
PHYSICAL REVIEW B VOLUME 35, NUMBER 13 1 MAY 1987

Dimerization transition versus neutral-ionic transition in organic mixed-stack compounds
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The neutral-ionic transition in organic mixed-stack compounds is studied by using the finite-size
extrapolation procedure. It is shown that when neglecting the electron-phonon interaction, the low-
ionicity phase has a nondegenerate ground state and all excitations have a finite gap, while the high-
ionicity phase has a highly degenerate ground state and both the charge-transfer and spin-flip excita-
tions are gapless. The transition is of first or second-order depending on the strength of the overlap
integral. When electron-phonon coupling is taken into account, these excitations acquire a gap even
in the ionic phase and the order parameter is then the dimerization. The phase boundaries are shift-
ed considerably.

I. INTRODUCTION

The discovery of "neutral-to-ionic" (N-I) phase transi-
tions in a variety of mixed-stack charge-transfer com-
pounds' has led to extensive studies on the nature of this
transition.

A mixed-stack compound consists of donor (D) and ac-
ceptor (A) molecules which stack alternately on top of
each other. A single stack of molecules has the form
D+~A ~D+~A ~. . . where p is the average charge
transfer. As the name neutral-to-ionic suggests, the
charge transfer p is of central importance. The difference
I—3 & 0 of the donor ionization energy I and the accep-
tor affinity 3 favors a neutral lattice p=0 while the inter-
site Coulomb energies V favor an ionic lattice p= 1. By
changing these parameters a first-order transition from
p=O to p= 1 occurs. '

This simple description must be considerably modified
when the transfer integral t between D and A orbitals is
included. Note first that since this transfer integral is ap-
preciable only along the stack a one-dimensional model is
appropriate. Secondly, t&0 implies that p=O or p= 1

cannot be exact values and therefore the role of the charge
transfer p as an order parameter for this transition is not
obvious.

Experimentally the transitions are induced by pressure
and in some cases by temperature. In most of the studied
compounds the transition is accompanied by a shift of the
absorption in the (3—5)-eV range, similar to the shift be-
tween D', A and D+, A molecules in solution. Also,
values of phonon frequencies are consistent with a
significant change of p. Thus p is an important feature of
the transition, but it cannot be an actual order parameter
due to the following reasons: (a) In some compounds the
transition is continuous, and in others the order of the
transitions is controversial. For a continuous transition a
change in symmetry is required and just a change in p
does not amount to a symmetry change. (b) Some com-
pounds show a similar transition as seen from ESR and
phonon spectroscopy, but yet are classified as "ionic" (i.e.,
p & —,) on both sides of the transition. This is the case for

tetrathiafulvalene-bromanil (TTF-BA), 5, 10-dihydro-5, 10
dimethylphenazine-7, 7,8,8 tetracyanoquinodimethane
(MzP- TCNQ), and probably also for tetramethyl-p-
phenylene-diamine chloranil (TMPD-CA). '

The first model which includes a finite transfer integral
was studied by Soos and Mazumdar. Neglecting intersite
Coulomb interaction they found a continuous transition at
p=p, =0.68 and that the gap for spin excitations vanishes
for p ~ p, . Thus on the ionic side, p ~p„ the susceptibili-
ty for spin-density-wave ordering diverges. The onset of a
spin-density wave would break the translation symmetry
of the spin degrees of freedom and is a valid order param-
eter.

An intersite Coulomb interaction was included in a
model which, however, neglected the spin of the elec-
trons. ' The N-I transition was found to be of first order
below come critical transfer integral t, . Above t, a line of
singularities was found and claimed to represent a con-
tinuous transition. This line, however, does not represent
a usual phase transition, since on both sides of this line
the excitation gaps are finite and no symmetry is changed.
This feature is drastically modified when the electron spin
is included, as also found below.

More recently it was suggested that the proper order
parameter in these systems is the dimerization;" the lat-
tice then distorts so that the D-A distances alternate in
their magnitude. The inversion symmetry at the center of
either a D or an A molecule is broken in the dimerized
phase. The model" included the electron-phonon cou-
pling but neglected all Coulomb interactions.

The broken inversion symmetry accounted for the ap-
pearance of some phonon normal modes in both Raman-
and infrared-absorption experiments. ' '' The prediction
of the onset of dimerization was also directly confirmed
by x-ray studies' in tetrathiafulvalene-chloranil (TTF-
CA); the transition was found to be weakly first order
near =82 K. ' '

The unusual nature of the ionic phase is manifested by
its spin and charge excitations. In TTF-CA the activation
energy from conductivity data' is much smaller than the
optical gap while the spin susceptibility shows' a Curie
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behavior indicating localized spins. In contrast, TMPD-
CA shows that the spin susceptibility is thermally activat-
ed, with activation energies of =0. 1 eV above 250 K and
of =0.01 eV below 250 K. Both of these energies are
much smaller than the optical gap of =1 eV. From pho-
non spectroscopy it seems that the lattice also dimerizes at
a nearby temperature. A recent study of TTF-CA under
pressure' has shown the onset of dimerization at =9
kbar and an additional first-order transition at =11 kbar.
Thus it is possible that in some cases there are two transi-
tions.

Very recent theoretical works' have extended the
previous models to include intersite Coulomb interactions,
electron-phonon interactions by allowing for dimerization
and the possibility of soliton excitations. The methods
used range from the valence-bond technique for finite
rings' '' to real-space renormalization-group methods
or to Monte Carlo simulations. ' '

These papers, however, do not give a comprehensive
picture of the phase transition, especially when dimeriza-
tion is taken into account, which is a very important
feature. In the present paper we will use a finite-size ex-
trapolation technique to study the ground-state and low-
lying excitations of a mixed-stack chain, and from that we
will infer the phase diagram. The model will be intro-
duced in Sec. II. Neglecting first the electron-phonon in-
teraction, the phase diagram of the model is determined in
Sec. III. It is shown that the charge transfer is usually
not a good quantity to distinguish the two phases, rather
the excitation energy for charge-transfer and spin-Hip exci-
tations is finite or zero in the two phases. The eA'ect of
electron-phonon interaction is considered in Sec. IV. It is
found that dimerization is the relevant order parameter.
In some cases the dimerization is accompanied by a sud-
den jump in the ionicity, it may happen, however, that the
ionicity changes smoothly across the dimerization transi-
tion. Finally, a summary of the results will be given in
Sec. V.

Ir. THE MODEL

The mixed-stack chain consists of alternating donor
and acceptor molecules on the even and odd sites, respec-
tively, of the chain. In its neutral state (D') the donor
molecule has its highest-lying occupied orbital filled with
two electrons of opposite spins. The ionization energy to
remove an electron from this orbital is I. The second ion-
ization energy, to remove the other electron and create a
doubly ionized donor D +, will be assumed to much
larger than I, it will be denoted by Iz ——2I+ Uz, with

U~ &&I.
The acceptor molecules in their neutral states (A') have

their lowest unoccupied orbital empty. The electron
affinity to ionize the acceptor by one electron is
while creating a doubly ionized acceptor A costs a high
energy —2A + UA with U& && A. Measuring the energies
with respect to the neutral configuration, the ionization
energies of the donor and acceptor molecules can be writ-
ten as

HoA =I+ (2 n—; )+ Uo g (1—n;, )(1—n,
~

)

sites sites

—Agn;+ UA +n;, n;, ,
Qcici QcIci

sites sites

where n;, (n;, ) is the occupation number at site i with spin
t (1) and n; =n;, +n;, . It is important to notice that due
to charge conservation 2+,ddn; =2+„,„(2 n; ).—

When the molecules are ionized, the Coulomb coupling
between them should be taken into account. Taking, as
an approximation, first-neighbor interaction only, the
Coulomb energy is

(2. 1)

Hc ———Vg(2 n;)n;—+~ —Vgn;(2 —n;+, ) . (2.2)
even

sites

Qcid

sites

sites sites

Hc= —V g S, (i)S, (i+1),
all sites

HCT ———
—,'tg IS, (i)S, (i +1)[S+(i)S (i +1)

all

sites

+S (i)S+(i + I)]]
—

—,'tg I [S+(i)S (i +1)
all

sites

+S (i)S+(i +1)]S,(i)S, (i +1)]

(2.4)

Furthermore, the finite Mulliken charge-transfer in-
tegral gives rise to a hybridization

HcT=t g (c; c+)~+c+) c; ) (2.3)
all sites

cr

where c; (c; ) is the usual creation (annihilation) operator
of electrons at site i with spin o. and n; =c; c; .

In Sec. IV the electron-phonon coupling wi11 also be
taken into account; first, however, we want to study the
properties of this model without possible dimerizations.
As mentioned earlier, the on-site Coulomb couplings are
large compared to the other characteristic energies
(I, A, V, t) in most materials relevant for neutral-ionic
transitions, therefore the limit Uz~ op, UA~ ao will be
considered in what follows.

In this limit doubly ionized configurations are forbid-
den and the Hamiltonian can be mapped to a S =1 spin
chain using the following equivalence between the elec-
tronic states and the three states of the spin.

For donors: neutral state ~
~

0), electron with spin t

missing ~
~

I ), and electron with spin I missing

For acceptor: neutral state ~
~

0), electron with spin &

present ~
~

—1 ), and electron with spin 1 present

As is seen, the transfer of a spin-) electron from the
donor to the acceptor D'A'~D+A corresponds in the
spin language language to an exchange process
~0,0)- ~1, —».

The Hamiltonian can be rewritten in terms of the spin-
1 operators as

Ho~ =I+S, (i)

HATS,

(i)—,
even ocid
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where S+ and S are the usual raising and lowering
operators. In the original molecular state representation
they correspond to removing or adding one electron. The
operator S, measures the state of the ion.

The complicated four-spin interaction in HcT takes care
that only those processes are allowed in the charge
transfer where the charge and the spin are conserved.

Charge conservation requires g„,„S,(i) =g,ddS, (i),
therefore HDA can be written in the form

2-
EEc

a)

HD~ ———,'(I —A) gS, (i) .
all

sites

III. EXCITATIONS AND PHASE DIAGRAM
WITHOUT ELECTRON-PHONON COUPLING

(2.5)

b,Es

0
t

2 V/a

(b)

In the limiting case when the transfer integral t~o the
model becomes a classical one and can be solved exactly.

The ground state will either be completely neutral
(D'A D'A'. . . ), in the spin language it is the state
(0, 0, . . . , 0) with energy Ez ——0, or completely ionized
D+A D+A . . . with energy E =1(N/2)(I —A) —NV
=N(b, —V), where 5—:—,'(I —A). The transition between
the two regions occurs at 5= V. In the neutral phase
(b, & V) the ground state is nondegenerate, in the ionized
phase, however, it is highly degenerate due to the spin de-
generacy. This spin degeneracy, which has been neglected
in some of the earlier works, is important to obtain
correctly the low-lying excitations of the system.

There are three kinds of excitations above the ground
state which are relevant in understanding the properties of
these materials.

(1) Addition or removal of an electron, b,E, . This is
also —,

' of the energy to create an infinitely separated
electron-hole pair.

(2) Spin-flip excitations, b,E, .

(3) Charge transfer from donor to acceptor without
changing the charge or spin, AECT. Note AECT & 2AE&.
AEcT is the threshold for optical absorption.

In the neutral phase the energy to add or remove an
electron is simply AEz ' ——6, while in the ionized phase
Coulomb energy is also lost, so DEC ——2V —A. Figure
1(a) shows the excitation energies for charge removal.

In order to flip a spin, first an ionized pair has to be
created from the neutral phase, after which the spin flip
costs no energy, the pair creation costs, however,
AE,' '=26 —V. In the ionized phase, when all molecules
are ionic, it does not cost any energy to flip a spin, so here
b,E,' '=0. As seen from Fig. 1(b), the magnetic gap has a
finite jurnp at the neutral-ionic transition.

Finally, when a charge is transferred from a donor to
an acceptor without changing the total charge or spin of
the system, it costs an energy AECT ——2A —V in the neu-
tral phase, while in the ionized phase, where one neutral
pair has to be created the energy is AEcT ——3V —2A.
These energies are shown in Fig. 1(c). As is seen, the
electron-hole pair is bound, i.e., AECT &2AE&, due to the
Coulomb coupling effect of when the transfer is to first
neighbors.

For small t second-order perturbational corrections'

0 I

2 v/~

&EcT

0 I

2 V/g
FIG. l. Excitation energies of a donor-acceptor mixed-stack

chain for vanishing charge-transfer integral t. (a) Energy needed
to remove or add one electron. 1,

'b) Crap for spin-flip excitations.
(c) Gap for charge-transfer excitations.

(3.1)

with

2

EQ ————'
gE (I) +6—V,

CT
(3.2)

t

gE (I) (3.3)

The energy per site of such an antiferromagnetic spin- —,
'

can be used to understand qualitatively the changes in the
location of the transition and in the excitation energies.
As has been shown by Soos and Kuwajima, ' the energy
shift per site of the neutral phase is AEz ———2t /AECT'.
In the ionic phase a D+A pair can be neutralized and
reionized either with the same or opposite spin electron,
thus leading in second order to an effective exchange
Hamiltonian between spin- —,

' electrons. The 1 ) and
—1) states of our spin-1 model are identified with the
—,
' ) and

~

——,
' ) states of the spin- —,

' model.
This effective Hamiltonian is

H g g[Ep 'J y(o;+——cr;—+,—+cr, cr,++&)+J o;cr;+, ]
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finite ring [from state (0 0 . . . 0)
'

hin t e spin language],

have total s in
the transfer integral will mix 11 hin a ot er states which

ave total spin and total charge equal to zero. When the
eigenvalue problem in this subspace is solved it t
that the roune ground state is always invariant under translation
with the donor-donor distanc

' '
k =ce, i.e., it is a k =0 momen-

tum mode. The average charge on the D (or A) molecules

transfer integral, for different chain lengths.
%'hen t/6 is smasmal1, the ionicity rises very drastically

~ o ~

near V=A. In the limit when N~ fi~~ a nite jump will

fir
appear, in icating a first-order transitio Uion. sua y in

rst-order transitions the rounding f fi'ng o a nite jump occurs
in a range whose width shrink
dimensionality. In the present case this shrinking is much
aster, probably similar to to that in the one-dimensional

quantum Ising model for which t h 22

—d
i was s own that in-

stead of N the behavior is N
'

he with a= —,'. In
our case a similar form describes reasonably the sudden
rise of the slope in the ionicity with a=2. The position of
t is sudden change is in agreement with the perturbation-

For larger values of the charge-transfer integral the be-
havior is different. Although the

'
t he ionicity c anges appreci-

ably for a relatively narrow range of V values, as seen ini. 3 it
N~ oo.

'g. ,
'

wi be a smooth function eve
'

th 1

~oo. Therefore the concept of neutral-to-ionic transi-

less. If we o
tion based on the value of the avera h
ess. If we look, however, at the ground-state and low-
ying excitations, a phase transition can still be found.

g — s ow the gaps to the lowest-lyin excited
states of theo e three different kinds, mentioned 1

g exci e

narnel the
ne ear ier,

y e energy to remove an electron and the
of s in-Ai ex

'
e energy

p' - ip excitations and charge-transfer excitations. In
Figs. 5 and 6 one can clearly distinguish two regim At

for V ~ 1.4A both the spin-Hip and charge-
mes.

transfer excitations have a finite a .
a ou . oth o t ese excitation energies seal te o zero

, in icating a highly degenerate ground state which

gapless regime is probably Kosterlitz-Thouless —like. The
energy to remove an electron (Fig. 4) is finite on both

chain is '

(I) t2
bE '=ED+ J(—,

' —ln2) = —2 ln2+b, —V .
gE (&)

(3.4)

The neutral-ionic boundary is thus shifted to
2

—2, =6—V —2 ln2 .
DENT ~E(I)

Near the transition AE' '-AE' ' =6, and

(3.&)

t2
V=b, +2—(1 —In2) . (3.6)

In the model where the spin is neglected, ' the bound-
ary etween the neutral and ionic phases remains always
at V=A.

Thi
small t the i

his calculation shows immediately th t t 1 fa a east or
sma t, the ionic phase behaves like an isotropic Heisen-

erg antiferromagnet, i.e., there is no gap in the spin-Rip
excitation spectrum. Moreover sine thce e ground state is
infinitely degenerate, the excitations in that subspace
where both charge and spin are conserved, are also gap-
ess.

We expect therefore that AECT ——0 for any t&O in
s arp contrast with AECT ——3V —2A ~0 in the t =0 case.
The reason is that although a t =0 d
i e a~=~1 —1

a = ground state
ibI =(,—1, 1 —1, 1, —1, . . . ) is degenerate with an

infinite number of other states e. ~

=( —1, 1, 1, —1 1 —1

es, e.g. , wltii

, —1, 1, —1, . . .), an external electromagnetic
field does not couple these states. To linear order, the
electromagnetic field causes a charge transfer and couples

Once t is finite the ground state will be a linear combina-
tion of ~~~ gz, and Iti. As known for the Heisenberg
model, the new ground state is still degenerate, corre-
sponding to different linear combinations which can now
be coupled by an electromagnetic field. The optical ab-
sorption extends then down to zero frequency (although
its magnitude may be low for small r) d han t egapis

cT ——Q. This remarkable conclusion means that for
t~0 the ione ionic phase is a metal (or semimetal) and the NI-
transition is also an insulator-to-metal transition. This
conclusion, however, will be modified when dimerization
is allowed for in Sec. IV.

As shown by Soos and Kuwajima, ' the average charge
on the molecules is small on one side

aE(N) t2
PN =4

(bE(Ã) )2

1.0-

and close to unity on the other side

= aE'" 2

Pl= =1—4 1n2 .
( bE (I)

)
2 (3.8)

In order to understand what happens for larger values
of the transfer inte ralg, we have performed exact numeri-
cal calculationlations on finite rings containing up to 12 mole-
cu es, calculating the ground-state as well as low-lying ex-
citations. A finite-s-system extrapolation procedure is used
to describe the behavior of the infinitely long chains

Starting from an originally neutral configuration of the

0
0.96

I

0.98
I I I

&.00 &.02
Y/b

I

&.04

FIG. 2. Avera e cg i'arge on donor or acceptor molecules for
varying first-neighbor Coulomb interaction at t=0. 16, calculat-
ed for increasing chain length X.
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1.0—

0 I

1.0 12 Vgg
0.5—

FIG. 3. Average charge on donor or acceptor molecules for
varying first-neighbor Coulomb interaction at t=0.56, calculat-
ed for increasing chain lengths. 0

0.8

6
8

10
12

1.2 y]g

sides of the transition, ' however, a sharp dip develops,
which, in the limit N~ ca will dip to zero at the transi-
tion.

To better see the difference between large t and small t

behavior, we show in Figs. 7—9 the same excitation ener-
gies for t/5=0. 1. The energy to remove an electron has
a sharp dip here as well; however, it stays finite even in
the thermodynamic limit at the transition point. The
charge-transfer and spin-flip excitation energies vanish as
1/N in the quasi-ionized phase in agreement with the
mapping to the Heisenberg antiferromagnet. A finite

jump appears in these excitation energies at the transitions
point.

The transition from the quasineutral to the quasi-ionic
phases, or more precisely, between the phase where the
ground state is nondegenerate and the phase with a highly
degenerate ground state, has been determined for different
values of t using different procedures. The first approach
is to find that value of V where the charge-removal energy
has a minimum. The second is to locate the point beyond
which the spin-flip excitations scale as 1/N and are there-
fore gapless in the infinite system. Thirdly, a similar cal-
culation can be carried out for the charge-transfer excita-
tions. Within the accuracy of the calculations all the
three methods give the transition at the same place. It is

FIG. 5. Energy of spin-Aip excitations in finite chains for
t =0.55. The dashed curve is the infinite-chain result obtained
from a simple 1/N scaling.

more difficult to determine whether the transition is of
first or second order, because of the uncertainty in the ex-
trapolation procedure where the charge-removal energy
first vanishes, or when the jump in the spin-flip or
charge-transfer excitation gaps will vanish. A rough esti-
mate is that this happens at about t/5=0. 3 V/b =1.06.
From these results we can construct the phase diagram
shown in Fig. 10. This phase diagram is in good agree-
ment with that obtained by Soos and Kuwajima' using
the diagrammatic valence-bond method, although they
did ~ot calculate al1 low-lying excitations. Their calcula-
tion neglected the possibility of dimerization, as we have
done until now. They speculate, however, that dimeriza-
tion hardly aA'ects the neutral-ionic interface. As we will
see in the next section, this is not always the case.

IV. THE EFFECT OF ELECTRON-PHONON
COUPLING

Since experimentally it is clear that dimerization is as-
sociated with the N-I transitions, it is important to take

1.5—

h, Ec d Ecr

0.5-

0
0.8

I

1.0

/
/

/
/

/
/

1.2 y]g

0.5—

0
0.8

I

1.0 1.2

6
8

10

FIG. 4. Energy needed to remove (add) one electron from (to)
a neutral chain of finite length N for t =0.55. The dashed curve
is the infinite chain result obtained from a simple 1/N scaling.

FIG. 6. Energy of charge-transfer excitations in finite chains
for t=0.56. The dashed curve is the infinite-chain result ob-
tained from a simple 1/X scaling.
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15-

&.0-

0.5-

Ol
0 V/6

0
0.5

v!z
i.0

FIG. 7. The same as Fig. 4, except that t =0.16.
FIG. 9. The same as Fig. 6, except that t=0. 16.

t(1+5),
V~ V(1+a5),

(4.1)

where 5 is the relative displacement of the molecules, and
a is a proportionality factor. If the relative displacement
of the molecules is transversal, ' the overlap integral

into account the effect of electron-phonon coupling.
From the mapping of the ionic phase to a spin- —,

' Heisen-

berg antiferromagnet, for which we know that it under-
goes spin-Peierls transition, the dimerization of the ionic
phase is easily understood at least for small t, where the
mapping is valid. The question we have to ask is whether
for larger t the quasi-ionic phase is always dimerized or
not and what happens in the quasineutral phase.

We assume here the adiabatic limit where the phonon
frequency is much smaller than the gap AEcT. As found
below AEcT is always finite when dimerization is allowed
for. Experimentally the optical gap is AECT & 1 eV, '

which is indeed high compared with phonon frequencies
of 50.2 eV. We thus consider the phonons as a classical
field and modulate t and V alternately corresponding to a
dimerized situation, i.e.,

varies more than the Coulomb coupling does. We there-
fore consider first the case a=O. Later we will also con-
sider another limiting case when t and V are changed
equally, i.e., a =1.

The elastic energy due to the distortion of the lattice
will be considered classically as

2E,i„„,———,'K6 (4.2)

In order to find the ground state, we will have to mini-
rnize the total energy with respect to 6. This will give the
boundary between a nondimerized and a dimerized
ground state. The results are shown in Figs. 11 and 12
for the two cases o,'=0 and a= 1.

In both cases the behavior is very similar, namely for
any value of K there is a phase boundary in the (t, V)

plane separating a nondimerized, quasineutral phase from
a dimerized, quasi-ionic one. For very small values of t
and not too small K the transition will be of first order, as
seen in Fig. 13. The energy of the ground state has two
minima as a function of the dimerization for fixed t and
V. As V increases, the minimum corresponding to the

1.5-

Es

1.0- qvasinevtral

c
+Es wo
AE~~o

&Eg ~o
, Es =o
EcT=o

/
/

/
/

/
/

/ quasi-ionic
/

/
/

/

V/b

0
0.5

v(a
&.0

FIG. 8, The same as Fig. 5, except that t =0.16.

FIG. 10. Phase boundary between the quasineutral and
quasi-ionic states in the (t, V) plane. The solid curve indicates
first-order transition, while dashed curve indicates second-order
transition.
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1.0-
g2 /

t/b, 00

]0 /
/08 /

0.6 /

05 — 04 ~ ~ x x /
I

ql

non dimerized dimerized

Eo/6
-0.88465

'0 0.5 -0.8847

FIG. 11. Phase boundary between the nondimerized and
dimerized states in the (t, V) plane for different elasticity con-
stants K, assuming that only the hopping integral is modulated
by the dimerization. The solid curve indicates first-order transi-
tion, while dashed curve indicates second-order transition.

-0.884730 0.05
I

0.1

dimerized state becomes lower. This happens at a V value
which is somewhat smaller than the V where the transi-
tion would take place without dimerization. The average
charge on the molecules jumps at the transition; however,
it saturates slower than without dimerization. When for
the same t value a somewhat smaller K (a softer lattice) is

chosen, the transition occurs at an even smaller value of V
and the transition becomes smooth; the average charge
changes from the quasi-neutral value to the quasi-ionic
one over an extended range, as shown in Fig. 14. The
finite-size calculation is not sufficiently precise to deter-
mine the location of the points where the first-order tran-
sition goes over into a second-order transition; however,
the location of the transition, irrespective whether it is of
first or second order, is obtained within a few percent.

Beyond about t =0.36 where the transition without
dimerization is of second order, the transition for any
value of K will stay of second order and the change in the
average charge can spread over a wide region of V.

As seen from the phase diagram, when the dimerization
is taken into account, the location and the physical mean-
ing of the transition line are considerably modified. In
the abscence of dimerization this line had the significant
property, that it separated a singlet ground state from a

FIG. 13. Cxround-state energy for a ring with N =12 sites for
t =0.2b, E=0.4 as a function of dimerization for difFerent
values of V.

phase in which both the spin-Hip and charge-transfer exci-
tations were gapless, and along the transition line the en-
ergy to remove an electron costs little or no energy. In
the presence of dimerization all that changes drastically.
In Figs. 15—17 we show the lowest excitation energies for
charge-removal, spin-Aip, and charge-transfer excitations,
assuming that the lattice does not relax during the excita-
tion, i.e., the dimerization is the same in the excited state
as in the ground state. These excitation energies remain
always finite; hence the high degeneracy of the ground
state is lifted. It is expected that at least in that regime
where the dimerization transition is of second order, there
is a soft mode in the system. %'hen the ion dynamics is
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FICx. 12. The same as Fig. 11, except that both the hopping
integral and the first-neighbor Coulomb coupling are modulated
by the dimerization.

FIG. 14. Average charge on donor or acceptor molecules for
varying first-neighbor Coulomb interaction at t=0.26, %=0.2,
calculated for increasing chain lengths. It is assumed that
dimerization modulates the hopping integral only.
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FIG. 15. The same as Fig. 4, except that the lattice can
dimerize with @=2, assuming that only the hopping integral is
modulated.

restored solitonlike excitations" ' ' ' will be of impor-
tance; for these, however, calculation on longer chains
would be necessary to accommodate a soliton pair.

V. DISCUSSION AND CONCLUSIONS
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FIG. 16. The same as Fig. 5, except that the lattice can
dimerize with K =2.

In the present paper we have studied a model for the
neutral-ionic transition for mixed-stack organic solids. As
it is known from earlier works, the ionization energy of
the donor-acceptor pair, the one-site and inter site
Coulomb energies, the charge-transfer integral between
the donors and acceptors, and the electron-phonon cou-
pling allowing for the dimerization of the chain are all im-
portant if a realistic description of the transition is aimed
at. In our model we have taken all these interactions into
account, with the simplification that the on-site Coulomb
energy is assumed to be much larger than the other
characteristic energies and therefore is taken to be infinite
to eliminate doubly ionized sites. Furthermore the
electron-phonon interaction is treated in the adiabatic lim-
it, i.e., the phonons are treated classically by allowing for

FIG. 17. The same as Fig. 6, except that the lattice can
dimerize with K =2.

a modulation of the donor-acceptor distance.
In this way we take a more general model than that

considered by Soos and Kuwajima' where the electron-
phonon coupling was neglected, or that by Bruinsmaa
et al. ' who neglected both the electron-phonon coupling
and the spin degrees of freedom. Our model is thus the
same as studied by Avignon et al. , Girlando and Painel-
li, ' and Nagaosa. '

We agree with these authors that the Peierls distortion
is the most characteristic feature of the transition, in fact
the dimerization is the proper order parameter as suggest-
ed by Horovitz and Schaub, " and not the charge transfer
or the magnetic gap. Our treatment is, however, more
general than theirs, studying the complete phase diagram
and the low-lying excitations.

The real-space renormalization-group approach gives
a set of excitation energies, but it cannot give all the low-
lying excitations, e.g. , the spin-Hip excitations. The shift
of the phase boundary due to dimerization has not been
considered by Avignon et al. in the regime where the
transition is of first order. When the transition is of
second order, their phase diagram seems to imply that
there are three possible phases: nondimerized quasineu-
tral, dimerized quasineutral, and dimerized quasi-ionic.
Contrary to this, we find, as shown in Fig. 14, that to-
gether with the appearance of dimerization the ionicity
starts to increase immediately, although it may reach its
saturation value for large V only.

The work by Girlando and Painelli' and by Nagaosa'
is closest to ours. In both of these works finite chains are
studied as was done by us; however, a general phase dia-
gram is not given. In Ref. 19 the intersite Coulomb in-
teraction was treated in a mean-field approximation. The
work of Nagaosa has one feature which we could not cal-
culate, namely he studied lattice-relaxed excitations, i.e.,
solitons.

The most important results of the present analysis are
as follows. We have worked out the phase diagram for
the neutral-ionic transition for arbitrary values of the
charge-transfer integral and the intersite Coulomb energy.
When the electron-phonon coupling is neglected quasineu-
tral and quasi-ionic phases are identified. The former has
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a nondegenerate ground state, all excitations have a finite
gap. In the quasi-ionic phase the spin-Aip excitations and
charge-transfer excitations (with no change in the total
spin and charge) are gapless; it costs, however, a finite en-
ergy to remove an electron. On the phase boundary be-
tween the quasineutral or quasi-ionic phases this latter en-
ergy goes to zero or remains finite depending on whether
the transition is of second or first order. At the same time
the average charge on the molecules changes continuously
or has a jump at the transition point. The location of the
transition is in agreement with the results of the diagram-
matic valence-bond calculation. '

Optical absorption which probes charge-transfer excita-
tions would show a zero gap in the ionic phase. The ma-
trix elements for absorption might, however, be small at
low frequency and the absorption then peaks at a finite
frequency. The gap is then still at zero frequency, but
the system is technically a semimetal.

The results change drastically when electron-phonon
interaction and the possibility of Peierls distortion is taken
into account. There are still two phases; they are, howev-
er, characterized by the absence or presence of dimeriza-
tion. For small values of the transfer integral and not too
soft crystals the transition is still of first order with a
jurnp in the average charge. For larger values of t or for
softer crystals the transition becomes a second order; the
order parameter is the dimerization and the increase of
the average charge is spread over a larger range of param-
eters. It is important to notice that the model can ac-
count for only one phase transition which is characterized
by the appearance of the dimerization. When this is a
first-order transition, the ionicity jumps at the same time,
otherwise the ionicity changes smoothly without any addi-
tional transition. It could be, in principle, that the first-

order line continues after meeting the second-order line,
and terminates in a critical end point. If so, a second-
order dimerization transition could be followed by a first-
order ionicity jump, as seems to happen in TTF-CA un-
der pressure. ' In our model, however, this does not hap-
pen. Both theory and experiment require further study to
clarify the possibility of two successive transitions.

Throughout this paper it was assumed that 5)0, i.e.,
without the Coulomb interaction and hopping, the mole-
cules would be neutral. For 6&0, a small-t expansion
shows that the system is expected to be always ionic and
therefore is expected to be dimerized. However, Avignon
et al. claim a nondimerized ionic phase in a region with
5 &0. We have checked the 5 &0 case with our finite-
size calculation. Contrary to the real-space renormaliza-
tion results, our results indicate that the system will al-
ways be dimerized, as expected physically.

In addition to shifting the phase boundary, dimeriza-
tion has a drastic eAect on the excitation spectra. In par-
ticular, the charge-transfer (optical absorption) and spin-
Aip gaps become finite in the quasi-ionic phase. The sys-
tem is then a semiconductor rather than a semimetal. We
could not study soliton excitations"' due to the limita-
tion on the chain length. Solitons may lower the above
excitation gaps through nonadiabatic processes.
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