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LETTER TO THE EDITOR 

Amplitude breathers in diatomic Peierls systems 

S R Phillpott, A R Bishop$ and B Horovitz$§ 
f Xerox Webster Research Center, Webster, New York 14580, USA 
$ Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, 
Los Alamos, New Mexico 87545. USA 

Received 17 March 1987 

Abstract. Persistent non-linear oscillations-breathers-are studied in a dimerised one- 
dimensional electron-phonon system as a function of an alternating on-site potential fa. 
Dimerisation is present if CY < A,-,, where 2A0 is the electronic gap in the ground state. We 
show the existence of breathers in the adiabatic limit by both analytic expansions and 
numerical dynamics. For CY 3 o.3A0 however, the breathers become prdgressively unstable 
towards pattern doubling. Semi-classical quantisation also shows an instability at 
CY 3 o.75A0. Electron-hole excitations form a kink-anti-kink pair for all CY < Ao,  and are 
accompanied by a breather when CY < 0.2A,,. 

A variety of conjugated polymers have shown a photo-induced absorption peak some- 
what below the band edge. These include trans- and cis-polyacetylene (Orenstein and 
Baker 1982, Orenstein et a1 1983), polydiacetylene (Orenstein et a1 1983) and poly-(1,6 
heptadiyne) (Zemach et a1 1985). In polyacetylene, this so-called ‘high-energy peak’ 
(HEP) has been interpreted as the absorption of a bound state of neutral solitons, the 
binding being due either to Coulomb correlations (Orenstein and Baker 1982) or to non- 
linear dynamics (Bishop et a1 1984a, b). The bound state of the non-linear dynamics 
model is called a breather; after an electron-hole photo-excitation it can form either in 
addition to a kink-anti-kink pair (Bishop et a1 1984a, b) or indirectly from the kink-anti- 
kink pair (Kivelson and Wu 1986, Bishop and Phillpot 1987). The breather bound state 
is a result of the non-harmonic shape of the energy as a function of dimerisation and 
should therefore apply to a large variety of systems. 

In the present work we extend the study of breathers in monatomic Peierls systems 
(Bishop et a1 1984a, b) to the case of a diatomic system where the sites have an alternating 
potential ? cY(Rice and Mele 1982). This corresponds to the poly-( 1,6 heptadiyne) system 
which has shown a HEP feature (Zemach et a1 1985); organic mixed stack compounds also 
belong to this class (Horovitz and Schaub 1983). 

We consider first the continuum adiabatic electron-phonon model and derive a low- 
amplitude expansion. We find that breathers are solutions for all LY < Ao, where 2Ao is 
the electronic gap. We then test the analytic solution numerically using an adiabatic 
dynamics scheme (Su and Schrieffer 1980, Phillpot 1985, Phillpot et a1 1986). We find 
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that for (Y b the continuum model breathers become progressively unstable by 
doubling their pattern and spreading their shape. We also study electron-hole dynamics, 
for example following photo-excitation, and find that a kink-anti-kink pair is formed for 
all (Y < Ao; an additional independent breather is only formed, however, for (Y 6 0.2A0. 
Finally we quantise the breather in a semi-classical scheme and find that it is unstable 
towards decaying into phonons if (Y > o.75A0. 

The analytic expansion for breathers proceeds in the following four steps. First, we 
define a tight-binding Hamiltonian on a lattice with C X , ~  creating an electron with spin s 
at site n and U, the nth ion displacement 

2 = - C [ t o  + S ( U n + i  - ~ n ) l ( ~ A + l , s c n , s  + HC) + E (-)"acA,sCn,s 
n,s n,s 

Here to is the transfer integral, /3 the electron-phonon coupling, K the ion spring 
constant, M the ion mass and MU, the conjugate momentum to U,. The Hamiltonian (1) 
will be directly used in our numerical study. (The use of different masses for the two 
sites has no qualitative effect on the numerical results.) The second step is to obtain a 
continuum Hamiltonian for the dimerisation field Ad(x) = (-)"2/3u, where x = na, a 
being the lattice constant. The result is well known (Rice and Mele 1982, Horovitz and 
Schaub 1983) and has the adiabatic ground state at Ad = A: which satisfies 

(A:2 + (y2)ll2 = A. = 2E, exp(-1/2A). (2) 

Here E, = 2t0 is an energy cut-off and A = 2a2/(ntoK) is dimensionless. For a < A. the 
electronic gap is 2Ao and the system is dimerised, i.e. A i  # 0; for a 3 A. the gap is 2 a  
and A: = 0. 

The third step is to eliminate the electronic degrees of freedom and find an effective 
Lagrangian Y for the slowly varying field Ad@, t ) .  This is obtained by the method of 
derivative expansions (Horovitz and Krumhansll984) whiLh yields for our case, with a 
constrained constant a, 

1 2E A i  Ai 2 a 2 + A 2  3 = N(0)[ZA2(ln2 + - - + - - 
A 2 4A 4Awg 24A4 (v$AA - A:)] (3) 

where vF = 2t0a is the Fermi velocity, N(0)  = 2/nuF and A2(x, t )  = Ai(x,  t )  + a2, dot is 
a/at  and prime is a/ax. 

The fourth and final step is to solve for non-linear oscillations around the ground 
state. Define a slowly varying and low-amplitude field d(x, t )  = (Ad(x, t)/A:) - 1. Con- 
sider d = O ( E ) ,  6' = O ( E ~ ) ,  wo/Ao = O(E)  and expand (3) to order c4 (the consistency 
of this expansion has been checked): 

The harmonic terms of (4) are solved by 6 - exp(iwt - iqx); for q = 0 the renor- 
malised phonon frequency wR is 
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and y = (A!/A0)’ = 1 - (a/A0)’. 

and o < wR. This suggests an ansatz of the form (Bishop et a1 1984a, b) 
We next look for localised solutions where the wave-vector q becomes imaginary 

S ( x ,  t )  = E(A(X,  T )  exp(ioRt) + cc) + E ~ S ’ ( X ,  t )  + ,z3S2(x, t )  (6) 

with a slowly varying envelope function A ( X ,  T )  and x = ~i, X = (xAo/uF)[12y/ 
(3 - 2 ~ ) ] l / ~ ,  T = E2uRt. Substituting (6) in the equation of motion for (4) yields a non- 
linear (cubic) Schrodinger equation for A :  

Equation (7) has a well known envelope soliton (Scott et a1 1973) which yields to order 
E’ a breather-type solution 

6 ( ~ ,  t )  = E[12/(9 - 6y - y 2 ) ] ’ / 2  sech EfCOS[(1 - iE2)WRt] 

+ E2[3(3 - 2y)/(9 - 6y - y’)]  sech2 E i { i  cos[2(1 - bg2)uRt] - 1). (8) 

Here E - E is a continuous parameter which controls both the breather amplitude and 
itsfrequency, wB = (1 - fE2)uR. When Eexceeds a thresholdvalue the breather becomes 
unstable towards break-up into a kink-anti-kink pair (this was confirmed by the numeri- 
cal scheme below). 

We note that breathers may not be exact solutions due to terms which lie beyond 
all orders in the E expansion. This has been shown for the q4  theory (Segur and 
Kruskall986) and yields a slow decay rate for breathers with a non-perturbative form 
-exp(-c/E) where c = O(1). For small E, breathers are still well defined excitations 
with a long lifetime. 

We next present numerical data using the adiabatic dynamics scheme (Su and 
Schrieffer 1980, Phillpot 1985, Phillpot et a1 1986) for the Hamiltonian (1); the electron 
states are solved for a frozen lattice at each time step, while the dynamics is governed 
by MU, = S(Xe,)/Su,,  where (Xu) is the expectation value of (1) excluding the kinetic 
term. We use equation (8) as an initial condition with E = 0.5 and show in figure 1 its 
time evolution for the original Hamiltonian equation (1) with a = 0.3 eV and A. = 1.92 
eV. We find that the localised large amplitude oscillation is persistent; some acoustic 
deformation is however generated and it interferes with the breather as it propagates 
through the periodic boundary back to the origin. Thus we cannot claim strict dynamic 
stability in the present finite discrete system. We have however run the a = 0 case to 
about 100 oscillations in time where localised oscillations persisted although inter- 
mittent interferences and refocusing events were observed. 

Figure 2 shows the time evolution for a = 0.9 eV. In addition to generating an 
acoustic deformation, in this case there seems to be an inherent instability by which 
the number of maxima doubles, i.e. 1 - 2- 4, and the overall shape spreads with 
time. In the a = 0.3 eV case there is a tendency to form a double maximum (figure 
l), but no further splitting or spreading is observed up to about 25 periods. 

The breather has two levels which strongly oscillate within the ground state gap. 
The lower level (top of valence band in ground state) is fully occupied by two electrons 
while the upper level (bottom of conduction band) is empty. We suggest that the 



L488 Letter to the Editor 

-2 2 , 500 x)W 

t 

Figure 1. Dimerisation pattern r, = (-)"(2u, - U " + ]  - u,-,)/4 for times 0 < t < 150 and 
300 < t < 450 for a 42 atom ring with 42 electrons occupying the lowest 21 states. The 
initial condition is a breather (equation (9))  with I =  0.5. The Hamiltonian (1) has 
parameters to = 2.5 eV, CY = 0.3 eV, = 4.8 eV A-', K = 17.3 eV A-2, M = 13 au (with 
these parameters A. = 1.92 eV, oo = 2.25 x lOI4 s-'). The time unit is s and r, is in 
units of the ground state dimerisation uo = 0.1 A. The inset shows the time dependence 
of the 21st electronic level. 

optical transition between these two levels is the HEP that is observed experimentally. 
Figure 1 (inset) displays the time evolution of the lower level for LY = 0.3 eV which 
shows a periodic form whose amplitude decays slowly with time. Figure 2 (inset) shows 
the same for a = 0.9; the amplitude decays faster and beating of two periods is 
apparent. Thus a distinct behaviour of LY = 0.3 eV and LY = 0.9 eV is also seen in the 
time dependence of the electronic levels. 

We conclude so far that the breathers decay either by discreteness effects (e.g. 
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Figure 2. The same as figure 1 ,  but for (Y = 0.9 eV. 

generation of acoustic deformations) or by a non-perturbative correction to breathers 
that is present even in the continuum model (Segur and Kruskal 1986). The decay 
rate increases with CY and for LY 3 0.6 eV there seems to be a qualitatively additional 
decay mode. 

Adiabatic dynamics is also an efficient tool for studying the evolution of the system 
after photo-excitation. We start from an electron-hole pair with the ions in the uniform 
ground state, and follow numerically the evolution of non-linear excitations. Figure 3 
shows a case with LY = 0.3 eV, A. = 1.92 eV where a kink and an anti-kink are formed 
and move in opposite directions. Since the initial excitation energy 2A0 is much higher 
than the two kink rest masses (Rice and Mele 1982) 

(4A0/3d)[(1 - L Y ~ / A ~ ) ' / ~  + (LY/AO) ~in-'(c~/Ao)] 
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Figure 3. Time evolution of an excited electrowhole pair. The figure shows the dimerisation 
pattern for a 98 atom ring with 98 electrons occupying the lowest 48th states by pairs and 
singly occupying the 49th and 50th states. The initial dimerisation pattern is that of the 
ground state. Parameters as in figure 1 with (Y = 0.3 eV. The inset shows the time evolution 
of the energy levels corresponding to the 49th and 48th states, as indicated. 

there is in addition sufficient energy to generate a localised breather as seen in figure 
3. The electronic levels show the rapid generation of the kink states at +a and the 
persistent oscillations of the next states which are associated with the breather. For 
larger (Y the kinetic energy gain from forming the kink-anti-kink pair is smaller and 
we find that for &/Ao B 0.2 one of the generated kinks remains near the centre, bound 
to a localised oscillation. The electronic levels show the rapid formation of the kink 
states at +a; however, the next excited states do not show a coherent, persistent 
oscillation. Thus an independent breather is not formed for a / A 0  3 0.2. 

Finally we consider semi-classical quantisation. The amplitude E of the breather in 
equation (8) is now discretised by an integer n such that 

To leading order n - dAo/oo which shows that d in fact measures the non-adiabatic 
corrections, d - oo/Ao. 

The quantised breather energy is obtained by substituting (8) with d determined 
by (9) into the Hamiltonian corresponding to (4). The result is 

The remarkable feature of this result is that the coefficient of the n3 term changes 
sign at y = 0.40, i.e. a / A o  = 0.75. Thus for a /Ao  > 0.75, E,(n) > nEB(l) and a n n  > 1 
breather is unstable against breaking up into n phonons, the n = 1 breather being just 
a quantised phonon (cf Dashen et a1 1975). The classical analogue of such an instability 
could be a dynamical instability, as seems to be the case in the numerical data for 
LY 3 0.3Ao. 
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To summarise, we have found that the presence of an alternating on-site potential 
limits the existence of breathers. The analytic expansion allows breathers for all 
a < Aa, but this does not prove dynamic stability. The numerical dynamics shows 
persistent breathers for a d 0.3b0, but becoming dynamically unstable at higher a. 
We cannot exclude, however, the possibility that the continuum solution is not a good 
initial condition for higher a, and a different form might be a more persistent breather. 
Our quantised solution (equation (10)) is more definitive in showing an instability at 
a > 0.75ho; this then correlates with a dynamic instability on a classical level. 

A different type of limitation appears for breather generation in photo-induced 
data. Here our numerical data and energy balance arguments show that a breather 
can be generated in addition to a kink-anti-kink pair only if a G 0.2A0. If the HEP 
observed in poly-(1,6 heptadiyne) at 1.0 eV is a breather transition then the on-site 
potential a should be a 6 0.2 eV since the gap is 2A0 = 1.8 eV (Zemach et a1 1985). 
By controlling the side rings of poIy-(1,6 heptadiyne) it should be possible to vary a 
and test the breather interpretation of the HEP. 

SRP wishes to thank CNLS and T-11 at Los Alamos National Laboratory for their 
hospitality during this work. 
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