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Current oscillations in near-commensurate systems
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The phenomena of current oscillations (CO) in response to a dc field is studied by the one-
dimensional damped and field-driven sine-Gordon equation. For low damping we find that kink-
antikink pairs survive collisions and CO through periodic boundaries is possible. For large damp-
ing CO is possible if the field is inhomogeneous, e.g., at contacts, creating kink-antikink pairs
periodically. The results can account for data on charged-density waves and vortex lattice motion
in superconducting films and annular Josephson junctions.

I. INTRODUCTION

A number of physical systems have shown in recent
years that Josephson-type current oscillations exist in
complex systems which cannot be reduced to a single de-
gree of freedom. We define here the "current oscillation"
(CO) phenomenon as generation of oscillation in time of
an observable in response to a time independent field such
that (a) the observable is averaged on all degrees of free-
dom and (b} the system cannot be reduced to that of an
effective single degree of freedom. If (b) were not the case
the system would obey a single pendulum type equation
whose forced oscillations yield the conventional Joseph-
son type effect, which we term as commensurate current
oscillation" (CCO).

The concept of commensurability is of center impor-
tance in our discussion below. When a periodic system
slides relative to another periodic structure and the
periodicities are commensurate (C), the motion may be
reduced to that of a single center of mass coordinate in a
periodic potential, resulting in CCO. If however the
periodicities are incommensurate (IC) a single degree of
freedom cannot describe the system and the less obvious
CO phenomena may occur. Note that a C system may
exhibit both CCO and CO phenomena.

The following systems are related to the CO phenome-
na: (a) Charge-density-wave (CDW) compounds such as
NbSe3, TaS3, Ko 3Mo03, Rbo 3Mo03, (TaSe4)zl and
(NbSe4)|&I3 which exhibit CO above a critical field. '

The phenomena is termed here "narrow band noise;" the
relation with "noise" is however misorienting since the
generated oscillations have extremely well defined fre-
quencies. The CDW wavelength is incommensurate (IC)
but very close to being commensurate (C) with the un-

derlying lattice, and in two cases [TaS3, (Ref. 6)
Ko 3Mo03 (Ref. 7)] it becomes commensurate at lower
temperatures. (b) A vortex lattice in a superconducting
film whose thickness is modulated periodically in one
direction. ' The magnetic field controls the vortex
periodicity which can be made C or IC relative to the
periodicity of the thickness modulation. Oscillations
were observed in the C case and interpreted as a CCO. '

The near-C situation however has also shown oscilla-
tions, " i.e., a CO phenomena. (c) An annular Josephson
junction is an obvious candidate. The presence of fluxons
in the junction corresponds to an IC situation and the
usual Josephson effect vanishes when averaged along the
junction. The possibility of oscillation even in this
case' ' would correspond to a CO phenomena. (d}
Growth oscillations' describe nonuniform cluster
growth and a probability parameter defines an IC situa-
tion.

In the present work we model these systems by a one
dimensional sine-Gordon equation with damping and a
dc driving field and extend our previous study. ' ' The
model is presented in Sec. II together with several previ-
ously known results. Section III shows that kinks and
antikinks survive collisions for weak damping. For a
suitable initial condition CO persists by allowing the
structure to repeat itself through the periodic boundaries.
Section IV shows that in the overdamped case a nonuni-
form driving field can nucleate kink-antikink pairs
periodically and lead to CO. In Sec. V we discuss experi-
mental data and suggest that the CDW and vortex lattice
data correspond to the case of Sec. IV, while annular
Josephson junctions correspond to the case of Sec. III.

It is worth pointing out that we find CO in both C and
IC situations for similar parameters. The CCO effect
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however is inherently a single-particle type phenomena;
hence it cannot occur in incommensurate situations
where space dependence, or the many degrees of freedom,
are essential.

II. THE MODEL

f g'(x, t)dx /L =2nn„. . (2)

Each kink allows for a phase change of 2m. Thus, the C
case has nz ——0 while nk&0 measures the deviation from
commensurability. The observable current

(P) = J dx itI(x, t)/L (3)

involves a crucial space average on all degrees of free-
dom. A significant property of (3) is that any traveling
wave solution of the form P(x vt}, —though time depen-
dent, does not produce CO—as seen from (2),
(g) = —2@un„is time dependent

In the CDW case, f(x, t) corresponds to the phase field
of the order parameter. ' ' A CDW with a commensu-
rate wavelength Ma /N (with M, N reduced integers, a the
lattice constant} has the form -cos(2nNx/Ma +P).
This CDW can couple to the component of the lattice po-
tential with periodicity a/N and produce an interaction
energy -cos(MQ); thus g=MP in Eq. (1). In the IC
case the CDW has the form

-cos[(2irN/Ma+5q )x+P]
wi1h the interaction energy -cos(Mp+M5qx); thus,
P(x)=M/+M 5q x and 5q determines the boundary
condition Eq. (2). Hence, n„is a constant of the motion
which is fixed by the total charge in the system. Further-
more, since the excess local charge is' -f'(x, t) we have
it/(O, t) =g'(L, t) (the contacts do not sustain a difference
in charge through the external circuit); i.e., periodic
boundary conditions modulo 2~nkL.

For the vortex lattice 1((x,t) is a center of mass
field, ' ' ' the pinning force -sing is due to the thick-
ness modulation and Eq. (2) corresponds to deviation of
the vortex average spacing from the period of the thick-
ness modulation. For the annular junction g(x, t) is the
relative Josephson phase across the junction and (2)
represents the net number of fluxons (i.e., fiuxons minus
antifluxons} in the junction.

Equation (1}with nk ——0 has single-particle type solu-
tions, i.e., f(x, t)=f(t} is space independent. This results
in the well known CCO effect above a threshold field
which lies between r, (e=O)=0.725 and r, (e& 1.19)
=1

The CO state, which is the main interest here, has a

Consider a classical one-space and time-dependent field

g(x, t) which satisfies

f(x, t )+eP(x, t) —f"(x, t)+ sing(x, t) = I

Here the overdot is r}/dt, the prime is 5/Bx, e is a damp-
ing parameter, and I is the dc driving field. Equation (1)
is supplemented with mod(2m ) periodic boundary condi-
tions allowing for a density nz of kinks in the length L

time dependent (g) due to a nontraveling type g(x, t)
An important characteristic of a CO state is the ratio

(4)

where ( ( P ) ) is the dc current (space and time average)
and co is the fundamental frequency of the CO. The
meaning of A. follows from an effective single-particle
coordinate X(t)=a ( g(x, t) ) /2ir; the 2' periodicity of P
implies an underlying periodicity in X of length a. If the
velocity X(t) is modulated with a period T due to an
effective washboard potential with period a * then
(X(t)),T=a" where ( }, is a time average. Hence
A, =a '/a measures an effective single-particle spatial
period&city.

A few properties of Eq. (1) with nk&0 were previously
documented: When nl, &0 and I =0 Eq. (1}can be easily
integrated to show a static kink lattice with kink-kink
spacing of 1/nk Wh. en I &0 Eq. (1) was shown to have
a traveling kink lattice solution of the forin g(x —vr). As
shown above, this does not lead to CO.

Equation (1} can be solved analytically (Appendix)
in two cases: (i) An expansion near the field
r, =[1+(2irenl, ) ]' where the traveling wave has ve-
locity u =1; (ii) A high velocity expansion which also
yields a traveling wave solution. Neither case exhibits
CO. In the next two sections we examine situations
which result in a nontraveling wave solution with CO. In
these numerical solutions we have mostly used a fourth-
order spatial approximation of the second-order deriva-
tive, combined with a third-order Runge-Kutta method
for the time integration. We also used a fast real-time
simulation package which generates movie like observa-
tions of the time evolution and allows for valuable intui-
tion about the system.

III. UNDKRDAMPED CASK

The sine-Gordon equation [e =1 =0 in Eq. (1)] has
mell-known breather solutions. * Breathers are dynam-
ic kink-antikink bound states which oscillate with fre-
quency co&. Breathers can contribute to the current, Eq.
(3), if the field can overcome their binding and produce
free kinks and antikinks. Without damping (e=O) a
threshold field for breakup 1(co&) was found. i5 For
lower cos the binding energy and I (cos ) decrease so that
r(~, ) 0 ror ~, 0.

For @+0 the lowest threshold I, to unbind a cos~O
breather is finite. To understand this qualitatively, con-
sider a time t0 when the oscillation passes through
P(x, t0) =0 To maintain t. he dynamics in Eq. (1) the field
I must overcome the damping eg; since g is of order of
the kink-antikink energy =16 (at t0 all the energy is ki-
netic} we obtain r, -e. A more careful perturbation
analysis and numerical data' suggest I,-e for e ~ 1.

Figure 1 shows our results for the (I,e) region where
an initial breather with ~~ =0.2 breaks up. The initial
breather has a low-binding energy of -0.3 and its thresh-
old is close to that of the m~~0 breather. We find that
the C case is unstable at fields much below the single-
particle threshold if e is sma11. Once the breather is un-
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bound, the resulting kink-antikink pair travel around the
ring and survive subsequent collisions. This nontrivial
time dependence results in CO. Beyond the line A in F'
1

cn ig.
our initial breather leads to a traveling wave pattern

with no CO. Depending on initial conditions, ' a kink-
antikink state can survive up to I = 1, while for I & 1 the
single particle type CCO appear.

We have found that breather breakup persists even
when nk&0 (dashed line in Fig. l). Thus, the efFect is
more precisely a collision property i.e., the ability of

per y,inks and antikinks to survive collisions. This propert,
which is well known in the undamped case, is a novel
phenomena in a damped equation.

Figure 2 shows the time evolution of both C and IC
cases. The collision property allows the pattern to
periodically repeat itself after one revolution around the
system. This results in CO as shown in Fig. 3 for a C
case (nk ——0) and in Fig. 4 for an IC case (nk ———').

F'
k 24

j.gure 5 shows current-field and co-field dependence.
There is a threshold field for the appearance of CO (as is

FIG. 1. Breather break-up regime yields CO for parameters
inside the full line in a C case (nI, ——0) or inside the dashed line
in an IC case (nk ———').k 24 ~ (a)
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FlQ. 2. fime evo}ation of p'(x, t) showing that a kink (peak)
passes through an antikink (dip). Time runs upward for approx-
imately 23 un&t, 0&x &24, a=0.3, and I =0.5. (a) Cease (b) IC

lcase I, 24

FIG. 3. (a) Time dependence of ( P) for e =0.3,
I =0.5, nI, ——0, and a single kink-antikink pair. (b) power spec-
trum of (a).



4856 A. R. BISHOP, B. HOROVITZ, AND P. S. LOMDAHL 38

((0));~

00
C)

1000
I

1050

time
1100 0

L

0

0

50
(b)

FIG. 5. The dc current ((g) ) (o) and the CO frequency
co ()&) for an IC case ni, ——,'4 and a=0.3. For the C case

((f))=co is shown by dots. The dashed line is the ohmic
linear response of a kink (e.g. , Ref. 22).
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FIG. 4. (a) Time dependence of (l() for @=0.3, I =0.5,
ni,

———,and an additional kink-antikink pair. (b) Power spec-
trum of (a).

evident from Fig. 1) for both C and IC cases. Note that
( ( P ) ) is finite in the IC case below this threshold due to
a traveling wave solution.

To estimate A. [Eq. (4)] consider NI, kinks and Ns kink
antikink pairs, the latter generated, e.g. , from Nz breath-
ers. After one revolution around the length L in time T
the phase increase 2n(2Ns+NI, ) should equal ((g) ) T.
Since the space inverted structure is equivalent to the
original one we expect co=4~/T, hence A, =N~+ —,'Nk.

We have found that numerical values of A. are indeed
close to Nz+ —,'Nk, as shown in Table I. We find that A, is
independent of e or I except for small changes near the
boundaries in Fig. 1. Note also that the dc and ac
currents are intensive quantities which depend mainly on
the densities Nl, /L, Ns/L The frequ. ency ro and the ra-
tio A, , however, depend on L so that this CO phenomena
is a finite-size effect. This is quite different from CCO for
which A. = 1 is independent of L.

TABLE I. CO data for a=0.5, I =0.8 for various numbers of breathers (or kink-antikink pairs) Nz,
kinks N~ and chain lengths L. CO frequency is co, dc current is ((t() ), amplitude of ac current is
( j)„and)(.=((l() &/cu.

Nz

12
24
24
48
12
18
24
48
24
48
48

0.766
0.404
0.740
0.404
1.101
0.759
0.585
0.309
0.903
0.494
0.585

0.50
0.23
0.50
0.22
0.48
0.30
0.22
0.11
0.50
0.23
0.22

0.763
0.403
0.368
0.203
0.698
0.494
0.382
0.205
0.351
0.196
0.192

1.00
1.00
2.01
1.99
1.58
1.54
1 ~ 53
1 ~ 51
2.56
2.53
3.05
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locking is present, i.e., an external ac field can phase
lock the various domains and lead to steps in the I—V
curves. The CO phenomena, however, seems to be ab-
sent. Thus, in a dc voltage the current oscillations of
various domains add incoherently and an ac response is
not generated.

Effects of commensurability can be demonstrated by
periodically modulating the film thickness in one direc-
tion, as shown by Martinoli et al. A magnetic field B, in

the z direction which moves in the x direction generates
an electric field I =uB, /c so that the velocity u can be
directly determined. If a is a periodicity of the thickness
modulation (in the x direction} then the frequency

co=2nv/ a=2mcE~/B, a (6)

is expected. Equation (6) corresponds to A, = 1 in Eq. (4).
By changing B, the periodicity of the vortex lattice is

changed, i.e., the commensurability parameter nk is easi-

ly controlled.
The datas shows that at commensurability (B,=B }

current oscillations appear and Eq. (6) is satisfied. For
small deviations from B the vortex lattice can deform
and still be pinned by the thickness modulation ' and
current oscillations persist with co fixed at the B value of
Eq. (6). This scenario has been interpreted as CCO, i.e., a
single-particle type oscillation. Further data, however,
shows "that even for larger 8, —8, where the vortex
lattice is IC, the oscillations persist and that Eq. (6) is
obeyed.

It is known that the current distribution in a thin su-
perconducting film in a magnetic field is peaked near the
film edges. Since the current is the driving force I in
Eq. (1) we are justified in using the inhomogeneous field

model of Sec. IV. We therefore suggest that the observed
oscillation in vortex lattice motion in both C and IC cases
is a CO phenomena which occurs due to kink-antikink
nucleation at the film boundaries.

The third system which is relevant is an annular
Josephson junction. Since this is an underdamped system
the scenario of Sec. III is relevant. Experiments in this
system show that a variety of kink and antikink combina-
tions is feasible. ' ' We propose that observation of CO
is an additional useful tool of probing the various states.

In conclusion we have shown two types of CO phe-
nomena. The first type occurs in an underdamped system
due to the capability of kinks and antikinks to survive
collisions. The second type occurs even in overdamped
systems and is due to space inhomogeneity of the driving
force.
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APPENDIX

eP(x + t)+sin[/(x +t)]= I (Al)

Equation (A 1) by itself has a critical field I = 1 so that for
I & 1 /=sin '(I ) and ((P) ) =0 while for I & 1

We present here analytic results for Eq. (1) with a uni-
form field I' for two cases: (i) a moving kink lattice with
velocity near u =1, (ii) a high velocity expansion. A solu-
tion of the form P(x +vt) with u = 1 satisfies
1(I(x + t) =g"(x + t ), hence, Eq. (1) implies

P(x +t)=(I e) '(I' —I)/[1+1 ' sin[(x +t)(I —1)' /e]] .

Equation (A2) yields the current-field relation

( ( j) ) ( I 2 1)l/2/

(A2)

(A3)

The solution (A2} is however relevant only if it satisfies the boundary condition (2), which implies
( (f) ) = (1(') =2ttnk This is co. nsistent with (A3) only if I =I, where

I,=[1+(2m n„e)]'

Hence, Eq. (A2) is a valid solution g, (x, t) only at I =I,.
The solution near I, can be found by expanding around $0(x, t) where

1I (x, t) = (I e) '( I —1)/[ 1+I '
sin[x (I,—1)' /e+ t( I —1)' /e]] .

(A4)

(A5)

Note that $0(x, t) has the same space periodicity as g, (x, t) so that (2) is satisfied. The time periodicity of (A5), howev-
er, is difFerent from that of g, (x, t) so that $0(x, t) satisfies (Al) and secular terms in t are not generated. A solution
P(x, t) =$0(x, t)+g(x, t) with +=O(I —I, ) can be found by expansion in X. Using X"—X=0(I —I, ) ) we find, up to
a rigid t translation of $0,

X(x, t)=(I, —I )/[E(I —1)]1( (x, t) in/ (x, t) . (A6)

Since X(x,t) is periodic, ( (7) ) =0 and the current-field relation is given by (A3); thus, (A3) is exact near I =I, to or-
der I —I, .

The second case considered here is a high velocity expansion. For I ~ ~ the solution of Eqs. (1) and (2) is

g(x, t)=I t/e+2mnkx . (A7)
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To find 0 (1/I ) terms consider

P(x, t ) =vt +2srnkx +P(x, t)

and v is determined below to avoid secular terms in t. Equation (1) reduces to an integral equation for g(x, t)

P(x, t) =Idx'dt' g e'"'" " ' ' " ' 'G(k, co) I I v—e si—n[ut'+2nnkx'+P(x', t')]],
k, w

where

G(k, co)=[ co—+k ic—oe]

The I —ve term in (A9) yields

tto(x, t)=(I /e u)t .—

(A8)

(A9)

(A 10)

(Al 1)

This secular term will be canceled below. The lowest order term of P is obtained by setting /=0 on the right-hand side
of (A9),

g, (x, t)= —,'ie " G(2nnk, —. u)+H. c.

The final order considered here is obtained by expanding the right hand side of (A9) with g=g„
Pz(x, t) = i G(2'—nk, u)[t /—e+ G(4mnk, —2v )e " ]/4 .

(A12)

(A13)

To cancel the diverging term linear in t we choose

u=(I /e)[1 [2(I —/e 4' nk—)2+2I 2] 'I . (A14)

With this choice g(x, t)=0(1/I ) is periodic and (A8)
yields ((P) ) =u; thus the current-field relation ap-

proaches the curve (A3) from above.
We note that in both cases considered in this appendix

the solutions are traveling waves and do not exhibit CO.
The regions of I near I, & 1 and I g&1 are indeed out of
the CO regime of Fig. I.
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