finite.

i)„=2 g (
—1)~5 +5O —u

j=l
(n =2, 3, . . . , M) . (18)

+o
~ ~ ~

~ ~g ~ ~ ~
~ ~ ~

~ ~ ~ ~
~y ~ ~ ~

~ ~ ~
~ ~ ~ ~ ~ 4 ~

~ ~ ~ ~ ~ ~
~ 0 ~ ~ ~ 0
~ ~ ~ ~ ~ ~ ~ ~

~ ~ 0 ~ ~ ~ 0 ~ ~ ~

~ ~ ~
~y

~ ~ ~ ~g, ~ ~ ~
~ ~ ~ ~~ ~ ~0 ~ ~ ~~ ~ ~ ~ ~ ~ ~

~0 ~ + ~ ~ ~
~ ~ ~0 ~ ~

~ ~ ~ ~ ~ ~~ ~

~ ~ ~ ~ ~ 4 ~
~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~~ ~ ~ ~ ~~gI ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~~ ~ ~~~0 ~ ~ ~

~ ~ ~ ~ ~
~ ~ ~ ~~ ~ ~ ~ ~~0

~ ~
~ ~ ~ ~ ~

I
~ ~

~ ~
g+ ~~ ~ ~

~ ~
~ ~

~ ~ ~
~ ~

where p is the mass density, the overdot is 8/Bt, and a set
of normal coordinates g„, which we call dyadon modes, '

are defined by the nonlocal transformation

g, =Do —u,
n —1

III. TWIN BOUNDARIES: DYNAMICS

=
—,'pL2L3e l g il „,

n =1
(17)

An analysis of the dynamics of twin boundaries yields a
surprisingly nonlocal effect. To grasp the basic idea, first
consider the motion of just one twin boundary as illus-
trated in Fig. 4. Since the strain e (s) in the twins is fixed
as +e, the displacement itself is nonlocal,
u (s) —f s ds'e(s'). When one twin-boundary location

S is shifted, the whole product phase with s )S is dis-
placed. Thus an apparently simple local motion of a
boundary results in a coherent macroscopic motion.

To analyze this idea more precisely, we consider the ki-
netic energy of the TBL solution (11) with time-
dependent collective coordinates 5„(t) as dynamic vari-
ables. The kinetic energy, using Eq. (11),becomes

SM
Ek = ,'pL2L3 I [u (s)—]ds

S0

~ ~
~ ~

'~
'~

~ ~

FIG. 4. Motion of a twin boundary. (a) Left (right) dashed
line is a twin boundary separating the lattices with full (dotted)
lines. Motion of the twin boundary results in displacing the
whole lattice on the right from the full lines to the dotted ones.
(b) Displacement field of a TBL u (s) (solid line) and the eAect of
moving a single boundary as in (a) (dotted line).
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Since 5„ form M —1 degrees of freedom [due to the con-
straint g„r r( —1)"5„=5(q=0)=0], the addition of the
u coordinate allows g„ to form M degrees of freedom.
Thus the Fourier transform g(q) = QM, g„exp(iqnl) is
related to 5(q) by

(19)

Hence the q WO terms in the kinetic energy are
—+~5(q)/sin ( —,'ql), which shows a diverging kinetic
mass as q —+0 for the coordinates 5„. This remarkable
feature is a manifestation of the nonlocal effect of the
twin-boundary motion, i.e., of the large-scale motion due
to a boundary translation. Figure 5 shows this large-
scale effect for q~0 as well as the effect on the strain
field: adjacent boundaries move out of phase, while the
displacement fields of adjacent twins are in phase.
Another mode of interest is the one for q =m/l, shown in
Fig. 6, which corresponds to a rigid translation of the
TBL. Here adjacent boundaries move in phase, while the
displacement field of adjacent twins are out of phase.

We proceed to find the spectrum of dyadons —the nor-
mal modes of TBL oscillations. The total effective Harn-
iltonian is composed of the sum of the elastic energy [Eq.
(15)] and the kinetic energy [Eq. (17)]. The kinetic energy
of the parent phase is neglected since it amounts to a sur-
face term, while Eq. (17) is a bulk term for the kinetic en-
ergy. This is in contrast with the elastic energy whose
bulk term is greatly reduced by the factor exp( —l/g)
and therefore is dominated by the surface term, i.e., the
response of the parent phase. More precisely, Eq. (4)
yields for the kinetic energy of the parent phase

EP""'= ,'pL3L, g lu (q—)l /q,

which is small compared with (17) when qL~ ))1. With
this constraint we have then that the elastic energy is
dominated by the parent phase, but the kinetic energy by
the product phase.

/

V'

00 1
q = „ i ( —,'q

1

I-,
' —p I

and
(21)

cod = [4a/(vrplL2)]'~ (22)

Figure 7 shows the numerical evaluation of the disper-
sion curve [Eq. (21)]. For q~0, co-&q as anticipated
above; this square-root behavior is a manifestation of the
long-range elastic force mediated through the parent
phase. Note, however, that for IqIL2 ~ 1 the wavelength
is longer than the size of the product phase, and parent-
product distinction would be meaningless; the dispersion
should then become linear, ~-q. The q~O mode is
shown in Fig. 5; at q =0, g(q) involves the u coordinate
of Eq. (11), i.e., a uniform translation of the lattice in the
direction of u. Thus cg(q =0)=0 would correspond to
the translation symmetry of the whole system. Note that
q =0 is not a uniform mode for 5„[recall the unusual
Fourier transform below Eq. (13)], but rather an antipar-
allel motion of the twin boundaries [Fig. 5(b)].

The spectrum (21) has a second zero mode at q =~/I,

This scenario has an analogy in a linear elasticity prob-
lem: Love waves' describe localized waves in a layer of
material A with thickness L2, which is attached to a bulk
material 8. %'hen the elastic constant of material A is
vanishing [to represent the 0( exp( —l/g)) term in Eq.
(9)], the dispersion of Love waves is co —V'q for
IqI ~ 1/L2', this has also been extended to anisotropic ma-

terials. '

By comparing Eq. (7) with Eq. (17) it seems as if
co-+q is obvious. However, Eq. (7) is the dominant re-
storing force only for the twin-boundary translation
modes; hence we need to use the proper normal modes

From Eqs. (15), (19), and (17) we obtain for the Ham-
iltonian, to second order in g(q), with F.;„the static elas-

tic energy,

&=E + 'pL. ,L —L e g [g(q)g( q)+~—ri(q)g( —q)],
q

(20)

and the dyadon eigenfrequencies are

(a)

(b)

FIG. 5. q~O modes: (a) Displacement field u(s) of a TBL
(solid line) and the effect of a q~O dyadon (dashed line). (b)
The strains e (s) -Bu /Bs corresponding to (a).

FIG. 6. q =w/I mode (a) Displacement field of a TBL (solid

line) and the eAect of a q =m. /I dyadon (dashed line). (b) The
strain e (s) —Bu /Bs corresponding to (a).
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FICr. 7. Dispersion curve of dyadons [Eq. (21)].

,'Pc LzL3M g—sin ( —,'q/)i/(q)i/( —q) . (23)

The dispersion (21) is thus modified to

co;„(q)=(p/p/)sin ( —,'q/)+re (q) . (24)

The q~0 form is not affected and co;„(q)—i/q. At
q =n//, however, ni„;„(q)= (p/p/)' ~ becomes finite.

The most remarkable feature of the dyadon spectrum
is its extremely low-frequency values, on the order of
the characteristic frequency ~d. If m„ is a typical acous-
tic frequency at q =sr// [ni„=(a/p)' vr//], then
rod ro„(//-—Lz)'~ . The factor (//Lz)'~ is small and the
dependence on the grain size I.z reminds us that the re-
storing force for the dyadon motion is an area-dependent
interface and decreases (relative to the bulk kinetic ener-
gy) with increasing grain size. Using the /, L~ values of
Sec. II, we estimate cod of 10 —10' sec ' in In-Tl, while
~d ——10' —10" sec ' in YBazCu307. In the latter com-
pound we estimated a short g, and pinning effects can
modify the actual frequencies as in Eq. (24). For In-T1,
however, we find a large g so that nod should be a realistic
measure of the dyadon spectrum.

We note that these low-frequency modes constitute a
rearrangement of the acoustic branch; i.e., the acoustic
mode frequencies for 0& ~q ~

& ~// collapse and form the
dyadon spectrum. The rest of the acoustic branch at
~q~ & m// should be weakly affected by this rearrangement
(Fig. 8); this results in a frequency gap of cod & co &co„at

which is approached linearly n~(q) =
v~ q 7r// —

~
with

v =cod/[7$(3)/2]'~ /rr=2. 05cud//~. A q=~// mode
corresponds to a uniform translation mode of the TBL, as
shown in Fig. 6. Thus the modes near ~/l are
"phason"-type modes with U the phason velocity, relat-
ing to the translation invariance of the TBL energy in a
continuum model. In practice, however, there are pin-
ning forces due to either impurities or to lattice discrete-
ness, the latter being important when the twin-boundary
width g is short as compared with a lattice constant.
These pinning effects can be represented as an additional
term in the energy of the system which [unlike Eq. (7)] is
local in the coordinate 6, ; hence

E~;„=,'Pe LzL3 g—5„ /
/

I
/

/

/

I
/

I
I
I

/

I
I

/

I
/

I
Ice= vq
I

I
I

I
I

I
/

I
Caid — I

QC
-- v m./g

2

~ac

Lp

FIG. 8. Dyadon spectrum with the rest of the acoustic
branch (schematic); note different scales on left and right.
Dashed part collapses to the lower dyadon branch in the pres-
ence of twin boundaries. At q =m/l the upper branch is curved
in a range —I/g of q. The middle section shows (circled) the
temperature dependence of the specific heat in various tempera-
ture regimes which correspond to the marked characteristic fre-
quencies.

which the relevant sound modes cannot propagate in the
direction perpendicular to the twin boundaries, analo-
gous to a periodic interference filter in optics.

Note also that co(q) «co„ for all ~q~ &vr//. This in-
equality shows that the dyadon spectrum is well below
that of other normal modes, a condition which is needed
for the definition of translation modes as independent col-
lective variables, as in other soliton-bearing theories.

The periodicity of the static TBL is 2I so that the nom-
inal Brillouin-zone boundary is at +~/2l. The spectrum
in Fig. 7, however, has no gap at ~/21; this relates to a
"glide line" symmetry (translation by / and refiection in
u) so that the effective periodicity is /. For a more gen-
eral TBL where the two twins have different strains
e,W —e'~ and hence different lengths /„/~, the periodicity
would be 2l =l, +lz and a gap would be present at
q=+~/2l. The other peculiar features of the dyadon
spectra, as discussed above, do not change for this more
general situation.

We consider next a three-dimensional generalization of
the dyadon concept. A twin-boundary motion is now
modulated along a direction r (rJ.s) parallel to the twin
boundary itself; i.e., the boundary is not Hat anymore, but
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+O(g ), (25)

where uo(s) is the static solution. A typical elastic energy
associated with the du /Br strain is then

a,f fdrds =a~e L,L~ g q2g(q)g( —q), (26)

where g (x —p) =~ /sin vrx was used. We conclude
then that the three-dimensional dyadon dispersion has
the form

cu (q)=au (q, )+uzqz+u, q3,
with U2, U3 of the order of usual sound velocities.

It is interesting to evaluate the magnitude of thermal
Auctuations of a twin boundary, which for the harmonic
Hamiltonian at temperature T are given by

M

8l, T f d3 sm ( —,'q, l)

p (2~) co (q)

Using Eq. (27) and replacing cu(q& ) =cud, we obtain

(28)

is bent periodically with a wave vector q2. This mode in-
volves strains within the product phase which extend
away from the twin boundary. The volume that these
strains occupy is of the same order as that for the related
kinetic energy. Thus, unlike the case of Oat translations,
the restoring force for the qz&0 modes acts in the same
volume as their kinetic energy; hence we expect the usual
cu-q2 dispersion. This can also be seen from Eqs. (14)
and (19) by replacing q(q& ) with g(q) exp(iqzr) and
renaming the previous q as q&(~q& ~

(vr/1):
lqi 3

2l 6 e —1 i (q& +2'/I)s + iq&r
u (s, r) =uo(s)+ g e ' g(q)

M;k BQE, =a e'k' ds .
So Bs

(30)

can be experimentally determined. To our knowledge the
dynamic behavior of twin boundaries has not been stud-
ied, so far, and in this section we discuss some possible
methods, viz. , elastic vibrations and waves, scattering ex-
periments, specific heat, and electrical resistivity.

The methods commonly in use for the measurement of
elastic constants, viz. , resonance techniques and
traveling-wave methods could, in principle, be adapted to
verify experimentally the theoretically derived dyadon
dispersion relation [Eq. (21)], but would, in addition to
the measurement of resonance frequency or travel time,
require the independent and more dificult determination
of the wavelength of the dyadon excitation. For the case
of standing waves the modulation of the twin-boundary
spacing could be measured by means of optical refIection
microscopy, but would still require a sufhcient increase in
experimental resolution. For a typical transformation
strain of a few percent, large (transverse) atomic displace-
ment in the order of tens of nanometers would be re-
quired in order to produce twin-boundary displacements
comparable to the wavelength of light.

Alternatively, it seems feasible to excite individual
standing dyadon modes in a suitable uniformly twinned
crystal electrostrictively by depositing a thin layer of a
highly electrostrictive material on the twin-relief corru-
gated face of the twinned-product phase region opposite
to the habit plane and (by means of a pulsed tunable in-
frared laser or microwave maser) setting up a polarized
standing electromagnetic wave with wave vector parallel
to the twin-boundary normal (Fig. 10). Under resonance
conditions the pulse frequency and the (optical or mi-
crowave) wavelength then determine the frequency and
wavelength of the excited dyadon mode. The stress in-
duced in the twin-band electrostrictively is described by a
modulation o.e' ', which couples to the strain via the cou-
pling energy:

kT a
~+a l ac

By a partial integration this involves the Fourier trans-
form of u (s) [Eq. (14)]. Hence

where ~/a, ~/c are cutoffs of the q2, q3 integrations, re-
spectively, and u2 =u3 =(a~/p)' . For YBazCu307, we
estimate +~a = 16 eV, l /a = 30, L 2 /c = 300, so that at
room temperature ((5S )/a )' =0.01, and for In-Tl
about 0.001, very small fractions of a lattice constant!
[Note that Eq. (28) describes the thermal mean-square
amplitude of the atomic displacements; the actual posi-
tions of the twin boundaries fIuctuate more strongly by a
factor e ' [Eq. (11)]. Hence thermal lluctuations have a
weak effect on the coherency of twin boundaries, a
coherency which should be observable in a variety of ex-
periments, as discussed in the next section.

IV. EXPERIMENTAL PROBES

Twin boundaries are easily seen in optical or electron
microscopy. Hence their static properties such as rela-
tive orientation, spacing, and width, as derived in Sec. II,

E, =2creM(e '~ —1)rl(q')+O(g ), (31)

with q
' the reduced wave vector q

' =q +2~p /l,
~q'~ (vr/l. The coupling becomes weaker as q'~0.

A scattering experiment, either by light or by neutrons,
involves the lattice sum

g e'~'"'+"'= g e'~"'+iq(Ml/a)u (q)+O(u ), (32)

where a is a lattice constant. Here the coupling qu (q) is
of the same form as in Eq. (31). Note that in both cases
the relation q'=q+2~p/l allows some flexibility in the
choice of wave vector. The more serious constraint is to
look for frequencies in the technically dificult range of
10 —10" sec '. Thus, while inelastic neutron scattering
would be only marginally possible, Brillouin and laser
Raman scattering (including second order) seem to be
more promising.

Next, we consider the specific heat C, due to dyadon
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excitations. In view of the gap in the spectrum co(q, ) and
the extreme anisotropy of dyadons, we expect four quali-
tatively different regimes for the temperature dependence
of C, (Fig. 8).

(a) T &ver/Lz -—coDa/L2, where v is a typical sound
velocity, a is a lattice constant, and cuD = vm. /a is the De-
bye frequency. In this regime thermally excited waves
with Uq & T cannot be confined in the product phase and
the normal dispersion co-q should result in all directions.
Hence, in this regime, C,"'-T .

(b) uvr/L, & T &co~ =v~/(1L, )' '. In this regime dya-
dons are thermally excited and C„(T) depends on the de-
tailed form of co(q, ). The most peculiar contribution
comes from the co —Qq&, regime: Temperature imposes
a cutoff on qi, which is —T, while in the other direc-
tions q2 and q3 can be exited up to —T/v; hence
C[ ]-T plus othe~ terms

(c) co& & T(ver/1 =coDa/l. In this regime all the fre-
quencies co(q& ) are excited and the cutoff on the q& phase
space is temperature independent, q, ~~/l. Thus only
the excitations with q2 and q3 are temperature limited
and C, is effectively two dimensional, i.e., C,' '- T .

(d) v ~/1 ( T. Here the acoustic modes with
l q, l

)~/1
contribute again. Except very near q, =~/l, the disper-
sion of these modes should be linear; hence C,' '- T .

We have evaluated numerically C, (T) via

temperature

T„=O.lco„=0.1coua/1 . (35)

For T) T, we expect C, —T, while for T & T, C, of a
twinned sample is enhanced relative to that of the
untwinned one and behaves as C„—T .

For In-T1, coD ——300 K, a/1 =10, and T =0.03 K.
In YBa2Cu307, coD-—400 K, and 1/a =25 —250 so that
T = 1.6—0. 16 K. Experimental data are referred to
below.

Finally, we consider the metallic resistivity p, due to
electron-dyadon coupling. In general, a linear tempera-
ture dependence p, —T is due to electron-phonon scatter-
ing' and is valid above -coD/3, where a Bose factor is
approximated as N(co )=—T/co . Since the typical dya-
don frequency is co& «~D, we expect this p, —T depen-
dence to persist at much lower temperatures when an
electron-dyadon coupling is present.

Equation (14) shows that electrons which would ordi-
narily couple to a phonon displacement u (q) with a cou-
pling constant go(q) will then couple to the dyadon nor-
mal modes g(q) with a coupling

g~(q)=ig, (q)(e ' —1)/(q, 1) . (36)

We define a dimensionless coupling by a two-
dimensional average:

c) d q co(q)
aT (33) A~(q( ) =(2/truF ) g lgz(q)l /co(q), (37)

C, =7T /(2rru 1), (34)

with deviations only at very low temperature, T &0. leo&

[regime (b)]. Comparing the dashed line of Fig. 9, for
which C, =2' T /(Sv ), with Eq. (34) defines a crossing

with co(q) from Eqs. (21) and (27). Figure 9 shows the re-
sult (full line) and is compared to a system without twins,
i.e., with usual acoustic modes (dashed line). In the actu-
al system C, should interpolate from the full line at low T
to the dashed line at higher T, i.e., passing from regime
(c) to (d). The full line in Fig. 8 can be fitted with

where UF is a Fermi velocity in the q, direction. For
lq, l

&7r!1 the coupling A,„(q, ) =kz(0)—:kz is weakly
dependent on q„but for lq, l

)~/1 it decreases rapidly
[Eq. (36)]. In view of the low frequencies in co(q), we ex-
pect from the two-dimensional average (Eq. 37) that
k&) A,o, where A,o is the conventional coupling, ' i.e., the
three-dimensional average of lgo(q) l /coq. Note, howev-
er, that A, & is effective in a reduced phase space
lq, l

&7r!1
Analogous to the electron-phonon formalism, ' the

electron-dyadon contribution to the resistivity is

Cy
p, (T) =2~m*(a/1)A&T/(e n), (38)

20

where I * and n are the electron effective mass and densi-
ty, respectively, and the factor a/I accounts for the re-
duced phase space.

We note that some of the high-T, superconducting
compounds exhibit a linear p-T dependence down to
unexpectedly low temperatures, in fact down to T, .
Thus, in YBa2Cu307, p, —T down to -90 K, while in

doped La2Cu04, p-T down to 40 K ' in both cases
this is well below coD ——400 K.

0 I 10
(Tr~, )'

FIG. 9. Specific heat C, due to dyadon excitations (solid line)
in units of co&/(2~v2v3l). The dashed line shows C, for a nor-
mal acoustic mode with v = v 2

= v 3 and L2/l = 100.

V. DISCUSSION

The crucial role which the strain energy associated
with the parent —twinned-product interface plays in the
kinetic and morphology of martensitic transformation
has been recognized for a long time; it has not only led to
the geometric theory of the invariant plane strain, ' but
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has even been proposed as the generic criterion for mar-
tensitic transformations. ' In spite of this importance
most theoretical work on the subject deals only with the
static elastic properties of a variety of pertinent
geometric configurations. ' ' In the present work it
has therefore been our goal to study the elementary exci-
tations of a martensitic twin band that is stabilized by the
elastic interaction with the (austenite) parent phase
across the habit plane. As a prerequisite, it was necessary
to rederive the result for the relation l-QL2 between
twin spacing l and width I.2 of a twin band given by
Khachaturyan and Shatalov' independently from a
different perspective. The main new result is the disper-
sion relation given in Eqs. (21) and (22) for the collective
twin-boundary oscillations ("dyadons") and the associat-
ed normal modes [Eqs. (18) and (19)] describing displace-
ment waves which correspond to longitudinal twin-
boundary motion; their consequences for several physical
and materials properties have been discussed in Sec. IV.

The approach taken consists of using linear elasticity
theory for the parent phase in conjunction with the as-
sumption of a sawtooth displacement profile (i.e., g((l)
for the twinned-product phase which imposes the bound-
ary conditions on the parent phase at the habit plane.
The physical parameters of the static model are the com-
ponents of the elastic constant tensor in the parent phase,
plus the transformation ("Bain" ) strain and the formation
energy Eo for the twin boundaries in the product phase.
In addition, the dyadon frequencies are proportional to
p

'~
(p the mass density).

In writing the second half of Eq. (10) and in deriving
Eqs. (21) and (22), we have tacitly assumed a proper fer-
roelastic. Although for an improper ferroelastic the pri-
mary order parameter does not represent the shape
change characteristic of martensitic transformations, this
does not affect the elastic energy associated with the ha-
bit plane. The only changes required in this case are that
the twin-boundary energy Eo must be calculated sepa-
rately on the basis of an appropriate Landau-Ginzburg
model, and that the kinetic energy of the primary order
parameter must be added to the elastic kinetic energy of a
moving twin boundary. However, since the former is
proportional to the twin-boundary width, it should be
negligible for g ((l. Therefore, the functional form
i —+1.2 [Eq. (10)] and the dyadon dispersion relation
to/cod versus q [Eq. (21)] are valid for both proper and im
proper ferroelastic martensites.

In view of our understanding of the statics and dynam-
ics of twin boundaries, we discuss now the properties of
two representative materials: In-Tl with wide twin boun-
daries g»a, and YBazCu307 (Y-Ba-Cu-O) with g=. a.
We have inferred the g/a ratio from the static energy
considerations via Eq. (10). For Y-Ba-Cu-O, g is also
known directly" and agrees with our estimate; we are not
aware of similar data on In-Tl.

The ratio g/a is of great significance for the dynamics,
since the pinning energy in Eq. (23) can be neglected only
for g'»a. Thus, for Y-Ba-Cu-O, pinning may raise the
dyadon frequencies, diminish the gap at q =~/l, and
reduce the temperature range for which C, —T . Experi-
mental data on the specific heat of Y-Ba-Cu-0 can be

fitted with a C, —T behavior plus a —1/T for possible
Schottky defects. Other fits however are also possible.

The In-Tl system is a better candidate for observing
the unusual dynamics of twin boundaries since we expect
g»a and hence weak-pinning effects. Thus ultrasound
and Brillouin scattering could probe the gap in the trans-
verse acoustic mode for propagation perpendicular to the
twin boundaries. We expect this gap to be in the range of
10 —10' sec '. The specific heat should show a —T
term below -0.3 K which becomes dominant below
-0.03 K.

We note that the unusual anisotropic dyadon disper-
sion may affect the superconducting transition tempera-
ture T, . ' The necessary ingredients for this are weak
pinning of the twin boundaries (i.e. , g»a) and matching
anisotropy in the electron Fermi surface, i.e., planar sec-
tions parallel to the twin boundaries. Hence Y-Ba-Cu-0
with (=a is not a good candidate. Some low T, elem-ents
such as Sn, Nb, and others have in fact shown a localized
T, enhancement near twin boundaries. The presence of
dyadons in these system and their possible effect on T,
can and should be tested by further experiments.

Finally, the feasibility of observing dyadons and other
applications raises the question of their damping, i.e., at-
tenuation. We have not yet developed the necessary
theory to provide quantitative estimates. On the other
hand, we believe from phenomenological arguments, and
existing experimental data, that even near the transition
temperature, where damping is of more concern, there is
reason for optimism.

It is essential to reemphasize that the motion of a twin
boundary via a topological strain soliton is completely
different from the oscillation of an edge dislocation. The
former is simply a nonlinear, local small-amplitude dis-
placement wave (cf. end of Sec. III) rippling through the
lattice, neither requiring nor producing defects (e.g. ,
dislocations, vacancies). The latter, by contrast, involves
vacancy jumps, intrinsically yielding strong phonon emis-
sion and attenuation. Heuristically, therefore, we may
expect the damping of dyadons to be less (very much!)
than that of dislocation oscillations.

Turning to the experimental situation, extensive ul-
trasonic measurements have been carried out on 215
martensitic intermetallic compounds and other (proper
and improper) ferroelastics. "Large" attenuation
effects are attributed to domain-wall motion in the mar-
tensitic phase, and even to precursors before the transfor-
mation. ' ' Upon approaching the transition tempera-
ture from above for the [110]/[110]TA mode in V3Si and
In-Tl alloys (which have the same symmetry as the dya-
don modes), the attenuation is even too large to be mea-
sured by standard ultrasonic echo techniques.

The issue, however, is how large is "large. " As usually
discussed, it is implicitly taken with respect to good met-
als, Q =co/b, co —10 . But that is not the point; the con-
cern here is whether Q ( 1, i.e., whether the mode is over-
damped. In that context we refer to the results of Snead
and Welch and of Testardi and Bateman who mea-
sured ultrasonic decrements and attenuation, attributed
to domain-wall motion, from kHz to 10 MHz. From the
relation Q =sr/A, a [where A. =wavelength and a=ul-
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FIG. 10. Pr oposed experimental configuration for measure-
ment of dyadon dispersion (front view; schematic). I', parent
phase; HP, habit plane; TB, twin band; RCS, relief-corrugated
surface of twinned-product phase; ESDL, electrostrictive dielec-
tric layer; C, optical or microwave cavity; k, E, and PCP, wave
vector, electric field, and planes of constant phase, respectively,
of pulsed monochromatic-polarized standing electromagnetic
wave.

trasonic attenuation (in Np/unit length), valid for
Q ))1], one estimates from the experimental attenuation
data of Testardi and Beteman for V3Si [Figs. 2 and 3 of
Ref. 27] for [100] LA modes at 4.5 K and 400 MHz
(A, =20 pm) a quality factor of Q = 1400. For the (highly
attenuated!) [110]/[110]TA modes at 30 K and 60 MHz
(A, = 1 1 pm), one obtains Q =1700. Taking the frequency
dependence as a —co, this extrapolates (at 30 K) to27

values of Q =250 and 25 at 400 MHz and 4 GHz, respec-
tively. Testardi and Bateman find that for the soft
[110]/[110] TA branch above the phase transition—3a —U (U the sound velocity), in agreement with theor t-

33
e-

ical models, i.e., that the rapid increase of a for this
mode with decreasing temperature does not primaril
arise from an increase in the relaxation time, but from the
softening of the shear modulus (C»-C, 2~. Consequently
one may expect smaller u values and larger Q values for
martensites with less shear-modulus softening, i.e., for
those that show more strongly first-order transitions.

While both ultrasonic attenuation and resonance ex-
periments (as proposed in Fig. 10) probe the relaxation
time of the elementary excitations away from thermal
equilibrium that are produced by an external perturba-
tion, in scattering experiments (i.e., as proposed here,
specifically Brillouin scattering) the Q factor is deter-
mined by the imaginary part of the (in the present case,
dyadon) self-energy arising from anharmonic dyadon-
phonon interactions. Although there is no experimental
evidence for this quantity, there is no reason to expect the
dyadon modes to be overdamped (except in those rela-
tively rare cases where the soft mode itself is over-
damped). In particular, well below the structural transi-
tion temperature (where our collective mode description
is valid), damping at q~0 should vanish as co~, as for
conventional transverse-acoustic modes. ' The damp-
ing of the modes near q =~/l is less certain, since these
modes are sensitive to pinning by defects.

From these estimates it would seem that, if the TB
motion is just dyadon oscillation, the dyadons are far
from being overdamped and could well be observable in

the kind of resonance experiment proposed in Fig. 10. A
formal theory of TB domain-wall motional damping has
not been developed to any significant degree, perhaps for
lack of a manageable formal description of twin-
boundary and martensitic structures. From the present
model it now stands as a challenge to answer such ques-
tions, adding anharmonic coupling to phonons, interac-
tions with defects, and finite-temperature considerations.
These present a formidable task.
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APPENDIX A: HABIT-PLANE ORIENTATION
FOR A T-0 TRANSITION

Consider a tetragonal system with coordinates
R=(r, s, z) rotated by 45' relative to the axes x, of the
primitive cell, i.e., r =(x& —xz)/&2, s =(x&+x )/&2X2
and z =x3. An orthorhombic system is generated by the
displacement

1 e 0 1 —e 0
B]: 0 1 0 B2: 0 1 0

0 0 1 0 0 1,

The corresponding strains are (including geometric non-
linearity) e& =e /2+2, e2=e/i/2, and e3= —e /4. To
lowest order, e2 defines the transition and is therefore its
order parameter. We note that other choices of describ-
ing the T Otransition can -differ from the above by 0(e )

terms. The result for the habit plane may depend on this
choice.

The normal m=(0, 1,0) is not affected by the transfor-
mation [i.e., (8& ')"m=(82 ') m=m]. Hence there is
no need for a rotation to match the twins at the twin
boundary, as in other cases.

Consider next a TBL whose volume fraction of twins of
type 1 is —,'(1+6) and of type 2 is —,'(1 —5). The asymptot-
ic R~ ~ transformation is determined by the average

( A ) =
—,'(1+5)Bi+—,'(1 6)B2 . — (A3)

The habit plane (or the invariant strain plane) is
defined as a plane for which ( 2 ) is at most a rigid rota-

u=(i-es, 0,0),
and the + signs refer to the two possible twins. The al-
lowed boundary between these twins is the (0,1,0) plane,
i.e., s =0. The sites R' of the transformed system are
given by R' =R+ u =Bu, where B is the Bain strain. For
the two twins we have B =B, and B =B2, respectively,
where
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tion R&. This plane can then be matched to the parent
phase with no diverging strain energies. The usual con-
struction ' is to find a transformation over all space
which allows for displacement gradients only in one
direction n in addition to a rotation R„n then defines the
habit plane. We find that for the present case it is n1uch
simpler to look for a plane defined by R=( —s tanO&s, z)
(see Fig. 2) for which we solve directly ( A )R=R,R,
i.e.,

1 6e 0 —s tanL9

0 1 0
0 0 1

APPENDIX B: PARENT RESPONSE
IN THE T-0 TRANSITION

%'e model a T-0 transition by a two-dimensional dis-
placement field (w„w2, 0), which depends on the coordi-
nates r, s; if x,. are axes of the primitive tetragonal cell,
then r =(x, —x2)/&2 and s=(x, +x2)/&2; also w„w2
are components in the r and s directions, respectively.
Linear elasticity then involves three elastic constants

A 3 with static equations

Bw, Bw Bw, Bw
3] + +22 +

Br Br Bs Bs Br Bs

t'

cosP
sing

0

—sing 0 —s tang
cosP 0 s

0 1 z
(A4)

Wi+—A3
Br

B'
=0

Br Bs
(81)

where P defines the rotation matrix R, . Equation (A4)
must be valid for all s,z, which easily yields

B wi——A3
2 Br Bs

B w2 =0.
Bs

tang= —,'6e,

sing= 45m/(4—+6 e ) .

The case 6=0, i.e., equal sizes of twins 1 and 2, is spe-
cial in that 0=0 is independent of the strain e. It is also
special since /=0; i.e., a relative parent-product rotation
is not necessary. If during the transformation the bound-
ary conditions of the whole system (parent+ product
phase) are fixed, then /=0 is required. This yields the
choice 6=0 in Sec. II, which then implies the periodic
condition on u (s) of Eq. (11).

wi(r, s)= g wi(k) exp[(ik sinO+q cosO)r
k

+(ik cosO —
q sinO)s],

wz(r, s) = g w2(k) exp[(ik sinO+q cosO)r
k

+(ik cosO —
q sinO)s],

(82)

which are periodic in y and decay as x ~—~ if Req )0
(see Fig. 2). Substituting (82) in (81) yields equations for
w &(k), w2(k), which have nontrivial solutions if the deter-
minant of their coefficients vanishes. This yields

Using the geometry of Fig. 2, we look for solutions of the
forn1

[( A
&
+—,

' A 3 )(ik sinO+q cosO) + A z(ik cosO —
q sinO) ][(A i + —,

'
A 3 )(ik sinO —

q sinO) + A z(ik sinO+q cosO) ]

= (ik sinO+q cosO) (ik cosO —
q sinO) ( A, + A ~

—
—,
' A 3 ), (83)

which is equivalent to the condition det( T) =0 from Eq. (2). For 8=0 this yields

q =k I2A, (A3 —A2)+ A2A3+2[A2A3(A3 —2A~)(A, + A2)]' I/[2A2(A, + —,
' A3)],

which for any choice of A, has four real solutions, two of
which have the required q &0. Equation (Bl) determines
then the ratio wi(k)/wz(k) for each solution, and the
matching to the product phase [Eq. (lb)] determines the
wi(k) and w2(k) values and, in terms of u (k), the TBL
solution in the product phase.

The elastic energy density which corresponds to Eq.
(Bl) is

& = —A
1

el 4 1

'2
Bw, Bw 1 Bw,

2

+—A3
8 By

2
BW2

Bs
(85)

Integrating (85) over the parent phase yields the inter-
face energy of Eq. (6). The details of the solution are not
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essential since the argument below Eq. (6) is clearly valid,
leading to

geometries. Thus, for 0=45', we obtain the four solu-
tions

2A, ( —,
' A3 —A2)q=+Pik+k(1 —P )' P =

A3(A, +A2)
(B7)

The coefficient o.' is a function of A &, A2, A3, unless one
of the elastic constants A, (or some linear combinations
of them) happens to be very small, a is of the order of A, .

These considerations apply equally well to 9%0

Since A, )0 [local stability of the parent phase requires
&d) 0 for all strains in (B5)], we have p (1 and 2 solu-
tions with Req)0. The route to Eq. (B6) follows as
above.
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