Order Parameters for Reconstructive Phase Transitions

It was recently proposed by Dmitriev et al. (DRGT)¹ that the Landau theory of phase transitions can be extended to reconstructive transitions where large-scale displacements of the atoms take place. In these transitions there is no group-subgroup relation between the relevant phases; hence an expansion in powers of displacement around one phase does not guarantee, in general, the proper symmetry around the other phase.

DRGT propose that a certain nonlinear function $\eta(\xi)$ of the displacement ξ can serve as a nonlinear order parameter (NOP). The free energy F is then expanded in powers of η , although ξ is kept as the variational parameter. Thus $F[\eta(\xi)]$ has extrema not only at $\partial F/\partial \eta = 0$, as imposed by the symmetry of the $\eta = 0$ phase, but also

at
$$\partial \eta/\partial \xi = 0$$
, which can correspond to a high-symmetry phase at large ξ .

We propose here that the NOP is directly related to a density-wave expansion of F, which is a physically motivated, implicit, nonlinear function of ξ containing relevant information on the lattice discreteness.

A lattice in space $\bf r$ can be described by $\sum_{\bf q} \rho({\bf q}) \times \exp(i{\bf q}\cdot{\bf r})$, where $\bf q$ are reciprocal-lattice vectors. In the spirit of Alexander and McTague² only the Fourier coefficients $\rho({\bf q})$ with the smallest $\bf q}$ are important and a Landau expansion in powers of these $\rho({\bf q})$ is possible.² We consider first ${\bf q} \ne 0$ transitions in which the number of atoms per unit cell can change. In particular, in the $\beta \rightarrow \omega$ transition, ¹ each three consecutive (111) planes, spaced by $a/2\sqrt{3}$ in the β phase, shift in the [111] direction by the amounts $0, \xi, \text{ and } -\xi, \text{ respectively.}$ The density wave along $x \parallel [111]$ with $q = 4\pi/\sqrt{3}a$ is then

$$\rho(x) = \exp\left[i\frac{4\pi x}{a\sqrt{3}}\right] \left\{1 + \exp\left[i\frac{4\pi}{a\sqrt{3}}\left(\frac{a}{2\sqrt{3}} + \xi\right)\right] + \exp\left[i\frac{4\pi}{a\sqrt{3}}\left(\frac{a}{\sqrt{3}} - \xi\right)\right]\right\} = -2\exp\left[i\frac{4\pi}{a\sqrt{3}}\right] \left[\sin\left(\frac{4\pi\xi}{a\sqrt{3}} + \frac{\pi}{6}\right) - \frac{1}{2}\right].$$
(1)

The term in the last square brackets is precisely the NOP of this transition [Eq. (2) of DRGT]. Thus, an expansion in powers of this NOP is equivalent to an expansion in the density wave $\rho(x)$. Note, in particular, that a cubic term is allowed in F since $\rho^3(x) \sim \exp(i4\pi\sqrt{3}x/a)$ couples to a density wave of the β lattice; viz., this is an umklapp term. This formalism can be generalized to allow for unequal displacements with a sequence $0, \xi_1, -\xi_2$. The NOP is then defined as in Eq. (1) with $\xi_1(-\xi_2)$ replacing $\xi(-\xi)$. For a given $\xi_1 + \xi_2$ the NOP (as well as the cubic term of the free energy) has an extremum at $\xi_1 = -\xi_2$, in agreement with the observed ω phase.³

Transitions at q=0, i.e., strain is the primary order parameter, involve a shift of the whole reciprocal lattice. New symmetries are formed when the number of reciprocal wave vectors with equal length changes. The procedure for a q=0 transition is therefore more involved in that for each path in phase space one has to choose the relevant density wave from an infinite set.

Consider the simplest case of a two-dimensional square lattice deforming continuously into a triangular lattice. A path in which the two shortest reciprocal wave vectors $\mathbf{q}_1, \mathbf{q}_2$ are kept equal, $|\mathbf{q}_1| = |\mathbf{q}_2| = q$, defines an angle γ between \mathbf{q}_1 and \mathbf{q}_2 ; $\gamma = \pi/2$ in the square lattice and becomes $\gamma = 2\pi/3$ or $\gamma = \pi/3$ in the triangular lattice. Since $|\mathbf{q}_1 \pm \mathbf{q}_2| \to q$ as $\gamma \to 2\pi/3$ (upper sign) or $\gamma \to \pi/3$ (lower sign) the density waves $\rho(\mathbf{q}_1 \pm \mathbf{q}_2)$ are essential for describing this transition. Near the triangular lattice the waves with $\mathbf{q}_1 \pm \mathbf{q}_2$ are less favored than those with \mathbf{q}_1 and \mathbf{q}_2 since their gradient energies are $\{\nabla \exp[i(\mathbf{q}_1 \pm \mathbf{q}_2) \cdot \mathbf{r}]\}^2 \sim (\mathbf{q}_1 \pm \mathbf{q}_2)^2 > q^2$. We are thus led to the order parameters

$$\eta_{\pm} = (|\mathbf{q}_1 \pm \mathbf{q}_2|^2 - q^2)/q^2 = 1 \pm 2\cos\gamma.$$
 (2)

To interpolate between the \pm symmetries one may choose $\eta = \eta + \eta_-$, i.e.,

$$\eta = 1 - 4\cos^2\gamma \,. \tag{3}$$

This is a valid NOP since $\eta = 0$ is the triangular lattice while $\partial \eta/\partial \gamma = 0$ in the square one. The case $\gamma = 0$, in which the plane becomes one dimensional, also has $\partial \eta/\partial \gamma = 0$. DRGT considered a different $\mathbf{q} = 0$ transition and found a periodic function of angle [Eq. (6) of Ref. 1], viz., the same type of NOP as Eq. (3). Note that the choice (3) is not unique since we have no microscopic reasoning for the step from (2) to (3); in fact the minimum-energy path may involve inhomogeneous strains. In this sense, the derivation of the $\mathbf{q} \neq 0$ NOP, as in our Eq. (1), is more fundamental.

Summarizing, a density-wave description of lattices and their displacive transformations can clarify the concept of a NOP.

This work was supported by DOE.

B. Horovitz, ^(a) R. J. Gooding, and J. A. Krumhansl Laboratory of Atomic and Solid State Physics Cornell University Ithaca, New York 14853-2501

Received 22 August 1988 PACS numbers: 61.50.Ks, 64.70.-p, 81.30.Hd

(a)On leave from Department of Physics, Ben-Gurion University, Beer-Sheva 84105, Israel.

¹V. P. Dmitriev, S. B. Rochal, Yu. M. Gufan, and P. Toledano, Phys. Rev. Lett. **60**, 1958 (1988).

²S. Alexander and J. McTague, Phys. Rev. Lett. **41**, 702 (1978).

³S. L. Sass, J. Less-Common Met. 28, 157 (1972).