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JOsephson Junctions in Y(Bn2Cu30
Recent data' have shown an unusual current-voltage

(I V) -relation near the superconducting transition tem-
perature of Y~Ba2Cu30„. Below a temperature T, ~,

T, ~
=91 K (Ref. 1) or T, i = 82 K, a nonlinear relation

V-I' with a(T) & 1 is found in both ceramics' and
single crystals. The exponent a(T) increases upon cool-
ing and seems to diverge at T,2 = 90 K (Ref. 1); in Ref.
2 however, at T=79.4 K, a(T) =8 is still increasing
with finite slope. Furthermore, the I-V curves are ex-
tremely sensitive to magnetic fields H, resulting in a
cusplike behavior of T, (H) for a suitably defined low-

resistance state. '

In this Comment we propose that this behavior can be
understood in terms of two-dimensional (2D) Josephson
junctions, related to the presence of (110) twin bound-

aries in this compound. The presence of such junctions
has also been inferred from a series of microwave ab-
sorption lines whose position depends on the magnetic
field component in the [110] direction. Note that the
junctions can be either on the twin boundaries or in be-
tween them. In the latter case, as found for some low-T,
elements and proposed for YiBa2Cu30„,enhanced su-

perconductivity near the twin boundaries may be corre-
lated with their unusual dynamics.

We propose that at T & T, ~, thermal fluctuations on
2D junctions between the superconducting layers destroy
the coherence between them. A second 2D transition
occurs at T,z where phase coherence is established across
the junctions, resulting in a 3D correlated superconduc-
tor with a finite threshold current. The junctions may
vary in their parameters, resulting in a sequence of 2D
transitions; the divergence of a (T) at T,2 is then
smeared, as in Ref. 2.

A microscopic description of the second transition is

obtained via the free energy of a 2D Josephson junction
with p(x,y) the Josephson phase,

F =po dx dy IIJ [(1—cosy)

+ t XJ (vy)'1 —2H n XVpj. (1)
Here go=bc/2e is the flux quantum, IJ and XJ are the
Josephson current and penetration length, respectively,
and n is a unit vector normal to the junction. The last
term in (1) is the coupling of an external field H to the
magnetization nxV& due to flux lines in the junction.
We assume that

~
H

~
is below the threshold field H, ~ of

the superconducting layers so that only the component of
H parallel to the junction is relevant.

Equation (1) is identical to that of the commensu-
rate-incommensurate transition with uniaxial symme-
try. 9 " We identify the phase transition of (1) with T,2

and with a critical field HJ(T, 2) above which flux lines
are induced in the junction. A peculiar result of 2D fluc-
tuations is that the phase boundary near To =T,2(H =0)
has the form

Ht-exp( —b(T0 —T ) '"] (2)

where To= 8tt).JIttito and b is a constant. The behavior
of HJ(T, 2) near To accounts for the observed cusp in the
data (Fig. 5 of Ref. 1) and is a significant evidence for
2D fluctuations.

At T, ~ & T & T, 2 thermal fluctuations lead to (cosset)
=0 and there is no coherence across the junction. Thus
each superconducting layer acts as a 2D film with a non-
linear I Vre-lation due to vortex unbinding. ' Note that
the fluxes associated with a vortex pair can join through
a junction with no cost in free energy if T)T,2. Thus
a(T), which is proportional to a vortex length, ' will in-

crease with the thickness d of the correlated supercon-
ducting layer. As more junctions become correlated, d
increases, accounting for the rapid increase of a(T).
This process must be modified' when eventually
d & (bulk penetration length) /(grain size).

In conclusion, while Eq. (2) is valid for 2D junctions
in general, the V-I' relation results from the more
specific geometry of parallel junctions relating to a twin

boundary array.
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