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The phenomena of current oscillations (CO) in response to a dc field is studied by the one-
dimensional damped and field-driven sine-Gordon equation. For low damping we find that kink-
antikink pairs survive collisions and CO through periodic boundaries is possible. For large damp-
ing CO is possible if the field is inhomogeneous, e.g., at contacts, creating kink-antikink pairs
periodically. The results can account for data on charged-density waves and vortex lattice motion
in superconducting films and annular Josephson junctions.

I. INTRODUCTION

A number of physical systems have shown in recent
years that Josephson-type current oscillations exist in
complex systems which cannot be reduced to a single de-
gree of freedom. We define here the “current oscillation”
(CO) phenomenon as generation of oscillation in time of
an observable in response to a time independent field such
that (a) the observable is averaged on all degrees of free-
dom and (b) the system cannot be reduced to that of an
effective single degree of freedom. If (b) were not the case
the system would obey a single pendulum type equation
whose forced oscillations yield the conventional Joseph-
son type effect, which we term as “commensurate current
oscillation” (CCO).

The concept of commensurability is of center impor-
tance in our discussion below. When a periodic system
slides relative to another periodic structure and the
periodicities are commensurate (C), the motion may be
reduced to that of a single center of mass coordinate in a
periodic potential, resulting in CCO. If however the
periodicities are incommensurate (IC) a single degree of
freedom cannot describe the system and the less obvious
CO phenomena may occur. Note that a C system may
exhibit both CCO and CO phenomena.

The following systems are related to the CO phenome-
na: (a) Charge-density-wave (CDW) compounds such as
NbSe;, TaS;, K,3;Mo0; Rbg;Mo00;, (TaSe,),I and
(NbSe,);ol; which exhibit CO above a critical field.' ¢
The phenomena is termed here “narrow band noise;” the
relation with “noise” is however misorienting since the
generated oscillations have extremely well defined fre-
quencies. The CDW wavelength is incommensurate (IC)
but very close to being commensurate (C) with the un-
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derlying lattice, and in two cases [TaS;, (Ref. 6)
K, ;Mo00O; (Ref. 7)] it becomes commensurate at lower
temperatures. (b) A vortex lattice in a superconducting
film whose thickness is modulated periodically in one
direction.®® The magnetic field controls the vortex
periodicity which can be made C or IC relative to the
periodicity of the thickness modulation. Oscillations
were observed® in the C case and interpreted as a CCO.'°
The near-C situation however has also shown oscilla-
tions,'! i.e., a CO phenomena. (c) An annular Josephson
junction is an obvious candidate. The presence of fluxons
in the junction corresponds to an IC situation and the
usual Josephson effect vanishes when averaged along the

junction. The possibility of oscillation even in this
case'>!3 would correspond to a CO phenomena. (d)
Growth oscillations'* describe nonuniform cluster

growth and a probability parameter defines an IC situa-
tion.

In the present work we model these systems by a one
dimensional sine-Gordon equation with damping and a
dc driving field and extend our previous study.!>!® The
model is presented in Sec. II together with several previ-
ously known results. Section III shows that kinks and
antikinks survive collisions for weak damping. For a
suitable initial condition CO persists by allowing the
structure to repeat itself through the periodic boundaries.
Section IV shows that in the overdamped case a nonuni-
form driving field can nucleate kink-antikink pairs
periodically and lead to CO. In Sec. V we discuss experi-
mental data and suggest that the CDW and vortex lattice
data correspond to the case of Sec. IV, while annular
Josephson junctions correspond to the case of Sec. III.

It is worth pointing out that we find CO in both C and
IC situations for similar parameters. The CCO effect
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however is inherently a single-particle type phenomena;
hence it cannot occur in incommensurate situations
where space dependence, or the many degrees of freedom,
are essential.

II. THE MODEL

Consider a classical one-space and time-dependent field
¥(x,t) which satisfies

Px, )+ ef(x,t)— 9" (x,1)+sin(x,)=T . (n

Here the overdot is /3¢, the prime is 8/3x, € is a damp-
ing parameter, and I is the dc driving field. Equation (1)
is supplemented with mod(2) periodic boundary condi-
tions allowing for a density n, of kinks in the length L

[ ¥(x,0dx /L =2mn, . @

Each kink allows for a phase change of 277. Thus, the C
case has n;, =0 while n; 0 measures the deviation from
commensurability. The observable current

()= [dx dlx,00/L (3)

involves a crucial space average on all degrees of free-
dom. A significant property of (3) is that any traveling
wave solution of the form ¢(x —ut), though time depen-
dent, does not produce CO-—as seen from (2),
(1) = —2mvn, is time dependent.

In the CDW case, 9(x,?) corresponds to the phase field
of the order parameter.'’~!* A CDW with a commensu-
rate wavelength Ma /N (with M, N reduced integers, a the
lattice constant) has the form ~cos(27Nx/Ma +¢).
This CDW can couple to the component of the lattice po-
tential with periodicity a /N and produce an interaction
energy ~cos(M¢); thus y=M¢ in Eq. (1). In the IC
case the CDW has the form

~cos[(27N /Ma +8q )x +¢]

with the interaction energy ~cos(M¢+M 8q x); thus,
Y(x)=M¢p+M 6qg x and 8q determines the boundary
condition Eq. (2). Hence, n; is a constant of the motion
which is fixed by the total charge in the system. Further-
more, since the excess local charge is'® ~1'(x,t) we have
¥'(0,t)=1v¢'(L,t) (the contacts do not sustain a difference
in charge through the external circuit); i.e., periodic
boundary conditions modulo 27n; L.

For the vortex lattice ¥(x,?) is a center of mass
field,>2*2! the pinning force ~siny is due to the thick-
ness modulation and Eq. (2) corresponds to deviation of
the vortex average spacing from the period of the thick-
ness modulation. For the annular junction ¥(x,?) is the
relative Josephson phase across the junction and (2)
represents the net number of fluxons (i.e., fluxons minus
antifluxons) in the junctian.

Equation (1) with n, =0 has single-particle type solu-
tions, i.e., Y(x,t)=1)(¢) is space independent. This results
in the well known CCO effect?? above a threshold field
which lies between I'.(e=0)=0.725 and T (e>1.19)
=1.

The CO state, which is the main interest here, has a
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time dependent () due to a nontraveling type ¥(x,1).
An important characteristic of a CO state is the ratio

A=((P)) /o (4)

where ( (/) ) is the dc current (space and time average)
and @ is the fundamental frequency of the CO. The
meaning of A follows from an effective single-particle
coordinate X (t)=a{¥(x,t)) /2m; the 27 periodicity of
implies an underlymg periodicity in X of length a. If the
velocity X(t) is modulated with a period T due to an
effective washboard potential with period a* then
(X(1)), T=a* where ( ), is a time average. Hence
A= a*/a measures an effective single-particle spatial
periodicity.

A few properties of Eq. (1) with n, 50 were previously
documented: When 7,540 and I'=0 Eq. (1) can be easily
integrated to show a static kink lattice with kink-kink
spacing of 1/n,. When I's£0 Eq. (1) was shown? to have
a traveling kink lattice solution of the form ¥(x —uvt). As
shown above, this does not lead to CO.

Equation (1) can be solved analytically (Appendix)
in two cases: (i) An expansion near the field
[, =[14(2men,)?]'”?* where the traveling wave has ve-
locity v =1; (ii) A high velocity expansion which also
yields a traveling wave solution. Neither case exhibits
CO. In the next two sections we examine situations
which result in a nontraveling wave solution with CO. In
these numerical solutions we have mostly used a fourth-
order spatial approximation of the second-order deriva-
tive, combined with a third-order Runge-Kutta method
for the time integration. We also used a fast real-time
simulation package?® which generates movie like observa-
tions of the time evolution and allows for valuable intui-
tion about the system.

III. UNDERDAMPED CASE

The sine-Gordon equation [e=T=0 in Eq. (1)] has
well-known breather solutions.>>?® Breathers are dynam-
ic kink-antikink bound states which oscillate with fre-
quency wg. Breathers can contribute to the current, Eq.
(3), if the field can overcome their binding and produce
free kinks and antikinks. Without damping (e=0) a
threshold field for breakup I'(wp) was found.”® For
lower wp the binding energy and I'(wg) decrease so that
I'wpg)—0 for g —0.

For €50 the lowest threshold I', to unbind a wp—0
breather is finite. To understand this qualitatively, con-
sider a time t;, when the oscillation passes through
¥(x,15)=0. To maintain the dynamics in Eq (1) the field
' must overcome the damping e; since 4 is of order of
the kink-antikink energy =16 (at ¢, all the energy is ki-
netic) we obtain I', ~e. A more careful perturbation
analysis®® and numerical data'® suggest ', ~€%® for e S 1.

Figure 1 shows our results for the (I',€) region where
an initial breather with wg=0.2 breaks up. The initial
breather has a low-binding energy of ~0.3 and its thresh-
old is close to that of the wp—0 breather. We find that
the C case is unstable at fields much below the single-
particle threshold if € is small. Once the breather is un-
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FIG. 1. Breather break-up regime yields CO for parameters

inside the full line in a C case (n, =0) or inside the dashed line
in an IC case (n; = ).
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FIG. 2. Time evolution of ¢'(x,?) showing that a kink (peak)
passes through an antikink (dip). Time runs upward for approx-
imately 23 unit, 0 < x <24, €=0.3,and I'=0.5. (a) C case (b) IC
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bound, the resulting kink-antikink pair travel around the
ring and survive subsequent collisions. This nontrivial
time dependence results in CO. Beyond the line 4 in Fig.
1 our initial breather leads to a traveling wave pattern
with no CO. Depending on initial conditions,'® a kink-
antikink state can survive up to I'=1, while for I' > 1 the
single particle type CCO appear.

We have found that breather breakup persists even
when n;#0 (dashed line in Fig. 1). Thus, the effect is
more precisely a collision property i.e., the ability of
kinks and antikinks to survive collisions. This property,
which is well known in the undamped case, is a novel
phenomena in a damped equation.

Figure 2 shows the time evolution of both C and IC
cases. The collision property allows the pattern to
periodically repeat itself after one revolution around the
system. This results in CO as shown in Fig. 3 for a C
case (n; =0) and in Fig. 4 for an IC case (n; = 5;).

Figure 5 shows current-field and w-field dependence.
There is a threshold field for the appearance of CO (as is
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FIG. 3. (a) Time dependence of () for €=0.3,

I'=0.5,n, =0, and a single kink-antikink pair. (b) power spec-
trum of (a).
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FIG. 4. (a) Time dependence of () for €=0.3, ['=0.5,
n, =+, and an additional kink-antikink pair. (b) Power spec-
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FIG. 5. The dc current {({4)) (0) and the CO frequency
o (X) for an IC case nkzﬁ and €=0.3. For the C case

« 1/.1> )=w is shown by dots. The dashed line is the ohmic
linear response of a kink (e.g., Ref. 22).

evident from Fig. 1) for both C and IC cases. Note that
({4)) is finite in the IC case below this threshold due to
a traveling wave solution.

To estimate A [Eq. (4)] consider N, kinks and N kink
antikink pairs, the latter generated, e.g., from N breath-
ers. After one revolution around the length L in time T
the phase increase 2m(2Nyz + N, ) should equal ( () )T.
Since the space inverted structure is equivalent to the
original one we expect w=47/T, hence A=Ng+1N,.

We have found that numerical values of A are indeed
close to Ny +%Nk, as shown in Table I. We find that A is
independent of € or I" except for small changes near the
boundaries in Fig. 1. Note also that the dc and ac
currents are intensive quantities which depend mainly on
the densities N /L, Ny /L. The frequency w and the ra-
tio A, however, depend on L so that this CO phenomena
is a finite-size effect. This is quite different from CCO for
which A=1 is independent of L.

TABLE 1. CO data for €=0.5, I'=0.8 for various numbers of breathers (or kink-antikink pairs) N,
kinks Ng and chain lengths L. CO frequency is o, dc current is {{) ), amplitude of ac current is

(), and A={{¥) ) /o.

NK NB L < < l/i) ) ( '¢' ) ac (4] A
0 1 12 0.766 0.50 0.763 1.00
0 1 24 0.404 0.23 0.403 1.00
0 2 24 0.740 0.50 0.368 2.01
0 2 48 0.404 0.22 0.203 1.99
1 1 12 1.101 0.48 0.698 1.58
1 1 18 0.759 0.30 0.494 1.54
1 1 24 0.585 0.22 0.382 1.53
1 1 48 0.309 0.11 0.205 1.51
1 2 24 0.903 0.50 0.351 2.56
1 2 48 0.494 0.23 0.196 2.53
2 2 48 0.585 0.22 0.192 3.05
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IV. OVERDAMPED CASE

Data on the CDW (Ref. 2 and 3) and vortex lattice®®
systems indicate an overdamped situation, € >>1. As we
now show, CO is present for e >>1 if the dc field " is
nonuniform in space. This corresponds to the role of
contacts in the CDW case, where we expect a stronger
field than in the bulk. Also in the case of a superconduct-
ing film, it is known that the current (which is the driving
force for the vortex motion) is higher at the film edges.?’

We consider I' in (1) of the form

C=Dy+ A5(x) . (5)

In the C case a static solution (with periodic boundaries)
is possible by matching kink and antikink tails at x =0 so
that the discontinuity in the slope is A. Since the maxi-
mal slope of a kink [¢(x)=4tan"'[exp(x)] is 2, a static
solution is not possible for 4 >4. Thus, for 4 <4 we ex-
pect a finite threshold field ', for generating a dynamic
solution. (The lattice discreteness in the numerical simu-
lation in fact allows a slightly higher critical 4.) In the
IC case a static solution as above is not possible and all
I"¢0 should generate a dynamic solution.

As shown in Fig. 6 the effect of the localized field
Ad(x) is to generate periodically a kink-antikink pair.
Since € >>1 these kinks annihilate away from x =0 after
collisions. The corresponding CO is shown in Figs. 7-9
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FIG. 6. Time evolution of ¥(x,?) with inhomogeneous field

y=0.02, A=4.17 [Eq. (5)], €= 10, and (a) n, =0, (b) n; = 5.
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for A =4.17 where the threshold field is very low,
I'p~0.01. We use e=10 for all data in this section, as a
representative € >> 1 case.

Figure 7 shows a C case near threshold (I';=0.02).
Each period has two peaks corresponding to the two
events of nucleation and annihilation. This results in a
rich harmonic content, with the intensity of the nth har-
monic decaying nonmonotonically. Figure 8 shows the C
case with a stronger field ['[;=0.2. The component of the
time-dependent part in (1) is now smaller, the harmonic
content is however, still significant with the nth harmonic
intensity decaying exponentially as ~(0.0076)".

Figure 9 shows the effect of the kink density on CO.
Although the amplitude of the time-dependent part is
somewhat reduced, it is quiet remarkable that n, = 2—54 has
a significant CO. The effect of the periodic potential on
the space modulation is very weak [see Fig. 9(c)], yet the
dynamic effect in the time modulation is still significant.

Figure 10 shows a case with 4 =3.0 and I'j=4.0, for
which the threshold is I'y~0.3. An increase in n, again
has a weak effect on the CO strength, though a stronger
effect on reducing the harmonic content.

To evaluate the A ratio [Eq. (4)], consider x =0 where
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FIG. 7. (a) Time dependence of {4) for [,=0.02, 4 =4.17,
€=10, and n; =0. (b) Power spectrum of (a).
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CO originate. If the nucleation rate is one pair in time T
then the phase change is {¢(x =0,t)),T=27. For long
times ¢ the phase ¥(x =0,¢) can differ by only a finite
amount from $(x£0,1) so that {¢(x =0,1)), can be re-
placed by a time and space average, i.e.,
({{(x, 1)))T =2m. Hence, A=1 [Eq. (4)] and the sys-
tem appears as if it were commensurate with CCO.

We have confirmed numerically that indeed A=1. Fig-
ure 11 shows the fundamental frequency o (which equals
({4¥))) as function of I' o for a few cases. As previously
discussed, the n, =0 cases have a finite threshold in [
while the n; 50 cases have no threshold.

V. DISCUSSION

The CO phenomena has been extensively studied in
CDW systems. The theoretical description of CO, or
“narrow band noise” has so far been of two types. A con-
tact approach considers generation of vortices?®? or
phase slip centers®® at the boundary between a moving
CDW and a CDW at rest. The vortex model shows the
formation of two-dimensional defects, but does not ac-
count for the coherence of their generation at a rough
contact. The phase slip model shows in a one-
dimensional model that a smooth effective boundary can
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FIG. 8. Same as Fig. 7 except I'y=0.2.
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appear even if the contact itself is rough. Though contro-
versial®* there is in fact considerable experimental sup-
port for CO being generated at the contacts.”’ The
second approach considers impurity pinning which forms
finite domains.>! While impurities affect the threshold
field and the nonohmic response, it is not obvious that
many domains will act coherently to produce CO; in fact
the vortex lattice system (see the following) indicates that
they do not.

In our approach, once the CDW is depinned from im-
purities, CO is generated by its interaction with the
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FIG. 9. Effect of n, on time dependence of () for I';=0.2,
A=4.17,€=10: (@) n; =, (b) n; = 2%. The space dependence
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of Y¥(x,t) for case (b) at t =4000 is shown in (c).
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periodic lattice potential. In particular in the two cases
(TaS; in Ref. 6, K, ;3M00; in Ref. 7) which become com-
mensurate at lower temperature, the lattice periodicity
must be relevant. However, estimates of the threshold
field*¥ for CCO [['=1 in the units of Eq. (1)] yield
values much higher than the experimental ones. Further-
more, the threshold field, the CO frequencies and intensi-
ties are similar in both C and IC cases.

Since the CDW systems are overdamped®® (e>>1) we
apply the results of Sec. IV to resolve the above
difficulties. The commensurability potential is indeed
relevant in both C and IC cases, yet CO can appear at
I' << 1 if the field is inhomogeneous [curves (a) and (b) in
Fig. 11]. The observation of significant harmonic content
even at high fields* is consistent with our results (see e.g.,
Fig. 8). The change in harmonic content from one scan
to another’ may be due to a change in the field profile
near the contacts.

The static solution to Egs. (1) and (2) (I'=0) is a kink
lattice which generates harmonic satellites in x-ray
scattering. However, only a weak second harmonic was
seen in NbSe;.*> This harmonic content depends on the
product n; &, where £ is the single kink width [£=1 in
the units of Eq. (1)]. Evaluation of the ac conductivity
(i.e., linear response to an oscillating field) of a kink lat-
tice has shown®* that n,£~0.2 is consistent with the
data. For n;£20.2 [Fig. 9(c)] the structure factor con-
tains weak harmonics and we might expect that the com-
mensurability potential is irrelevant. This, however, is
not the case since the dynamic harmonic content is much
more pronounced than the static one. This is demon-
strated in Figs. 9(b) and 9(c) where very weak spatial
modulations of the phase yield surprisingly strong modu-
lations in time, representing CO.

Another reason for smoothing the spatial structure are
long range Coulomb interactions® [not included in Eq.
(1D]; this may correspond to effectively increasing £. We
also expect that Coulomb interactions in the contact area
are more effectively screened and the effects of commen-
surability can be more pronounced. This will enhance
the dynamic harmonic content of the nucleation process
which probably occurs predominantly in the contact
ared.

The periodicity length a * =Aa can be estimated experi-
mentally if the effective CDW charge ne moving at veloc-
ity v is known. The current J=nev and frequency
w=2mv/a* yield J/o=nea* /2w. The data’® suggests
A~2 which differs from our result A=1, but also differs
from other theories®?*~3! where a* is the CDW wave-
length and A~4. With the uncertainty in the CDW
charge (ne) it seems that at present the A ratio cannot
determine which theory is consistent. Fortunately this
uncertainty is avoided in the vortex lattice system which
we next discuss.

The dynamics of a vortex lattice in a superconducting
film provide an ideal arrangement for a direct compar-
ison of experiment with theory.®~!° One can directly
control the commensurability potential and the deviation
from commensurability (n; ), and even measure the A ra-
tio. Consider first a flat film where the only potentials are
due to random impurities. The data show that mode
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locking is present,”’ i.e., an external ac field can phase

lock the various domains and lead to steps in the I-V
curves. The CO phenomena, however, seems to be ab-
sent.’” Thus, in a dc voltage the current oscillations of
various domains add incoherently and an ac response is
not generated.

Effects of commensurability can be demonstrated by
periodically modulating the film thickness in one direc-
tion, as shown by Martinoli et al.} A magnetic field B, in
the z direction which moves in the x direction generates
an electric field E, =vB, /c so that the velocity v can be
directly determined. If a is a periodicity of the thickness
modulation (in the x direction) then the frequency

w=2mv/a=2mcE,/B,a (6)

is expected. Equation (6) corresponds to A=1 in Eq. (4).
By changing B, the periodicity of the vortex lattice is
changed, i.e., the commensurability parameter n; is easi-
ly controlled.

The data® shows that at commensurability (B,=B,,)
current oscillations appear and Eq. (6) is satisfied. For
small deviations from B,, the vortex lattice can deform
and still be pinned by the thickness modulation®® and
current oscillations persist with w fixed at the B,, value of
Eq. (6). This scenario has been interpreted as CCO, i.e., a
single-particle type oscillation.® Further data, however,
shows™!! that even for larger B, —B,,, where the vortex
lattice is IC, the oscillations persist and that Eq. (6) is
obeyed.

It is known that the current distribution in a thin su-
perconducting film in a magnetic field is peaked near the
film edges.”” Since the current is the driving force®® I in
Eq. (1) we are justified in using the inhomogeneous field
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model of Sec. IV. We therefore suggest that the observed
oscillation in vortex lattice motion in both C and IC cases
is a CO phenomena which occurs due to kink-antikink
nucleation at the film boundaries.

The third system which is relevant is an annular
Josephson junction. Since this is an underdamped system
the scenario of Sec. III is relevant. Experiments in this
system show that a variety of kink and antikink combina-
tions is feasible.!>!> We propose that observation of CO
is an additional useful tool of probing the various states.

In conclusion we have shown two types of CO phe-
nomena. The first type occurs in an underdamped system
due to the capability of kinks and antikinks to survive
collisions. The second type occurs even in overdamped
systems and is due to space inhomogeneity of the driving
force.
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APPENDIX

We present here analytic results for Eq. (1) with a uni-
form field T for two cases: (i) a moving kink lattice with
velocity near v =1, (ii) a high velocity expansion. A solu-
tion of the form ¢(x +vt) with v=1 satisfies
Y(x +1)=9"(x +1), hence, Eq. (1) implies

ef(x +1)+sin[(x +1)]=T . (A1)

Equation (A1) by itself has a critical field I'=1 so that for
<1 ¢$=sin"Y(T") and ({¢) ) =0 while for T'> 1

_J
Pix +1)=(Ce)~{(T2—1)/{14+T 'sin[(x +6)(F2—1)"2/e]} . (A2)
Equation (A2) yields the current-field relation
(())=(r2—n'?/e . (A3)
The solution (A2) is however relevant only if it satisfies the boundary condition (2), which implies
({(¢))={¢')=2mn,. This is consistent with (A3) only if [ =T, where
. =[14Q2mn.e€)]"?. (A4)
Hence, Eq. (A2) is a valid solution ¢.(x,¢) only at '=T,.
The solution near I', can be found by expanding around ¥,(x,t) where
do(x,0)=(Te)~ (T2 —1)/{14+T " 'sin[x(T2—1)"2/e+1([?*—1)"2/e]} . (A5)

Note that y4(x,?) has the same space periodicity as ¥.(x,?) so that (2) is satisfied. The time periodicity of (A5), howev-
er, is different from that of ¥,(x,¢) so that yy(x,?) satisfies (A1) and secular terms in ¢ are not generated. A solution
WYix,t)=vy(x,t)+X(x,t) with X=0(T —T ) can be found by expansion in X. Using X"’ —X=0(I'—T,)?) we find, up to
a rigid ¢ translation of ¥,

X(x,t)=(T2—T2)/[e(T?—1)]dy(x,1) Inyfy(x,1) . (A6)

Since X(x,t) is periodic, { (X)) =0 and the current-field relation is given by (A3); thus, (A3) is exact near =T, to or-
derI'—-T,.
The second case considered here is a high velocity expansion. For ' — oo the solution of Egs. (1) and (2) is

Y(x,t)=It/e+2mn;x . (A7)
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To find O(1/T") terms consider
Y(x,t)=vt +2mn, x +P(x,t)

and v is determined below to avoid secular terms in z. Equation (1) reduces to an integral equation for 9(x, )

J(x,t):fdx’dt'2eik(““x')_i“’"_")G(k,w)[F—ve-—sin[vt'+21rnkx'+1Z(x’,t')]} ,

k,w

where
Glk,o)=[—w*+k?>—iwe]™".

The ' —ve term in (A9) yields
Polx,8)=(T/e—v)t .

(A10)

(A11)

This secular term will be canceled below. The lowest order term of ¢ is obtained by setting /=0 on the right-hand side

of (A9),

ivt +2min; x

¥y(x,1)=1Lie G(2mn,,—v)+H.c.

(A12)

The final order considered here is obtained by expanding the right hand side of (A9) with ¥=1,,

Jz(x,z)= —iG(2mn,, —v)[t/e+G(4mn;, —2v)e

To cancel the diverging term linear in ¢ we choose
v=(I'/e){1—[2AT?/e2—am?n})*+2I2]7} . (Al4)

With this choice ¥(x,t)=0(1/T") is periodic and (AS8)
yields ((#))=v; thus the current-field relation ap-

2i(2mn; x +ot)

174 . (A13)

proaches the curve (A3) from above.

We note that in both cases considered in this appendix
the solutions are traveling waves and do not exhibit CO.
The regions of " near I'. > 1 and I >>1 are indeed out of
the CO regime of Fig. 1.
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