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The theory of forming a coherent twinning array in a parent phase is studied for a tetragonal-to-

orthorhombic displacive transition. We find that this structure can be stabilized without the use of dislo-

cations by a long-range interaction between the twin boundaries which is mediated via the parent phase.

The dynamics of the twin boundary lattice consists of elementary excitations with surprisingly low fre-

quency and a limiting dispersion of m —k '

PACS numbers: 81.30.Kf, 61.70.Ng, 62.20.Dc, 68.35.Gy

Formation of coherent alternating twins or domain
structures is a common occurrence in structural and
martensitic phase transitions. ' The symmetry of the
parent (untransformed) phase allows for formation of a
few distinct variants or "twins" of the product
(transformed) phase. The coexistence of two of these
twins results in a localized twin boundary. The micro-
scopic origin of the structural transition is of interest by
itself and was recently summarized by one of us.

It has been shown that a static solution for a twin

boundary or for a periodic array of twin boundaries can
be produced entirely by displacive distortions of a high-
symmetry phase without any need for dislocations. Ex-
plicit solutions were given in a continuum theory by al-
lowing for both nonlinear elasticity and for nonlocal
strains (i.e. , strain gradients). The significance of this
description, as will emerge below, is that large-scale
motion at low frequency is allowed by the coherent twin

boundary. This is very difterent from the dynamics of
dislocations whose motion involves discontinuities in the
strain field and hence drag and damping.

In the present work we study in particular a tetragonal
to orthorhombic (T 0) transition. In a-ddition to well-

known examples such as In-pb, Mn-Fe, and Mn-Ni this
transition and the related twin boundaries were recently
observed in the copper-oxide high-T, superconduc-
tors. ' In a separate work ' we show how the interac-
tions between electrons and twin-boundary dynamics can
be responsible for the observed enhancement of T„we
also show there how other electronic properties and the
heat capacity are aflected. Besides relevance to high-T,
materials the anomalous high electronic specific heat of
some heavy-fermion systems may be due to these in-

teractions.
This T-0 transition is essentially a two-dimensional

square-to-rectangular transition. Since there are two
ways to deform a square to a rectangle, the T-0 transi-
tion has two twins related to each other by a reflection in

the [110I planes; the latter are also the allowed twin

boundaries. A detailed solution has been obtained from
a Landau-Ginzburg free-energy expansion for the strain

e2, keeping nonlinear terms and gradients of e2. The

extremum condition for the free energy yields a family of
periodic solutions for a twin-boundary lattice (TBL)
whose periodicity 2l varies in some finite range. Since
the absolute ground state is a single variant, one needs
an additional force in the system to stabilize the TBL
and also to determine its periodicity.

The additional required force is provided by an inter-
face between a parent phase and a twinned product
phase, a configuration well known in martenistic transi-
tions. The geometry, as illustrated in Fig. 1, defines1,2, 14

a habit-plane interface which intersects the twin boun-
daries. The intersection angle is determined such that
the strain for parent-product matching (without disloca-
tions) does not diverge. Twinning on the product side is
then essential to allow for an equal average lattice con-.tant on both sides of the habit plane, i.e., it is an invari-
ant plane strain. ' In this scenario the system is in a

L|

L~
FIG. 1. Habit plane (dashed line) separates a twinned prod-

uct phase (on right) from the parent phase (on left). L~t L2,
and L3 are dimensions of the product phase (L3 is perpendicu-
lar to drawing). The separation between twin boundaries is I
and their width is (. The [110] and [110] directions are r and
s, respectively, and the ion displacement fields are u(r, s) and
v(r, s).
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thermodynamically metastable state, the TBL being sta-
bilized by a two-phase interface. Another type of inter-
face is that between two perpendicular TBL's, as seen in
some cases. ' ' We expect the analysis below to be val-
id also for this case.

The evaluation of the strain energies proceeds in the
following steps: First, the TBL is described by a one-
dimensional modulation of a transverse displacement

field u(s). We consider the case l)) j (see Fig. 1),
and then a collective coordinate S„ for the position of the
nth twin boundary can be defined. As usual in soliton
theories, ' we expect this "translation mode" coordinate
to be well separated in frequency from the other degrees
of freedom. As found below, this is indeed the case, at
least for wave vectors ) I/L2 The .displacement field is
then

n —
1

u(s) = —( —1)".(s —S„,) —g ( —1)i.(S, —S, , )+u, S„,(s(S„,

u(r, s) =g&fui(k)e '"+u2(k)e '"]e'"',

v (r, s ) =gk [P1u
~ (k) e "+P2u 2(k) e ' ]e'"',

(2)

with k real and Req; =y;
I
k I

)0 (i =1,2). The coef-
ficients P;, y; are O(1) and determined by the elastic
constants of the parent phase.

The final step is to match the solutions (2) and (1)
across the habit plane. For simplicity we assume that el
is smaller than a lattice constant so that epitaxy-type
discommensurations can be avoided. The parent-product
matching is possible in principle, as guaranteed by the
construction of the habit plane. We therefore extend (2)
to r =0 and continuity with (1) yields u 1(k),uq(k)
—up(k), where up(k) is the Fourier transform of (1).
While this is not an exact procedure for all k, we expect
it to be accurate for the low-k components; the reason
is that the resulting fringing field is of long range

where n =1,2, . . . , M, u =u(Sp), and the strain
e2=[(flu/Bs)+(Bv/Br)]/J2 relative to the tetragonal
phase is e2 = +' e/J2; the latter signs define the two pos-
sible twins. Define a small displacement coordinate 6„
from the expected ground-state position n1, i.e. ,

S„=nl+6„. We assume an even number M of twin
boundaries with boundary conditions S~ =SO+Mt' and
u(S~) =u(Sp), so that 6p=SM and g„=,( —1)"8„=0.
The values of I, u, and B„are left as variational parame-
ters. Thus, we focus on the essential "soft" coordinate
part of the continuum solution without the need for its
details or for the details of the free-energy functional.

The second step is to determine the habit plane by
finding the invariant plane strain. ' We find that the
orientation of the habit plane is a sensitive function of e
and the volume ratio of the two twins. For simplicity we
make one allowable choice that the habit plane is per-
pendicular to the twin boundaries; we have examined
also other cases and the results below do not change
qualitatively.

The third step is to determine the fringing elastic field
for the displacements u(r, s) and v(r, s) in the parent
phase. In the s direction we can assume periodic bound-
ary conditions and define the Fourier components u(r, k)
and v(r, k). For r —~, we can use linear elasticity
theory, which yields

—expanding up(k) with k and substituting in (2) yields
u(r, s), v(r, s) —1/r. This long-range field should not be
sensitive to the details of the matching near the habit
plane.

The interface elastic energy is now obtained by substi-
tuting (2) in the elastic energy and intergrating on—~ & r & 0. The resulting integral on exp(y; I

k
I r)

yields =
I
k I terms instead of the usual =k energies.

The interface is then

E.=« iL3y~ I
l

I I up(k ) I
', (3)

where a is of the order of an elastic constant.
The elastic energy of the produce phase involves the

creation energy Eo of a twin boundary per unit area

ETa =EpL2L3L|/i[1+0(e ' ~)]. (4)

Since the twin boundaries are exponentially localized in

a width g the interaction between them is =exp( —l/
g). This interaction can be neglected relative to (3) if

I
k

I L2exp( —l/() «1; for l/(=20-100 '' this is a
safe assumption even for a macroscopic L2. Substitution
of (1) in (3) yields (for 6„=0 and u = —le/2) E;„
=0 27ae L~L3l which . combined with (4) has a min-
imum at

l = [Epz.2/(0 27ae2)] 'l2 (5)

The JL2 dependence was derived previously, ' although
the method employed did not use the long-range eAect in

an obvious manner. Our analysis of twin bands resulting
from the cubic-tetragonal transition in In- Tl ' gives
l=(L2) where a =0.4-0.5 consistent with Eq. (5); Li
is in the range 2.7—10.5 pm.

We now address the fluctuations B„and their dynam-
ics. Here we encounter the most important and surpris-
ing aspect of the twin structure. To grasp the basic idea,
consider the motion of just one twin boundary, say 6 ~0
[Figs. 2(a) and 2(b)]. Since the strain e2 in the twins
is fixed at ~ e, the result is a displacement u (s )=fs ds'eq(s') which affects the whole stack of twins
with s )S . Thus, an apparently simple local motion of
a boundary results in a coherent macroscopic motion
[Fig. 2(a)].

To present this idea more precisely, consider the kinet-
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