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A semiclassical formalism for the optical absorption in a coupled electron-ion system is

developed. The formalism assumes (a) an initial periodic trajectory whose frequency is much lower
than electronic energies, and (b) a short-memory condition, i.e., the excited-state trajectories diverge

away from the initial one within one period. The result shows nonadiabatic features such as level

broadening, sidebands, and tails in nonclassical regimes. The formalism is demonstrated on a model

for polyacetylene and can account for unusual absorption data.

I. INTRODUCTION

The semiclassical description of many-body quantum
theory has been a useful approach in the study of mole-
cules, ' solid state, ' nuclear matter, elementary parti-
cles, and more. '' In general, a nonlinear interaction is
treated by an expansion in A, the zeroth order being the
classical equations. The expansion in A requires care
since nonanalytic terms in A usually arise. The most
efficient way of deriving these expansions is by using
functional integrals. '

A coupled electron-ion system is a natural application
since the heavy ions correspond to near-classical vari-
ables. A conventional description of such a system is
"adiabatic dynamics" (AD):-' At any given time the
electronic spectra are solved as if the ions were frozen;
this allows for a full quantum description of the elec-
trons. The ions then evolve by a classical equation which
includes a force from the electron-ion interaction. The
AD is valid for a periodic state when its frequency co& is
much smaller than the lowest electronic transition ener-
gy. The feasibility of this condition is due to the large ra-
tio of ion to electron masses.

An external electromagnetic field poses new difficulties
for the AD description. While the initial state can be
properly described by AD, the electric field may excite a
state for which AD is not valid for all times. In particu-
lar, we consider photoexcited states for which the adia-
batic potential, as a function of the ion coordinates, is
near a maximum (turning point), while the minimum is
far, or even infinitely far, from that of the ground state.
Such unstable excitations occur in photoinduced fission
of molecules or nuclei, photoexcitation during molecular
collisions, or photoexcitation of a well-separated
electron-hole pair in semiconductors. Another difficulty
of AD relates to the concept of a "transition time, " i.e. ,

at what "time" does an electron jump from an initial to
an excited state. Since the ion trajectories depend on
time, so do the excitation energies b,E, (t) to a state e.
Classically, a transition time ~ is expected when
b,E, (r) =caco, where co is the frequency of the external
field. It is not obvious what the uncertainty in this transi-
tion time is when nonadiabatic effects are included.
Furthermore, when there are two such nearby transition
times there could be a nonclassical interference between
them. This is the situation near a classical turning point.

We note that the conventional Franck-Condon" ap-
proximation is not sufficient to handle these cases; in par-
ticular, it leads to spurious divergences at the turning
points. Nonadiabatic absorption may also be inferred
from precise derivations of electron densities of
states ' such derivations, however, are in general not
feasible for many-body systems.

Transitions between bound states of anharmonic mole-
cules, via optical absorption or electron-transfer reaction,
were studied extensively by War shel and H wang
(WH). ' ' These transitions were studied both by semi-
classical techniques and by simplified expressions' in
terms of AE,, ; the two approaches gave comparable re-
sults only for harmonic systems. ' ' ' The simplified
forms were not derived rigorously, yet they seem to be
the only practical method for dealing with anharmonic
molecules with many degrees of freedom. '

To resolve the aforementioned conceptual and practi-
cal issues we have developed' a semiclassical formalism
which is presented here in detail. The conditions for this
formalism are defined in terms of the AD scheme for the
initial and excited states: (a) The adiabatic condition,
i.e., the electron-energy difterences are much larger than
Ace~. The relevant electron energies are the excitation
energy from the initial state AE„ the spacing to other ex-
cited states AE,' —AE„and the energy Ace,„—Ace;„
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spanned by b,E, (w) in one period. The latter large ampli-
tude condition co „—co;„))co& also guarantees a large
spacing b,E,' —b,E, during most of the period. (b) A
short-memory condition, i.e., the adiabatic dynamics for
the excited state leads to a trajectory which rapidly
(within one period) diverges away from the initial trajec-
tory. Similar conditions for a nonperiodic trajectory with
a turning point can be defined in terms on a curvature co&

at the turning point.
Within these assumptions we derive a simple yet

powerful expression for the real part of the conductivity
Reer (co ). This expression is similar to the simplified
forms that were previously assumed. ' ' Note, however,
that WH (Refs. 15—17) consider transitions between
bound states, while our derivation applies to an essential-
ly different situation, i.e., the excited state is unbound
with a rapid decay (short-memory condition). The re-
quirement for harmonic potentials' ' is therefore not
necessary in our case.

In Sec. II we define the problem and examine proper-
ties of adiabatic wave functions. In Sec. III we consider a
heuristic derivation in which a fully adiabatic formalism
with a unique ion trajectory is assumed. We then argue
that a plausible coarse-graining scheme leads to a more
reliable result. In Sec. IV we evaluate Reer(co) from first
principles by a functional integral over ion trajectories.
Transition times are then identified as stationary phase
points. Use of the above assumptions restricts the
excited-state trajectory to times close to the nearest tran-
sition times. This short-memory feature then leads to our
central result, Eq. (40). After analyzing some general
properties of our result in Sec. V, we demonstrate in Sec.
VI an application to an electron-phonon model for po-
lyacetylene and its nonlinear oscillations. The results
show a combination of classical features near the turning
points co=co;„or co=co,„, and of quantum features like
level broadening, sidebands, and tails in nonclassical re-
gimes. Parameters appropriate to trans-(CH)„can ac-
count for the observed pronounced tail of the ground-
state absorption' ' and for unusual photoinduced ab-
sorption data.

II. MODEL

In the following, we use extensively the adiabatic wave
functions, i.e., all the x dependence is contained in the
eigenfunctions of

h (x;q)g(x;q) =E(q)f(x;q), (3)

where q is considered as a parameter. If h (x;q) does not
include direct electron-electron interactions, then g(x;q)
is a Slater determinant and E(q) is a sum over single-
particle energies. The present formalism, however, is

sufficiently general to allow for electron-electron interac-
tions in h (x;q).

The initial state is gs(x;q) with eigenvalue Es(q),
while the states excited by the electric field are g, (x;q)
with eigenvalues E, (q). In the absence of electron-
electron interactions P, are particle-hole excitations.

To evaluate the effect of &,„, as well as to clarify the
validity of the adiabatic wave function, we need to solve
the time-dependent equation where both q and the exter-
nal interaction A,„are time dependent,

i' f(x, t;q—) =[h (x;q)+A, „(x,t)]g(x, t;q) . (4)

The solution can be expanded as

P(x, t;q) =cz(t)P~(x;q)+pc, (t)g, (x;q),

where

with initial conditions cs(t, ) =1, c, (t, )=0. Note that we

expand in a complete set which itself evolves in time via
q(t). The trajectory q(t) is assumed here to vary slowly
with a frequency of order co& «co.

Substituting Eq. (5) in (4) and projecting onto the states
Ps(x;q) and 1(,(x;q) yields the couPled equations

Bcg

at

i A+c—, ( ps l g, ) +0 ( 8oc, ),
(6)

dc
i A =E,c, + ( 2i /cu )cs 6o p, cosset t'Ties ( f, l Ps )—at

iXyc, , (q, —lq, , )+o(a,c, ),
e'

Consider a general Hamiltonian for an electron-ion
system p, (q(t»= (4,(x;q(t))lJ(x)lqs(x;q(t)) ) (7)

&(x;p, q) =p /2M + U (q)+ h (x;q) .

Here q (qz qz )' p (pi p2 ) M and V(q) a«
the coordinates, momenta, mass, and potential energy of
the ions, respectively; x =(x, ,xz, . . . ) are the electron
coordinates; and h (x;q) includes the electron kinetic en-

ergy, electron-electron interactions, and electron-ion in-
teractions. We wish to evaluate the optical absorption of
a given eigenstate of Eq. (1). This corresponds to evaluat-
ing the linear response to an interaction Hamiltonian,

A,„=( 2i /co )J ( x ) 6'oc os' t,
where 26ocoscot is an external electric field and J(x) is
the electronic current operator.

and Qs=Bgs(x;q(t))/dt, etc. Since c, is generated ei-
ther by small nonadiabatic terms or by the electric field,
terms of order @Dc, are neglected in Eq. (6). The terms
like ( p~ l lijs ) and ( f, l 1(js ) in Eq. (6) oscillate with a fre-
quency -sos, which is small compared with (E, —E~ )/A'

or with ~. These terms have two effects: first, off-
diagonal terms lead to transitions between states. When
CO=0 these terms act as an external field with a low fre-
quency -cuz, the transition probability is then exponen-
tially small [see Eq. (51)]. When 0~0&0, a state e can be
generated by first exciting a state e' (e'We) via &,„and
then tunneling to the state e by the nonadiabatic overlap
(g, lg, ). We therefore need an adiabatic condition on
the excited state, i.e., it is far from other states.
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iE, E—, i
»iiicos.

The second nonadiabatic effect is due to diagonal terms
in Eq. (6), which shifts EB by —ift(QB ~fit } and similarly
for E, . Since Pii is normalized at all q ( t),
Re( pe l Pii }=0 and we can renormalize the adiabatic en-

ergy levels by

E, =E,+f Im&, q, lq, &,

E, =E, + iii Im ( P, ~ it, } .

The corrections to E~ and E, are small, of order Ace~.
The other nonadiabatic corrections, which were neglect-
ed above, are exponentially small; hence, it is consistent
to maintain the more significant linear corrections in Eq.
(8). Note also that these corrections vanish for real eigen-
functions.

We conclude that (a) for P~O=O, the states of Eq. (3) are
I

a good approximation when ~~ &&E, —Ez, i.e. , the mix-
ing of the initial and excited states is exponentially small;
(b) a field 6'o induces transitions between these states via
the equations

Bcp
ift =Et' I q(t) I cs,at

Bc (9)

=E, I q (t) I c,, +(i /cu)ciip, (q (t) }6oexp( —i cut),

where Eti Iq(t)I =Et'(q, q) and E, [q(t)I =E,(q, q) allow
for a dependence on both q (t) and q(t). A single excited
state e is involved, for which E, =Ez+Aco. Other excited
states e' with ~E, E, ~

)—)ficoB are neglected; a term with
exp(+inst), which is far from resonance (i.e., at energy
2ftm from E, Eti) w—as also neglected. The solution of
Eq. (9) is

12 t — 2—
c, (t2) =(c~o/A'cu) I dt p, (q(t)}exp —icut —i I Ett [q (t')Idt'/R i I—E, [q(t')Idt'/fi

Tl
(10)

We can interpret the integration variable t as a transition
time —the exponent involves Ez for t ' & t and E, fort') t. The transition time can be anywhere in the range
(t, , t );&the transition probability, however, is maximized
when the integrand has a slowly varying phase. Since p,
varies slowly, varying the phase with respect to t and set-
ting it to zero gives the stationary-phase (SP) transition
time

fico=E,
I q(t) I Eti I q(t) I

—.
Allowing for the ion kinetic energy in the final form for
Reer(cu) (Sec. IV) modifies Eq. (11)by —(fi~ti ) terms [see
Eq. (34)]. When q (t) is periodic, co in Eq. (11) has a maxi-
mal value co .„„and a minimal one co;„. Equation (11)
has then two solutions when co is this classical regime
co;„&co & ~,. „one solution at the turning points
c~=~;„or co=co „and no solutions in the nonclassical
regime co) ~ „or c~ &co;„. In the following sections we
use Eq. (10) directly without assuming SP-type deriva-
tions. The concept of a transition time is, however, use-
ful for deriving and understanding our results for
Re~(~).

III. ADIABATIC FORMALISM

In this section a simplified heuristic derivation of our
result is given. A first-principles derivation with the role
of each assumption explained is given in Sec. IV.

The AD process focuses on a single "self-consistent"
trajectory q~(t j which satisfies classical ion dynamics.
The initial state is defined with c~'o=0 and the electrons
propagate with the "energy" Ee(q, q) of Eq. (8). This
defines an effective Lagrangian for the ions [see also
below Eq. (24)],

J,tr= ,'Mq —V(q) Eti(q—) film(QB(x—;q)~itti(—x;qt) } .

(12)

has the form of a vector potential coupled to the velocity
q. The Euler-Lagrange equation for X,g ls

qM = — [V(q)+Et'(q)]
Bq

r)itti (x;q) Beati (x;q)—2A Im
Bq Bt

(13)

A solution of this equation defines an AD trajectory
qti(t) Note that .this is a vector equation which involves
a Lorenz-like force via ge=qBits/Bq. This force relates
to the ion momentum —ifzd/Bq, which, in the state
itic(x;q), acquires an additional term.

The self-consistent solution qs(t) can be used in Eq. (3)
to find higher-energy excited states gj, (x;q). These states
are not self-consistent with qadi, i.e. , Eq. (13) with sub-
script B replaced by e is not solved by qti(t) Nevert. he-
less, the set I its, 1(, I is a useful complete set in which the
exact solution can be expanded. We consider a periodic
trajectory qs(t) with frequency cot| as a generic case
which involves turning points, i.e., times for which
qs(t)=0. Nonperiodic solutions can be treated similarly,
except that co~ then measures the curvature at a turning
point.

A particular self-consistent trajectory is the adiabatic
ground state, which has a static, time-independent q~. If
the ions remain static in the excited states one can apply
the golden rule [or see below Eq. (20)] and obtain

Reo."""(co)=(ir/co)g p,, ~

"o(fico E,, +Es ) . —(14)

One is tempted then to use this expression even for a
slowly varying qii(t) by time averaging a period Tti along
the trajectory

Reer' '(cu) =(ir!to)g f dt ~p, „, (t) ~'fi(A'co —b E,, (t) )/Tti,
0

Replacing it ti(x;q) =qBPii(x;q)/Bq, the last term in (12) where, for short,
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bE, (t)= E,, {qs(t) { F—~ {qs(t) {,
p, (t)=p, (qs(t)) .

(16)

Equation (15) yields absorption only in the classical en-

ergy range ~,„&cu & co„„, At the turning points
co=co;„or co=~ „,Eq. (14) diverges. The form (15) is
similar to the Franck-Condon result, " except that the
initial-state wave function is replaced here by integrating
the classical range of q„(t)

For a proper derivation of Reo. (co) we relate it to the
energy absorption rate. An electric field 2~ocoscot and
the current (J) =boer(co)exp(icot)+H. c. yield a time-
averaged dissipation rate of 2@OReo.(co). The absorbed
energy on the other hand is

Ac@ dx c, t2, x;q&

where c, (t~ ) is given by Eq. (10) for q =qs(t) He. nce

1~
Reo (co) =lim[2Aco(t2 —t, )] g f dt p, (t)exp —inst+i f bF.,(t')dt'/fi

1 I

2

where the limit t 2
—t, ~ ~ is implied. Consider t,

= —N, Tz, t2 =N2T~ with Nz N& ~. Using the
periodicity of p, ,(t) and of bE„(t), the integral in Eq. (17)
can be written as

N~
—1

exp(i cu N~ T& ) g exp[ —i (co —
cu,„)nT& ]l(co), (18)

n = —Nl

lB
where A'co = f bE,, (t)dt /Tz is the mean transition en-

0
ergy and

8 b,E, (t')
I, (cu)= f dt p„(t)exp —inst+i f dt'

0 0

(19)

The limit of the sum in Eq. (18) is g&2n5((co
—co )TB+2~k). The 5 functions constrain the com-
plex conjugate of (18) to have a factor of N, +Nz
=(t2 —t, )/T~. Thus, finally,

Reo'' (co)

oc

w5(co —co +kcu8)II, (~) /(AcuT~) .
e l' = —oc

(20)

and hence the result, Eq. (14). In Sec. IV we present a
systematic derivation of Reo. (co), in which the meaning of
coarse graining is clarified.

I, (cu) is a smooth function (see Sec. V) whose main in-
tensity is in the range of AE, . This envelope function is
modulated by the relatively dense set of 5 functions. This
sharp structure is a result of restricting the excited state
to follow the same trajectory qs(t) of the initial state,
which in turn implies long-time correlation between ini-
tial and excited trajectories. We expect this correlation
to be seriously violated by the AD of the excited state
and by nonadiabatic corrections so that coarse graining
on a range of co~ could be a better approximation.
Hence, +&5(cv —co,„+knez) is replaced by its average
1/co& and our central result [Eq. (40) below] is obtained.

Note that in the static limit of T~ ~ ~ we obtain

IV. SHORT-MEMORY FORMALISM

Functional integrals provide an efticient conceptual
and practical framework for treating electron and ion
coordinates on distinct levels. In particular, the electrons
can propagate in the Schrodinger picture, while the ions
are described by a functional integral.

Consider the electron probability K(xz, tz, x, , t, ;q(t))
for propagating from x, at time t, to x 2 at time t 2, while
the ions are moving along an arbitrary trajectory q (t). If,
in addition, the ions propagate from q(t, )=q, to
q (t2 ) =qz the total transition probability is

(x2 'q2 2 x1 qi ti)«~

2)qK(x2, t2, x, , t „.q ( t) )
ql

t~
X exp i —'Mq —V q dt (21)

where l)q is a functional integral '' on the trajectories
q(t). K(x2, tz, x, , t, ;q(t)) can be represented as a func-
tional integral with the action corresponding to
h (x;q)+A', „(x);instead, however, we can find this prop-
agator by solving the Schrodinger equation. At this stage
we use our first assumption, i.e., that AD is a valid
description of the initial state. As shown in Sec. II, the
initial wave function of Eq. (1) then has the form
ttj~(x;q)P~"'(q), where P~(x;q) solves Eq. (3) and P~"'(q)
are eigenfunctions of the remaining q-dependent terms in
(1) [see Eq. (25)]. Note that the subscript B refers to a
chosen initial state of Eq. (3) and does not (yet) define a
self-consistent trajectory as in Sec. III.

We wish to evaluate the probability, to first order in
6o, that the perturbation &,„excites the system to a state
orthogonal to g~(x;q)P~"'(q). These excited states can be
chosen as the set g, (x;q)P,' '(q), where P, '(q) are ion
eigenfunctions in the excited state. This does not imply
that we assume AD for the excited states; the set
g, (x;q)P', '(q) is merely a convenient complete set which
is orthogonal to Pz(x;q)Pz" (q) and in which an exact
eigenfunction can be expanded. [Pz(x;q)P~g '(q) with
n'Wn is also orthogonal to g~(x;q)P~"'(q); however, &,„
does not couple these states. ]
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The electronic wave function evolves via Eq. (4), where
q(t) is now an arbitrary trajectory. The initial wave
function gz(x;q& ) at time t

&
evolves to an excited state

P, (x;qz) at time t2 with the probability c,(t) of Eq. (5),
which in terms of the electron propagator is

c,(q(t))= f dx)dx3$, (x3', q3)

XK(x3, t3', x), t, ;q(t) }Q ii( x, , q) ) . (22)

This defines a transition probability in a mixed represen-
tation, i.e., electrons in eigenfunction space change from
B to e, while ions in position space change from q, to q2,

tion until the excitation time t corresponds to the propa-
gator Eq. (24). The exponent in Eq. (24) defines an
effective Lagrangian for the ions as in Eq. (12).

The Hamiltonian is obtained from the momentum

pg =Mq —4 1m(gati(x;q)~&Qti(x;q)/dq ) . (25)

Since p~ = —ikey/Bq, its expectation value in a state
Pe(x;q)P(q) yields the two terms in Eq. (25). The Ham-
iltonian is, therefore,

2
1 aAB= pB~~™QB ~ VB) +EB(g)+V(q)

2M Bq

6'OM, (q3, t3;q, , t, )/fico

12= f X)q c, (q(t) e}'xp i f [—,'Mq —V(q)]dt/A
I

and the corresponding Schrodinger equation is
2

(26)

(23)

We assume now that the dominant trajectories in (23)
are slowly varying with frequencies near co~ such that Eq.
(10) for c,(q(t)) is valid. This is justified by the AD con-
dition on the initial state and on the relevant portion of
the excited state, the latter being within one period from
a jump time (see below). Thus we need
Ace~ &&E, —E~ =A~, while other excited states e' are
well separated from E„i.e. , fit)3& && E, E, ~. Note th—at
there are no constraints on the excited-state trajectories
beyond one period; also there is no AD condition on the
states e' being far from Ez +%co.

We define K~(qz, t2; q, , t, ) for t, & t, as the ion propa-
gator with potential Ez(q, q )+ V(q),

1~

K~(qz, t2;q„t, )= f 'Nq exp t f '[ ,'Mq ' Et—i(q,q)—
q& 1

—V (q) ]dt /A
J

When Eq. (10) is substituted in Eq. (23), the ion propaga-

a+i Im gt3 (x;q) Q~ (x;q)2M Bq Bq

+&&(q)+ V(q) P~"'(q) =Ee"'P~")(q) . (27)

X dqp q K~ q, t;q, , t,

XK, (q3, t3, q, t) . (28)

The transition probability involves integrating (28)
with the initial and final wave functions Pz"'(q, ) and

'(q2) and summing on all final states {e,m ]. The ar-
gument preceding Eq. (17), now yields the absorption rate

We define an excited-state propagator K, (qz, tz', q, , t, )

as in Eq. (24), with Ez replaced by E, . A trajectory q(t)
in Eq. (23) can be decomposed to a path from (q, , t, ) to
(q, t) with a propagator Kz and then a path from (q, t) to
(q2, tz) with a propagator K, . Equations (10) and (23)
then yield

12

M, (q, , t2, q, , t, )= dt exp( idiot)—
ll

2

Reo(c)3)=lim[2fico(tz t, )] 'g f f dq, d—q3[p~™(qz)]*M,(q2, t2;q, , t, )hatt (q, )

e, m

=li [m2A'co(tz —t) )] 'y f f f dq~dqzdq3[pz" (q3)]"M;(qz, t2, q3, t, )M, (q2, t2, q&, t& )pz" (q& ), (29)

where completeness of the states g, (q) was used and the limit tz —t, ~ ~ is implied.
Substituting (28) in (29) yields a product of four propagators, as illustrated in Fig. 1(a). This can be reduced to prod-

ucts of three propagators by using the closure ' for t ' ( t,

dq2K, q2, t2', q, t K,* q2, t2,'q ', t' =K,,* q, t;q ', t' (30)

When t') t, the right-hand side of (30) is replaced by K, (q ', t';q, t ). The resulting two terms, as illustrated in Fig. 1(b),
correspond to

Reo(co) =lim[2fi'co(tz —t, )] 'g f dq, dq, [g~"'(q3)]*gti '(qi ) f f dq dq'p(q )p*(q')

l cg1X dt e ' ' dt'e'"'Kz(q, t;q„t, )K,*(q, t;q', t')Kg (q', t';q3
1'[ 1'1

12
+ dt'e' ' Kz(q, t;q, , t, )K, (q', t', q, t)Kti(q', t', q3 t] )

1

(31)
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q&, t&

q3 tl

ql ~ ti

To gain insight into the structure of Eq. (31) we consid-
er the semiclassical limit (iii~0) in which the integrals
are dominated by SP points. Each propagator has a
phase which is the classical action S(q, t;q, , ti ); we
use '" aSZaq =p and —aSZat =a, where p =pz and
H =H~ on the initial trajectory [Eqs. (25) and (26)] and

p =p„H =H, on the excited trajectory [Eqs. (25) and
(26)] with B replaced by e. The SP condition for the q, q'
integrals is then

pti(t) =p, (t), pit(t') =p, (t'),
while for the t, t' integrals SP yields

Ani=H, (t) Hti(t), Pic—o=H, (t') Hti(t') —.
Substituting Eqs. (25) and (26) yields

fico =E,, ( q, q ) Eti ( q, q )—

(32)

(33)

g2

2M
(m g, (x;q) i, (x;q))

a
Bq

2

a
Im p x;q g x;q

Bq

2

(34)

at both transitions times t and t'. The last term in (34)
modifies Eq. (11) by —(finiti ) terms. When the nonadia-
batic terms in Eq. (8) are absent (e.g. , real eigenfunctions)
the more intuitive result

&~=F-„(q(t)) Eii(q(t) )— (35)

qp, tl

FIG. 1. Schematic representation of an optical absorption
process, with B being the initial-state propagator [Eq. (24)] and
e an excited state propagator. (a) Representation of Eq. (29)
after substituting Eq. (28). (b) Representation of the equivalent
two terms in Eq. (31).

K,"(qt;q't') =Kg (qt;q't')

Xexp i f bE, (t")dt" lfi (36)

Replacing p, (q) =p., (q (tii)), p, (q') =p, (qti(t')) we can
exactly integrate all of q, , q3, q, and q' by using closure
[Eq. (30)] and the property Kti(q, , t, ;q3, t, )=5(q, —q3)
with the result

is obtained.
The trajectory q(t) jumps from the initial potential

Eti(q) to the excited one E, (q) at time t and jumps back
at time t'. Equation (32) shows that at the jump times
p(t) is continuous, while Eq. (33) shows that the energy
jumps by fico. For a given initial trajectory q, (t) [with the
dynamics following Eti(q, )] we need to watch the time
evolution of an excited state and find a time t =~ for
which Eq. (34) is satisfied. Since both q(t) and p(t) are
continuous at this jump time, they provide initial condi-
tions for the excited-state trajectory. The latter's dynam-
ics follows the potential E, (q) and is therefore uniquely
determined. The same considerations apply also at the
return jump. If qf (t) is a final trajectory [obeying Eti(t)],
then the excited-state trajectory and the jump time
t'=r' & r must also satisfy Eq. (34).

Applying the SP condition to Eq. (24) yields the classi-
cal equation of motion Eq. (13) for the trajectory qadi(t)
Since P'ii'(q) propagates via Eq. (24), the AD condition
implies that p'ii"'(q) is localized near the trajectory qti(t).

At this stage we employ our short-memory condition,
i.e., the excited-state dynamics are very different from
those of the initial state. Near the transition point, the
excited-state trajectory then deviates rapidly (within one
period) from the trajectory q~(t). Thus the excited-state
trajectory is constrained on both of its ends —it has to
match both q;(t)=qs(t) at t =r and qf(t)=qii(t) at
t =~'. If ~' —~)&T~ the excited state will wander away
and the matching conditions cannot be satisfied. In a
Schrodinger picture the ~ —~)& Tz situation would cor-
respond to ion wave functions whose overlap is negligi-
ble.

We conclude that the t' integral is limited to one
period from t. Since there are two jumps per period at
(r„r3), this allows for either r=r'=r, or r=r'=r2 and
also for ~=v, 7 = 7 2 when T2 7, (+ Tz. For the short
interval {t, t'I we can therefore replace the dynamics of
the excited state by those of the initial state in the trajec-
tory qii ( t ), i.e.,

Reo (ni) = lim [2irini(t2 —t, )] 'g f dt f dt'p, (t)p,*(t')exp —in'(t —t') i f AE, (t—")dt "/fi
f2

—
71 ~ oo

(37)

The semiclassical result generally involves a sum of
many trajectories with varying energies. ' ' Yet, in our
case, the single trajectory qii(t) dominates in Eq. (31) (up
to a shift in time), which justifies Eq. (36). The sum on all
trajectories in Eq. (31) is in fact maintained and can be
done exactly once Eq. (36) is used.

The limits on the t' integral correspond to the memory
time t' —t =TM over which the excited-state trajectory
tracks the initial one. We wish, however, to be in a situa-
tion where minimal information on the excited state is re-
quired so that the precise value or even the precise
definition of T~ is not essential. This situation is
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The SP points (ri, rz) where Eq. (34) is satisfied are of
particular relevance in Eq. (38). Expanding
b,E, ( t ) =fico;„+ ,' d z t —near a turning point with

dz -iii(co,„—co;„)cozi shows that (38) is equivalent to our
assumption on a large-amplitude oscillation,

( co,„—co;„)/co~ && ( Tzi /TM ) & 1 . (39)

Hence, for longer TM the constraint (39) is less stringent
and the interference between SP times 7 „72 is meaningful
for longer separations lr, —rzl.

Returning to Eq. (37), the t integral can be written as a
sum of (tz —t, )/Tzi integrals as in Eq. (18). The limits
Tz of the t integration can be chosen to be far away from
the SP points ~, , ~z. The potentially important transition
sequences are t =t'=~, ; t =t'=~2', t =~, , t'=~2, and
t =~2, t'=~, . All these transitions are accounted for if
the t' is over the same period as the t integral. This
yields our central result

Reo (co) =+ lI, (co)
l

/(2ficoTzi ), (40)

as suggested in Sec. III. I, (co) is defined in Eq. (19) with
the provision that the limits (0, Tii ) are chosen to be far
from the SP points ( r, , rz ).

Equation (40) was derived in Sec. III by first assuming
infinite time correlation between initial and excited tra-
jectories and then applying coarse graining to Eq. (20) on
a scale of co&. In this section we have shown the precise
meaning of this coarse graining —it means a short time
correlation between initial and final trajectories. Precise
information on this memory, or correlation time, is not
needed if a large-amplitude condition is satisfied.

V. ANALYSIS

In this section we analyze the function I, (co) and ob-
tain some general features of Reer(co). We first evaluate
I„(co) by SP methods, which emphasize classical aspects,
and then examine I, (co) by Fourier transforms, which
show how the classical shape is modulated by quantum
features.

Consider m ~m, a range that includes the turning
point at co;„. (Similar results hold for co&co .) We also
assume for simplicity a symmetric trajectory, i.e.,
q ( zir+t)=q~(r;„—t) where r;„ is the turning point

achieved when the t integral is not sensitive to its precise
limits and when it decays rapidly when lt —t'l & TM.
This is indeed the case when the phase in Eq. (33) is large
and the rapid oscillations of the exponential lead to a
negligible integral. We thus require

co(rz r, —
)
—f bE, (t')dt'/A »1,

1

(38)

Reo (co) =2irlp(ri)l l(coTiidi ) . (42)

This is precisely the simple guess of Eq. (15), i.e., the time
average of the static form of Reo(co). Equation (15) is
thus justified when co is sufficiently far from a turning
point.

The second regime is for small co —cu;„&0, i.e. ,

~],~2~~;„and di ~0. The procedure for evaluating an
integral with two interfering SP points is well known. '

The region near ~;„can be transformed to a variable z by

—Iieet+ AE, t' dt'= —,'z —z+y . (43)

The z integral is dominated by its SP points at z =+ &/3
and can therefore be extended to the limits + ~,

I, (co) = f k (z)exp[i( —,'z —/3z+y )/i}i]dz . (44)

The parameters /3 and y are identified by equating (43) at
SP points t =r, (z = —&/3) and t =rz (z = &/3). Hence

/3= —,
' %co(rz —r, ) —f bE(t')dt'

1

2/3
(45)

The function k(z)=p, , (t)dt/dz can be expanded as
k(z)=g ~ (z —/3) without odd terms -z(z —/3)"'

due to the assumed symmetry. This sum defines an
asymptotic expansion whose leading A~O term is m =0.
To identify p =0/z( r)(dt d/z), , evaluate c} /c}z of Eq.

1

(43), which results in po=p, (,r)( &2/3/ d)' . The in-

tegral in (44) yields then the Airy function"
Ai( —/3iri ) with the final result

Reer(co) =4irzlp(~, )lz(/3iri z'3)'~z

X lAi( /N —
)l /(coT~d, ) . (46)

This expression has several remarkable features. As
co ~co;„we obtain /3~Pi( co co;„)(2/d z

—
)
' ~ where

dz=d KE, (t)/dt at t =r;„and

time, b,E,(r;„)=irico;„. There are three regimes with
distinct behavior. The first regime is co & ~;„and
cu —co;„sufficiently large so that the interference between
the two SP points (ri, rz) [Eq. (34)] is negligible; this is
the case of a large phase diff'erence [Eq. (38)]. Thus we
expand the phase in Eq. (19) to second order in t
[neglecting the slow variation of p( t ) ], use
bE(t)=bE(ri)+d, (t —ri) where di = lc}bE(t)/c}t

l
at

t =~, or at t =~2 and the integral

f dt exp[id, (t —r, } /2']=(2iriiti/d, )'~z . (41)

The integral limits were extended to +~, since in the
present regime the integral is dominated by each SP point
individually. Summing the equal contribution of ~, and ~2

yields

Reo (co~co;„)=2''I p(r, „)l (2'/dz ) 'lAi((2'/dz )' '(co;„—co) ) l'/'(AcoTii ) . (47)
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In view of the large-amplitude condition, Eq. (39), this
range is somewhat larger than cuz.

The third and final regime of co is co(co;„, the classi-
cally forbidden regime. Since Reer(co), as found below,
falls rapidly to zero with co;„—cu, it is sufficient to use
the expansion near r,„and evaluate

I(co) =p(r;„)J dt exp[ —i(co co;„)t—

+d2(t —r;„) /6irt] . (49)

Since Ai(0) =0.35 is finite, Reo (co) does not diverge at
cu=cu;„and the spurious divergence of the simple guess,
Eq. (15), is eliminated. This crucial result is due to prop-
er treatment of the transition-time concept and allowing
for interference between transition times near a turning
point.

Equation (46) also provides a precise meaning to the
crossover into the first regime where interference is negli-
gible. When /3A )) 1 the lAi( ) l

function approaches
a rapidly oscillating sin function; replacing the latter by

yields the previous result, Eq. (42). The form (47)
shows that it is essentially the curvature d2 that deter-
mines the range of significant interference. Using the
rough estimate di-fi(co, „co;„)cot—i, the range where
nonclassical interference is significant is

(48)

This structure appears in Reo (co) when only a few terms
g (k) in Eq. (52) are significant, which is the case for low-
amplitude oscillations, i.e. , (co,„—co;„)/cori ~ 1 but not
too large. While this is a marginal case for the condition
equation (39), this feature indicates quantum effects ex-
pected for Reo (co). In fact, the Airy function with nega-
tive argument [Eq. (46)] also exhibits such oscillations.
Equation (53) indicates that these oscillations persist into
the nonclassical regime.

We conclude that the smooth "zeroth-order" guess of
Eq. (15) is modified by (a) Rect(co) at a turning point does
not diverge, though it may have local maxima; (b) non-
classical regimes have exponentially decaying, but finite
contribution; (c) The whole structure is modulated on a
scale cori. These are not the sharp 5 functions of Eq. (20)
but rather gentle modulations whose lowest-frequency
component is co&.

VI. APPLICATION TO POLYACETYLENE

In this section we demonstrate our formalism for the
optical absorption from breathers in trans-(CH) . A
more detailed presentation of these breathers and their
optical absorption is presented elsewhere. ' '

trans-(CH)„ is described by the electron-phonon tight-
binding Hamiltonian

The result is precisely Eq. (47), where now the argument
of the Ai function is positive. When this argument is
large the result is exponentially small

g[to+P(—u„—u„+, )](C„+,,C„,+H. c. )

+ —,'Kg(u„+, —u„) + —,'Mgu„, (54)
Reer(co)-exp[ ——', (2iri/di)' (co;„—co) ] . (50)

The range ~;„—co over which this nonclassical tail is
significant can again be estimated by Eq. (48).

Equation (50) is also significant for estimating nonadia-
batic corrections to the initial adiabatic wave function.
Equation (6) shows that even for 6'O=O there are terms
with frequency -~z which may excite the initial state
Qadi(x;q). These nonadiabatic effects are now seen to be
negligible; they act as a field with co=cuz, but since
coti ((co;„,the transition probability from Eq. (50) is

(51)

=gg (k)exp(ikcoiit) .
k

Substituting in Eq. (19) yields

exp[ 2iri ( co —co —
) /cori ]—1

I„(co)=iong (k)
c0 corn k cop

(52)

(53)

A given g ( k ) has a maximal contribution at
co=co +ken~ and additional sidebands spaced by -co~.

We proceed now to examine I, (co) by a different
method which emphasizes quantum effects. Since

J [b,E, (t') fico ]dt' is periodic, we—can define the
0

Fourier expansion

p, (t)exp i J [b,E,(t') —A'co )dt'/fi
D

+[ t of+(u„—u„—, )]f (n —1) . (55)

The second step is the time evolution of u„(t) [the analog
of Eq. (13)],

aMu'„= —K(2u„—u„+,—u„, )
— g ' e

'BQn tl, S
(56)

where g' denotes summation on occupied states and e
are functions of the instantaneous u„(t) via Eq. (55). The
advanced coordinates u„(t) are then used to find new
eigenfunctions in (55), which in turn modify the nonlinear
forces in (52), thus repeating this two-step procedure.
Note that (55) has charge-conjugation symmetry and for
each level at e there is a level at —e . Also, since (55)
defines a real symmetric matrix, the eigenfunctions f (n)
are real and the correction of Eq. (8) is absent.

The ground state of (54) with one electron per site cor-
responds to a dimerized lattice u„=( —1)"u. The elec-
tron eigenvalues have a gap 26D in their spectrum, all

where C„, creates an electron with spin s at site n and u,
is the ion displacement at site n; tD is the transfer in-
tegral, P is the electron-phonon coupling, K is the ion
spring constant, and M is the ion mass. The AD
proceeds ' by first solving the electron eigenvectors
f =g„f (n)C„ for a fixed-lattice configuration u„[the
analog of Eq. (3)]

eQ (n)= —[to+P(u„—u„+,)]f (n+1)
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states with t
—60 are doubly occupied, while all states

with e ~ 50 are empty.
Breather states ' are periodic nonlinear oscillations

which satisfy Eqs. (55) and (56) with the same occupancy
as the ground state, i.e., the lower (upper) halves of the
states are doubly occupied (empty). A low-amplitude ex-
pansion for the continuum version of (54) (valid when
Ao/to « 1) yields, for the staggered displacement
4( —1)"13u„(t)=k [o1+5( xt)], which varies slowly with
x =na,

5(x, t) =E&6 sech(x 8&12 /go)cos[(1 —
—,'s ~)~+r]

I 5-
(b) (c)

+ —', s sech (xE&12/go)

X [ —,'cos[2(1 —
—,'E )co~ t] —1 I . (57)

2
fico R

Ez(n) =A'cuz(n + —') 1
— — (n + —')

2 72 2
(58)

EB(0) is the zero-point motion energy of the ground
state, while the excitation energy to the nth state is

E~(n) =E~(n) Es(0) —. (59)

0

)0

00

FICx. 2. Dimerization pattern —'( —l)"(2u„—u„+l —u„, ) in

units of the ground-state dimerization, with initial conditions
corresponding to Eq. (57) with c=0.55. Simulation is for a ring
of 84 sites and electrons occupying the lowest 42 states.

Here a is the lattice constant, go=2toa/b, o is the coher-
ence length, co+ =413(rrtoM) ' is a renormalized pho-
non frequency, and E is a continuous variable.

We have numerically solved Eqs. (55) and (56) with (57)
as an initial condition and the dimensionless coupling
A, =2f3 /(7rtoK) =0.34; for to =2. 5 this yields 2bo=3. 92.
Figure 2 shows the time evolution of the dimerization
pattern, exhibiting a persistent, localized large-amplitude
oscillation. The breather state is also associated with
large oscillations in the highest-occupied and lowest-
unoccupied electron eigenvalues. As shown in Fig. 3,
these states become "intragap" states with energies well
below the ground-state gap ho (=1.96) during most of
the period. The other eigenvalues are above Ao and are
weakly affected.

Breathers can be quantized semiclassically, ' such
that c and the breather energy E~ depend on an integer
quantum number n 0,

I.O
0

I I

50 100
I I I

0 50 100
I I I

50 IOO ] 50
t

FIG. 3. Lowest-unoccupied electron eigenvalues in one
period for three different breathers with quantized amplitudes
(Table I): (a) n =0, (b) n =1, (c) n =2. Note the large oscilla-
tions of the 43rd intragap eigenvalue. The energy unit corre-
sponds to t„=2. 5 [Eq. (54)] or b,~= 1.96.

E~(1) is then the lowest vibration state, i.e. , the Raman
active mode of oscillations in the dimerization amplitude.
As seen from (58), the n ) 1 states correspond to a bound
state of n phonons.

trans (CH)„ex-hibits also nonlinear soliton solutions
which can be produced by an electron-hole photoexcita-
tion. Solitons are topologically distinct from the ground
state, since they interpolate between the two degenerate
ground states of trans (CH); -hence solitons are produced
in pairs. An electron-hole pair with energy 260 can de-
cay to a pair of moving solitons with energy —1.46o,
while the rest of the energy forms a breather.

The expansion in (58) is not valid for large n We ex-.
pect, however, that when Ez(n) exceeds the energy of
two static solitons ( —1.26o) a breather becomes unsta-
ble. Thus the number of breather bound states is
—Ao/ficoR .

We have chosen the time unit such that the ratio
Ez (1)/2A oreproduced that of trans-(CH) where
26o=1.7 eV and Ez(l) =0.18 eV for the most strongly
coupled Raman mode; with this choice
%co~ =2M/149=0. 420 in Fig. 2. Table I shows quan-
tized values of E. that correspond to n=0, 1,2. Using these
E values, Fig. 3 shows the upper intragap eigenvalue e, (t)
for one period. The intragap transition energy is
AE, (t)=2@,(t), since the lower intragap level is —e, (t)
The parameters c~, co;„,and co,„corresponding to this
b,E, (t) are also given in Table I.

We apply now Eq. (40) to evaluate the optical absorp-
tion between the intragap states. The adiabatic assump-
tion on the initial state is well justified %cod/25„=0. 1

(Table I). We also need, however, that the excited (upper
intragap) state be well separated from other excited
states. This is not the case near the upper part of e, (t) in
Fig. 3, where extended states are closely spaced in a long
chain. Most of e;(t) is, however, well separated from the
extended states, and res~sits for the interesting range
fico & 25O —%co~ =- 1.6 should be reliable. As for the
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Eq /260 ~~min ~~max

0.10
0.31
0.55

0
0.107
0.198

0.431
0.425
0.420

3.725
3.519
3.356

3.442
2 ~ 798
2.332

3.846
3.846
3.848

large-amplitude condition, the n =0 case is marginal,
while n =1,2 satisfy it with (c~,„—co;„)/co& =2.5 and
3.6, respectively. We also show results for a case with co~
smaller by a factor of 4, for which the large-amplitude
condition is even better satisfied.

To examine the short-memory condition we note that
an electron-hole excitation within the intragap states is
similar to the same excitation in a uniform ground state;
the latter produces a soliton pair within one period, '

which confirms the short-memory assumption.
We have evaluated Rea(co) by using the current opera-

tor"

more quantum features. The main intensity is near the
mean energy Am and the few sidebands show that the
expansion Eq. (53) is dominated by a few terms.

The fully adiabatic, i.e., static-lattice situation, has a
gap at 260=3.92. It is remarkable then that the zero-
point motion can generate a considerable intensity at
lower energies. This contribution is peaked within A~~
from 2bo and will therefore appear as a tail to the total
absorption, consistent with data on trans (CH)„-.

Figures 5 and 6 show the v=0. 31 and v=0. 55 cases,
respectively. The lower curves show increased classical
nature with modulated maxima near the turning points.
The upper curves develop more sidebands as c. increases,
but an effect of the turning points is not yet apparent.
The main intensity is still near Ace, which is now below
260 —Acoz, and will therefore result in an isolated peak in
the total absorption. We have suggested ' that the
n =2 breather can in fact be photogenerated and its opti-
cal absorption accounts for photoinduced absorption

23 —26

J= —ie [tc+P(u„—u„+, )](C„C„+,—C„+,C„) (60)

and the procedure of Eq. (53). Figures 4, 5, and 6 show
our results for the intragap transition of Figs. 3(a), 3(b),
and 3(c), respectively. Figure 4 corresponds to E=0. 1,
which for Do=1.96 and Acu~ =0.431 is the n =0 ground
state (allowing for zero-point motion). By redefining the
time unit we can use the same levels e;(t) and matrix ele-
ments )Li, (t) for a diff'erent A'ms. Figure 4 thus shows
Reo(co) for ficoii =0.108 (lower line) which corresponds
to n =2 and for iiicos =0.431 (upper line), the n =0 case.
The first case is closer to the classical limit and shows in-
creased intensities near the classical turning points
(marked by arrows) modulated by structure on the scale
of ficoli. The second case (upper curve) demonstrates

VII. CONCLUSIONS

We have developed a formalism which for given adia-
batic and short-memory conditions yields a simple yet
powerful expression for the optical absorption. In partic-
ular, our result handles classical turning points for which
a "simple" adiabatic approach like Eq. (15) gives an in-
correct diverging result.

We note that even if the short-memory condition is
satisfied there may be additional interesting contributions
by following the excited-state trajectory for longer times.

45l - IOO

20- Rea.

Reer - 80
IO-

- 6030--60-3 -2l~
2.5 3.02.0 ~~e 0.425 —5020-- 40

Reer, I 08 Re cr

- 40IO-- 20

-l2
I

2.5
30I

I

4.5 5.0
I

3.5 4.54.03.02.03.02.0
O. I 06 20FIC'. 4. Optical absorption Reo. corresponding to the 42~43

levels of Fig. 3(a). Redefining the time unit in Fig. 3(a) allows
for different quantum effects: Ace& for the lower line is smaller
by a factor of 4 from that of the upper line. The arrows show
the limits of the classical range fi~;„and Ace a„, while the quan-
tum scale, i.e., the distance from %co in units of Ace~, is marked
above the axis. Reo. is in units of e (2NaA), N =84.

- IO

l2
I

I

4.5 5.0

-12
I

3.02.5 4.03.52.0

FIG. 5. Same as Fig. 4 for the n = I breather [Fig. 3(b)].

TABLE I. Quantized values of e for generating breather solutions [Eq. (57)]. The excitation energy
is Eii [Eq. (59)] and the numerically observed frequency on an 84-site ring is coii. The transition energy
between the intragap states (42~43 transition) has a mean Ace, maximum Ac@,„,and minimum Ace;„.
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Re cr

30-

20—

lp-

B=O 420
Re cr

—40

2.0 2.5 3.0 3.5 4.0 4.5

hcu8=0. I 05 - 20

— Ip

2.0 2.5 3.0 3.5 4.0 4.5 5.0

FIG. 6. Same as Fig. 4 for the n =2 breather [Fig. 3(c)].

into the adiabatic approximation in the absence of an
external electric field. We have seen that nonadiabatic
terms act like an external field with a low frequency co&,

of the order of a phonon frequency. The rate of decay of
an adiabatic wave function is then exponentially small
[Eq. (51)]. We have also found a velocity-dependent
nonadiabatic correction to the electron eigenvalues, Eq.
(8). This correction may be important for (complex)
current-carrying eigenfunctions.

We have applied our formalism to a case of current in-
terest, trans-(CH) . Our results account for unusual pho-
toinduced absorption data as well as for a pro-
nounced intragap tail of the ground-state absorp-
tion. ' ' Further details on this application and its
comparison with experimental data are published else-
where. "

In particular, a photoexcited electron-hole pair in trans-
(CH) with fico(2bo can tunnel into a soliton pair lead-
ing to absorption down to Ace =4AO/~. The overlap
of the ionic final wave function with the initial one is very
small in this case and we expect this contribution to be
much smaller than our results.

We have focused on a periodic initial trajectory. For
other types of trajectories, Eq. (40) and (19) should be
used with the time integral around a turning point. The
precise limits of the integral are not important when the
condition (38) is valid. When the probing frequency fico is
far from a turning point the simple approach of Eq. (15)
is justified.

As a side benefit of our derivation we gained insight
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