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Solitons in the Peierls condensate. II. Amplitude solitons
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Charge-density waves whose phase is constrained have amplitude solitons. Exact soliton and soli-
ton lattice solutions for an electron-phonon system in one dimension are constructed by a mapping
into the sine-Gordon system. The method is extended to systems with an extrinsic gap parameter as
in (AB) polymers. Soliton-soliton interactions in the continuum limit are exponential and repul-
sive. Discrete lattice effects lead to competing interactions which decay as the inverse distance: an
attractive force from the finite momentum cutoff and a (usually stronger) repulsive force from cou-
pling with acoustic phonons.

I. INTRODUCTION

The ground state of an interacting one-dimensional
electron-phonon system in the adiabatic limit is a charge-
density wave (CDW). This result, known as the Peierls
theorem, ' has been the basis for an understanding of
CDW phenomena in a large variety of compounds in the
last decade.

Of particular interest are nonlinear excitations in
CDW's, known as solitons. In general, the CDW has a
complex order parameter b. exp(iP) with b, its amplitude
and P its phase. The ion displacement pattern has the
form —b, cos(2kFx + tt ), where kF is the electrons' Fermi
wave vector; thus, a change in P represents a CDW
translation. In a commensurate system of order M the
wavelength k=2~/2kF is a rational multiple of the lattice
constant a, A, =Ma /N ( M ~ N reduced integers). The
ground state is then degenerate with P being a multiple of
2m. /M.

In Ref. 4 (hereafter denoted as I) the theory of phase
solitons was presented. A phase soliton is a localized
phase change of 2m/M, such that P(x) interpolates be-
tween degenerate ground states and 6 is essentially con-
stant. Phase solitons are the charged excitations of com-
mensurate CDW's with M )3.

The case M=2, i.e., the CDW represents dimerization
of the lattice, deserves special attention. The ion distor-
tions at x =na have the form b, cos(m n +P )
=( —I )"b, cosP. The degenerate ground states are at
P =O, rr, i.e., at +b, . Phase solitons are still possible in this
system when two types of phonons are coupled with al-
most equal coupling constants (see I). As P changes from
0 to tr, a CDW of the form ( —I)"b,'sing develops and the
overall amplitude [6 +(b, ') )'r is roughly constant.

The conventional case of a dimerized CDW is con-
cerned with a single phonon and then only the product
icos/ is relevant. A pattern in P(x) which changes from
0 to tr is equivalent to a b.(x) connecting the ground states
+50. This situation is an amplitude soliton which is stud-
ied in the present work. Such solitons were predicted and
found in polyacetylene, ' and continuum-model theories
yielded exact solutions for b, (x). ' The single-soliton
solution was in fact known also in the studies of the

Gross-Neveu field theory model. '
In the present work I summarize in Sec. II the deriva-

tion of Dashen, Hasslacher, and Neveu (DHN), which is
the most systematic derivation of the single-soliton solu-
tion. The existence of multisoliton configurations, or a
soliton lattice, was first demonstrated in a numerical
study" of a discrete model. In the continuum-model, ex-
act analytic solutions are available. ' ' In Sec. III the
method for finding soliton lattice solutions is shown in
detail. This provides the details of the short presentation
in Ref. 12. In Sec. IV modifications of the continuum-
model solution due to lattice discreteness effects are dis-
cussed. This is of particular importance for finding the
long-range soliton-soliton interaction. In the continuum
limit this interaction is repulsive and decays exponentially
with distance. ' Lattice discreteness introduces two com-
peting long-range interactions decaying as the inverse dis-
tance. One term is attractive and comes from a finite
momentum cutoff while the second is repulsive and comes
from the coupling with acoustic phonons. Section IV ex-
tends the soliton and soliton lattice solutions to the case of
(AB)„polymers' ' where a competing gap a limits the
range where a dimerized ground state is possible. A soli-
ton lattice, however, is possible even out of this range.
The Appendix presents a derivation of the continuum
model.

A third part in this series on CDW solitons is Ref. 2,
hereafter referred to as III. In III the case of mixed
phase-amplitude solutions is considered, ' ' i.e., both {t(x)
and b, (x) have nontrivial variations. The notion of soli-
tons is extended to spin-density wave systems, ' ' and a
general classification of solitons is given in III.

II. THE MODEL AND SINGLE SOLITONS

The continuum model can be derived from a variety of
discrete models ' as shown in the Appendix. The electron
field ttt(x) is decomposed into right and left moving fields
u (x) and U(x), respectively. The latter represent electron
states near the two Fermi points kF ——+tr/2a (a is the lat-
tice constant)

f, (x) =u, (x)exp(itrx /2a) iU, (x)exp( —i trx—/2a) .
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The index s has N, values and represents the number of
internal degrees of freedom: N, = 1 for spinless fermions
describing a spin-Peierls model, N, =2 for electrons
with two spin states, and X, =4 for orbital degeneracy.

The fields u, (x),v, (x) are considered as slowly varying
independent fields. This is justified in weak coupling
when only states near the Fermi level are important.
The ion displacement pattern is —b (x )cos( ~x /a )

=( —1)"b,(na) for x =na T.he real field 6(x) couples the
right and left moving fields and the Hamiltonian is

H = g f dx iuF u, (x) u, (x) —u, (x) u, (x)
Bx C)X

+5(x)[u, (x)u, (x)+u, (x)u, (x)]

+f dx 6 (x)/(2A. ~VF) . (2)

The first term is the electron kinetic energy with a linear-
ized spectrum around the Fermi points with Fermi veloci-
ty VF (as in I). The last term is the lattice elastic energy
which resists the distortion b, (x); k is the dimensionless
electron-phonon coupling constant (see Appendix).

I consider the adiabatic limit so that b, (x) is static and
an ion kinetic term —b, is absent in (2). Thus, 6(x) is a
classical field and its equation is obtained by minimizing
the expectation value (H ); 5(H ) /55(x) =0 yields

A(X) = —A7TVF g [B„( X)V„( X)+H.c. ]
n, s

(3)

The sum g' is on the occupied state labeled by n and s;
in most of the following the spin index is not important
and is omitted in (3).

The electrons in the potential b, (x) have eigenfunctions
u„(x),u„(x) and eigenvalues c„which solve the coupled
equations

ac„u„(x) = ivF u„(x ) +6(x )u„(x),
Bx

c„v„(x) = —I VF v„(x ) + A(x ) El „(x)
Bx

(4)

For a given b, (x) the solutions of (4) must also satisfy Eq.
(3), known as the self-consistency equation.

A similar set of equations was studied in I where the
method of derivative expansions was developed. If
u„(x),u„(x) can be solved as a power expansion in deriva-
tives of b, (x) and P(x), then the electron fields can be el-
iminated and Eq. (3) becomes a nonlinear equation for
b, (x) and P(x). The derivative expansion, however, in-
volves powers of 6'(x)/b, (x) and hence fails for an ampli-
tude soliton, for which b(x) passed through zero.

The ground state for a —,-filled band is a constant
A(x) =ho and the Fermi vector then matches the distor-
tion wavelength 2kF ——vr/a The eigenvalues . + (VFk
+ b,o)'~ have a gap 26O at k=0 and the total energy is

( H )0= —N& g (vFk +Do) +AOL/(2A7luF)
k

where L, is the length of the system. The ground state ho

is determined by the minimum for (H )o..

Note that in the incommensurate limit the factor in the
exponent is 2/N—,A, . ' The reason is that the +2kF dis-
tortions are then distinct, the elastic energy cost is dou-
bled, and Ao is exponentially smaller.

To find soliton solutions of (3) and (4) most approaches
involved guesswork to some degree. ' ' " The only sys-
tematic method is due to DHN and is shown below, in-
cluding derivation of soliton-soliton interaction and finite
cutoff corrections.

The basic idea of DHN is to express (H ) in terms of
scattering data, i.e., reflection coefficient r (k) for a wave
vector k and bound states which decay as exp( —k;

~

x
~

).
The variation which leads to Eq. (3) is equivalent to find-
ing extrema of (H) with respect to the scattering data.
The scattering data, thus determined, then yield the po-
tential A(x) via the inverse scattering technique.

Instead of the two coupled first-order equations (4) it is
more convenient to define f„(x)=u„(x)+iu„(x) and ob-
tain a second-order equation

2 a 2
2—uF +b. (x) —VFb, '(x) f„(x)=c„f„(x)I 2

decoupled from the equation for u„(x) iu„(x) (s—ee Sec.
III). The asymptotic value of the potential
6 (x) —VF b, '(x) is b,o so that the bound-state wave vectors
k; with f;(x)~exp( —k;

~

x
~

) satisfy c; =ho —VFk;. Ap-
plying a trace identity (Appendix B of DHN ) yields

f [b, (x) —b.o]dx/VF

= —f ln(1 —
~

r (k)
~

)dk —4ko,

where a soliton pair (SS) is considered so that

f b, '( )dxXO Asingle bo.und state of (8) with index
i =0 [i.e., two bound states at +cp of (4)] is considered
since keeping the sum over the bound states leads to
linearly additive energies and therefore to no new bound
states.

Consider the expectation value of Eq. (2) (H) relative
to (H)0 of the ground state:

(H) —(H)o —N, g (c„—c„)+noco
c„&0

+ f [b, (x)—bo]dx/(2A~VF) . (10)

The first term is the change in electronic energy of all the
occupied states, c„&0 (including the bound state at —co),
while no (N, is the occupancy of the bound state at ener-
gy + Eo. The three possible occupations for X, =2 are
shown in Fig. 1. Using the phase shift 5(k) the boundary
condition 2mn =kL +5(k) implies a shift in
c(k)=+(VFk +ho)' of the extended states from
c„=c(2m.n/L) to

N, 1 1
dk

0 ( 2k 2+ g2) 1/2

where A=a. /2a is a momentum cutoff in the electronic
spectrum. In weak coupling, vFA ~~ho and'

Ap= 2VFA exp( —1/N k)
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b,, (x ) = b,ptanh(x /gp) (16)

and gp=uF/Ap. Expanding near O=t«/2 corresponds to a
finite SS distance r = —(pin[(7r/2 —O)/2] with energy

V//8Yz
np= Q np= I np

2 —2 /g, 1 ~o
Ess = hpN—, 1+2e

7j 6 UFA

2

(17)

FIG. 1. Energy levels for a two-soliton system with two spin
states N, =2. The upper state is occupied by no fermions.

27Tn
E~ =E

L
5(k)

L
p Bc. 5(k) O(~ p)

ak L+
Including the bound state at —co which was pulled out

of the energy —b,p, the first term of (10) becomes

The scattering data r (k), k; also determine 5(k) (Ref. 9) so
that (10) has the form

( H ) —(H )p=N [I/t« —sp+ Ap]+nprp —2kpup/(At«)

N, g (c.„—c.„)=N, f 5(k)dk/~ cp+b—,p
p

~ 8
i
c(k)

i

c„(0

(12)

The single-soliton energy is then Fz ——N, ho/~ with small
finite cutoff corrections. The SS interaction is exponen-
tially weak and repulsive.

In the next section the energies in (17) will be rederived
via the soliton lattice solution; an additional term, howev-

er, will appear when the cutoff is finite which is related to
the collective nature of the soliton lattice.

III. SOLITON LATTICE

In this section the soliton lattice solution is derived and
is shown to describe the lowest-energy configuration for
adding a charge density p to the —,-filled band. The solu-
tion is found by mapping the present fermion problem
into linear boson oscillations in some unknown potential;
the latter is then found to be related to the sine-Gordon
problem.

Define the linear combinations

+F(
~

«(k) ') . (13)

F is a function of
~

r(k)
~

only and is therefore mini-
mized at r=O and F(0) =0; the potential is thus refiec-
tionless. The integral I is

A UFk koI=2
2

tan-' dk
P ( ~k&+ g&)&&2

f„(x)=u„(x)+iv„(x),

g„(x)=u„(x) iv„(x—),
which, from (2) satisfy first-order coupled equations,

snfn(x) = tuFgn(x)+t~(x)gn(x)

E„g„(x)= ivF f„'(x) i—b (x)f„(x) .—

(18)

(19)

ko
=2(uFA +b,p)' tan

A

These functions also satisfy second-order decoupled equa-
tions [by applying (19) twice]

+ vF P P ( 2kz+~2)i«z

2 2 2 ]. /2»n+2(b,p
—uFkp) tan

kp(Ap+uFA )'
(14)

a2
s„+uF z

—b, (x)+vFA'(x) f„(x)=0,
Bx

2

s„+vF —b, (x) —vFb, '(x) g„(x)=0.2 2 a 2

(20a)

(20b)

The logarithmically divergent integral in (14) is precise-
ly cancelled by the term —2kpuF/A~ in (13) since 6p was
chosen to satisfy Eq. (6). This is the analog of the renor-
malization factor Z used by DHN. Defining
vFkp =kpsinO, or Ep

——b,pcosO, and expanding (14) to
lowest order in Ao/UFA yields

( H ) —(H ) p ——bp —N, (sinO —O cosH ) + n pcosO
2

2
N, 60

+ sin O . (15)
37T UF A

For np &N, a single localized b, (x) may result. ' ' Here,
however, we are mainly interested in the fully charged sit-
uation, np=N, . Since b,p«uFA the minimum of (15) is
at O=m/2. The inverse scattering solution [Eq. (3.28) of
DHN ] shows that this corresponds to an infinitely
separated pair of solitons ( SS) with shapes + b,, (x) where

The self-consistency equation (3) becomes

b, (x) = kr«vF g' Im[f„*(x)g„(x)] . (21)

An E=O state does not contribute to Eq. (21) since from
Eq. (19) with E„=O both f„(x) and g„(x) can be chosen
real. Substituting (19) in (21) yields5, lf.() '
b, (x) = —2A~vF A(x)+ —,

'
uF

n 2&n
(22)

A = —,
' 112(x,t)+ ,

' uF[g'(x, t)] + U[@—(x,t)], (23)

where 11(x,t) is the conjugate momentum to the field

where the sum is on occupied states excluding an c. =O
state.

The equivalent boson problem has a potential U(P)
with degenerate minima so that a classical soliton solution
P, (x) is possible. The boson Hamiltonian is
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P(x, t). The classical soliton satisfies

vg g,"(x) = U'[@,(x )], (24)

while small fluctuations P(x, t) around the soliton, i.e.,
g(x, t) =P, (x)+P(x, t), satisfy

0
+vF 2

—U"[P,(x)] P(x, t) =0 .
Bt Bx

(25) 6)/k—

The key feature of this structure is the existence of a
zero-frequency solution to Eq. (11) which is the soliton
translation mode P,'(x). Since Eq. (19) also has an E=O
solution

k'Ai/k—

-k 6i/k A

Xf0(x ) =fp(0)exp —f 6 (x' )dx '/vF (26) 6) /k

U"[g,(x)]=60[1—2sech (x/go)) .

Equations (16) and (26) also yield
X

f,'(x) —exp —f tanh(x /$0)dx /go

(28)

—sech(x/go) . (29)

The following form of solution is chosen for conveni-
ence:

P, (x ) =4 tan '[exp(x /go) ] . (30)

The final step is to eliminate the x dependence in Eq. (28)
in favor of a g, dependence via Eq. (30) which results in
U"(P, ) =b,ocosg, . We therefore choose the following po-
tential:

U(g) =6&(1—cosP), (31)

with b, , =b,o in the limit of a single soliton. (As found
below, 6]——Ao also with a finite soliton density if
A~oo. ) Thus the celebrated sine-Gordon potential is
found.

Equation (31) is expected also from the knowledge of
the spectra of Eq. (25). The sine-Gordon potential has a
single bound state for one soliton (the translation mode)
which broadens into a midband for a soliton lattice, as
shown in Fig. 2. As verified below, a gap separates all oc-

we require fo(x)-p,'(x) [for a localized soliton (26) is
normalizable by virtue of the soliton topology
b,(x)~bosgnx for x~+oo]. By comparing Eqs. (20a)
and (25) we identify the boson oscillations P(x, t) with the
fermion eigenfunctions f„(x) and

U"[P, (x ) ]=b. (x ) —vF b, '(x ) = vF f,"'(x ) /P,'(x ) . (27)

Here, b(x)= vFfo(x)/fo(x) and fo(x)-g,'(x) were
used. Since fo(x) &0 [Eq. (26)] p, (x) is monotonic and
we can use P, as an integration variable in Eq. (27), hence
Eq. (24) is obtained. Thus the boson problem (25) indeed
relates to a classical soliton equation of the form (24).

The problem is now reduced to the determination of the
potential U(g). This potential determines via (24) both
the single-soliton solution and the soliton lattice. We can
therefore use the single-soliton solution, as found in Sec.
II to construct the potential U(g). From (16) and (27) we
find

FIG. 2. Energy levels for fermions in a soliton lattice. Note
that only two gaps are present at q =+~/1.

sin I —,
'
[P,(x) ~] I

= sn(x /k—g, k), (32)

where sn (and cn, dn below) are Jacobian elliptic func-
tions with parameter k, and g =vF /6, . The solution
(32) is a lattice of sine-Gordon solitons, with each soliton
increasing P, by 2'. The solution (32) satisfies
g, (x +l) =g, (x)+2~, where

I =2gkK(k), (33)

where K(k) [and K'(k), E(k) below] being complete ellip-
tic integrals. When I &&g (or k~1), P, (x) is a sequence
of well-separated solitons (or antisolitons), each of width g
and at distance l apart.

The ion displacement pattern A(x) is h(x)
= —vFQ,"(x)/g,'(x) [see Eq. (26)], i.e,

kb, ,sn(x /kg, k)cn(x /kg, k)
b, (x)=

dn (x/kg, k)
(34)

This pattern (Fig. 3) oscillates between +kA, /(1+k')
passing twice through zero in a single period l.
[(k') =1—k . ]

The eigenvalue equation (20) contains the periodic po-
tential

cupied states from all empty states. Other potentials have
additional gaps' within the occupied and empty states.
The location of such gaps means that they do not lower
the electron energies while there is an increase in the elas-
tic energy. Thus other potentials besides (31) which solve
Eqs. (3) and (4) can lead to a local minimum of (H ). The
sine-Gordon potential (31) provides the global minimum.

I now proceed to present the soliton lattice solution, its
fermion eigenfunctions, and check explicitly the self-
consistency relation, Eq. (3). The general solution of Eq.
(24) with the potential (31) is
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—
I,'/2

I

f/2

=kQ,
i

FIG. 3. Schematic structure of the dimerization pattern h(x j for a dilute soliton lattice.

b. (x) —UFb, '(x)=b, icos/, (x)

=b i[2 sn (x/k(, k) —1], (35)

The range of q is ~/l &q &A, which corresponds to
0&X &K'(k) —e with e~O as A~os. More precisely,
expansion of (42) near X =K' yields

with period I. The solutions can therefore be labeled by a
Bloch wave vector q. Equation (20a) with (35) is Lame's
equation for which the eigenfunctions fq(x) and eigen-
values Eq are well known. In the boson problem
there are two branches: an acoustic branch whose q=O
eigenfunction fq(x) is the translation mode and an optic
branch. A single gap at q = +~/l separates the two
branches. In the fermion problem both positive and nega-
tive Eq are allowed. In fact, the pairs (fq, —

gq ) and

(fq, gq ) have eigenvalues +cuq, respectively Th. us the
spectrum is symmetric around v=0 and contains three
branches (Fig. 2): the valence band, a midband containing
the v=0 state, and a conduction band.

The midband has eigenvalues +coq with

coq ——(b, ,k'/k)sn(X, k'),
where 7 is determined by q,

q =(6, /UFk)[E(X, k') —X(1 E/K)], —

(36)

(37)

and E(X,k ) is the incomplete elliptic integral of the
second kind. The range 0 & q & m /l corresponds to
0&+&K'. The eigenfunctions, in terms of the 0; func-
tions, are

03(~x/I +ivrX/2k
~

r)
fq(x) = Cq e'q

Og(~x/l
~

r)
(38)

fo(x)=L 'i (KIE)'r dn(xlkj, k) . (40)

The valence and conduction bands have eigenvalues
+cuq, where

~& dn(X, k')
k cn(X, k')

r

q —~/1 = X(1 E/K) E(X,k')—
(41)

with r=iK'/K and Cq is a normalization constant. [The
normalization u„x + U„x dx = 1 implies

J ~
f„(x)

~

dx = 1.] After some algebra Eq. (38) yields

1 dn (X,k') —k sn (x/kg, k)
L dn (X,k') —1+E/K

In particular, at E=O, fo(x) —g,'(x),

z E 1+(k')~
1+@ek' K 3

~ 1 —(k') +(k')
45

+o(e ) (43)

The eigenfunctions are

94{vrx li iver(X —K') l2K—
~

r)
fq(x) = Cq 94(~x/l

i
r)

(44)

Evaluation of the normalization constant Cq and some
algebra yield

~

2 1 dn (X,k') —dn (x/kg, k)cn (X,k')
dn (X,k') —(E /K)cn (X,k')

(45)

1

N, A,
=ln 1+sn(K' —E, k')

cn(K' —E,k') (46)

Equations (36) and (41) imply a gap in the spectrum at
q =+~/l at energies k'b, i/k &

~

e
~

&6;Ik. It is remark-
able that there are no additional gaps at multiples of ~/l;
this is a manifestation of the reflectionless property of the
potential (31). The presence of additional gaps, as men-
tioned above, increases the total energy and does not yield
a global minimum. The numerical solution" did show
some spurious gaps at multiples of ~/l'. The reason is
that b, (x) was represented in this study by a harmonic ex-
pansion up to the fifth order. This expansion becomes
worse as I/g~ oo, in the dilute soliton lattice limit.

The next step is to check the self-consistency relation
(22); this will prove the local stability of the solution and
will eventually determine 6&. We consider a fully charged
soliton lattice, i.e., the midband is either empty or fully
occupied. The excess fermion density p relative to the
commensurate situation comes from the states
—~/1 &q &vr/i with E) 0 (E &0) when the midband is
full (empty). Thus, p=+1V, /1. Since there are two soli-
tons per period the soliton density is p, =2/l and the aver-

age charge per soliton is +N, /2, as expected from Sec. II.
The midband thus does not contribute to Eq. (22), while

the valence band, after changing the integration variable
from q to X yields

+ dn(X, k')sn(X, k')
cn(X, k') (42) Note that a factor A(x) cancelled and self-consistency is

proven. Expansion of (46) and use of (43) yield
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—I
2A

1V, X

~2
k2 EC

I+(k')

(47)

Q2
J2 ———

mA, k
1+(k') E &s~ i sn(K' —E, k')

cn (K' —E,k')

(51)

bo=2UFAe ' [I+g /4+o(g )], (48)

where the expansion parameter is now g=2exp( —1/X, k)
and g=kc to leading order. The gap 60 in the commens-
urate situation is from Eq. (6)

J3 ——X, f (vFq +ho)'i dq/2'

=(N, /m)A [1+(bo/A) ]' +ho/(2nku~) . (52)

The third term is the subtracted energies of the commens-
urate case

which yields for 61

5 =b. 1 — ———(k') +o(71 )1
— 0 k2

(49)

The terms J4+J5 are the elastic energy relative to the
commensurate situation. Using (34) yields [note that im-
posing a cutoff A on the Fourier expansion of b, (x)
amounts to negligible —exp( —Ag) corrections]

In the weak-coupling limit, i.e., X~O with A~co such
that 50 is finite, g~O and 61——50.

Finally, I evaluate the energy of the soliton lattice (per
unit length) EsL ——g,. , J; with the following five terms:

2

LEsg ——g' E„+g' c,„—g'E„+ f [b, (x)—g]dx
mid v 1

61—502 2

+ (50)
2A.7TUF

Since the midband is symmetrically occupied, the first
term is Ji ——0. The second term is the sum over the
valence band, which after using (46) becomes

Q2
14= (k') ——

k~vFk

Combining all terms yields
2 1/2

EsL = A 1+
2m A

&s~ i sn(K' —E,k')
cn (K' —e, k')

(53)

(54)

Note that all terms with a 1/A, factor have cancelled; this
corresponds to cancellation of -InA terms. Expansion of
(54) and use of (43) and (49) yields after some algebra to
the energy per soliton,

EsL (k') K 4

12
(55)

where p, =2/1 =(gkK) ' is the soliton density.
The limit of p, ~O yields the single-soliton energy with

the long-range soliton-soliton interaction. In this limit
k'~0 and p, go~(ln4/k') ' and (55) yields

EsL/p. =
+O[(k') ln4/k', (k') g, g ]I . (56)

The p, ~0 limit yields the single-soliton energy

Es =(Xsbo/m. )[1+g l6+o (q )],
in agreement with Eq. (17). The term r) /6 is a self-
energy correction due to a finite cutoff. The interaction
terms in (56) are of two types. First there is a repulsive
term which decays exponentially with 1/p, . It is a pair-
wise interaction —it appeared once for two solitons in Eq.
(17) while here each soliton has two neighboring solitons
and it appears once for every soliton. This account for
the preexponential factor being 4 in (56) as compared with
2 in (17). The most remarkable part of (56) is the attrac-
tive interaction —r) p, go/2. For r1&0 the long-range in-
teraction is drastically changed —it decays slowly as l
and is attractive. This term can be traced back to the
reduction in the gap b, , when r)&0. From (49) and a

Eg ——b. i(1 —k')/k . (57)

In the limit of p, ~O, k'~0, Eq. (57) yields Ez~ho
which is the midgap distance to the conduction band for a
single soliton. The limit of a dense lattice corresponds to
2~/l-A, i.e., the intersoliton distance I becomes of the
order of the underlying lattice constant 2m. /A. In this
limit k~O and 1=2kKg~mkg, k-2/Ag. From (57),

2 —2/X A,

E~~hi/vFA=4vFAe ' as 1 —1/A . (58)

k'~0 expansion, b, &~ho(1 —p, goy ); the presence of the
midband [which does not contribute to (22)] reduces the
phase space of electron states (of order A) by 2m/1 =~p,
Thus 61 is reduced and the "single-soliton" energy
E, —b

&
(in the presence of a finite soliton density) is also

reduced.
Note that the attractive term is absent in Eq. (17).

Thus it is not a two-body interaction but a collective ef-
fect. This is also clear from the previous phase-space ar-
gument. It is the presence of infinite solitons (finite densi-
ty p, ) which lowers the energy per soliton.

A few other properties of the solution are worth noting.
The gap Eg in the fermion spectrum is between the top of
the midband c =k'b, i/k and the bottom of the conduc-
tion band E, =b, i/k (assuming a filled midband). Thus,
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BEsL

2V, Bp,

25O

~k
(59)

since each soliton corresponds to an excess of N, /2 fer-
mions. (g~0 was taken here. ) The result (59) satisfies
c ~ p & c, ; this proves that addition or subtraction of fer-
mions is by rearranging the lattice such that the midgap is
precisely full and not by adding a fermion to the conduc-
tion band or a hole to the midband.

Consider finally the local fermion density which in
terms of the original fields is g„~ %„(x)

~

[see Eq. (1)].
This involves a slowly varying term

This is the Peierls gap for an incommensurate CDW, with
b, (x) becoming a single sine wave. Note the factor 2 in
the exponent of (58). In weak coupling the incommensu-
rate gap is exponentially smaller than the commensurate
one.

The chemical potential for ferrnions is

J(x) =u (x)u'(x) —v (x)U'(x)+H. c. (65)

P is an external pressure term which is chosen so that the
commensurate system has the prescribed lattice constant
a and y

' x dx =0. Thus, P = J x o with the expecta-
tion value in the commensurate state A(x) = b, o.

Equation (22) and its derivative can be used to yield the
expectation value

The ion displacement at site m is written as
u =y —( —I )"6, /4a, where the acoustic deformation

y and the dimerization 6 are slowly varying fields
(a —v'X is the electron-phonon coupling). Using x =ma
with a the lattice constant, the Hamiltonian terms which
involve y (x) are

II„=fdx I
—iaa y'(x)[J(x) P]+—,'Ka—[y'(x)] I, (64)

where the prime is a space derivative and the operator J is

p(x)= g'[ u„(x) +
~

U„(x)
~ )

and a rapidly varying density

(60)
J(x)=(J(x))=(i/l~)[vFA'(x) —2A (x)]

ZiuF g —e
~
f (x)

q

(66)

pcow(x) =i exp(iwx/a) g' u„(x)U„*(x)+H.c. (61)
Considering only low density p, ~0, the midband is

neglected in (66) [eq -exp( —I /p, g) ], while for the
valence band

The completeness relation of [u„(x),U„(x)] implies that
the sum (60) if taken on all states is x independent. In
fact, —, of this sum can be subtracted from (60) as the
background charge; by +c symmetry this subtraction is
the sum on valences states plus —, of the midband states.
Hence,

p(x)= —,
' g[ ~

u„(x) +
~

u„(x) ],
IT11Cl

which after some algebra becomes
r

Ifq«) I

' bo —b, (x)+vFA'(x)

2cq

Using g'I/
~

eq
~

=L/X~ yields

J(x) = (i /A~—)[b,'(x)+ho]
—(2i/L) Q'eq/(1 —p, g/eq) .

q

p, k
2

Eq

(67)

(68)

p(x)= p, K E' ——,k K'sn (x/kj, k) ——,'K'

(k') K'
+

2dn (x/kg, k)

The rapidly varying density becomes [using (3)]

(62)

To subtract P one can use the definition of the single-
soliton energy E, as the p, ~O limit of

2~og eq Esps .
q

(69)

N, b(x) kK'b, '(x)
pcDw(x) = sin(~x/a)+ cos(~x/a) .

2X&UF
Minimizing (H„)with respect to .y'(x) yields the
soliton-dependent acoustic deformation

EV. COUPLING TO ACOUSTIC PHONONS

(63) y'(x)

=(irma�

/K)[J(x) P]—
In the preceding section it was found that the continu-

um Hamiltonian (2) led to a remarkable form of soliton-
soliton interaction if the momentum cutoff A was kept fi-
nite. The Hamiltonian (2), however, is derived from a
discrete model by neglecting 1/A corrections. A con-
sistent procedure is therefore to evaluate also the correc-
tions to the Hamiltonian itself.

I consider here the finite A correction of the tight-
binding Su-Schrieffer-Heeger (SSH) model. As shown by
Maki and in the Appendix, a finite A amounts to a cou-
pling between the fermions and the acoustic degrees of
freedom.

X~K
[bo —b, '(x)]+ E,p, .

K
(70)

(71)

This deformation has two parts: the larger part (by the
factor I/A, ) is localized near the soliton, and the second
part, which is x independent. The latter part essentially
implies a long-range force between solitons.

The first term of (70) represents a localized lattice con-
traction [y'(x) &0], while the second term is a delocalized
expansion. The space average effect is

—2oa ~of dx y'(x)/L = E, p, , —
K
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2 2a 3

(H„)= fdx E p, —6p —b (x)
2A, 7r

(72)

i.e., for A, « 1 the overall effect is lattice contraction.
Maki's result for y'(x), obtained from the single-

soliton solution, differs from (70) in two respects. First,
the second term of (70) is absent [perhaps due to neglect
of O(A, ) corrections] and secondly Ap —b, (x) is replaced
by uFb, '(x). The latter replacement is correct for a single
soliton, but would imply (incorrectly) a vanishing result
for a soliton lattice.

The energy at the minimized value of y'(x) is

of some ambiguity in defining A. [via (6) or its lattice ver-
sion], it seems that the attractive term in (56) improves
the result. Also higher-order corrections may effectively
change the p, gp coefficient (see Appendix). E, itself is re-
duced from 2ho/sr=0. 424 to 0.399 in remarkable agree-
ment with the numerical result.

In conclusion, the exponential long-range interaction of
the continuum limit is radically changed by discreteness,
or finite cutoff corrections. The interaction decays as the
inverse distance and its sign depends on details of the
model; in weak coupling a repulsive interaction is expect-
ed.

The E,p, term is responsible for a -p, term in the en-

ergy which corresponds to a long-range intersoliton in-
teraction. The term [hp —5 (x)] yields a -p, term with
exponentially weak corrections which are neglected.
Hence,

2
2 a ~o a(H„)=p,L —b,p p, gpc-
rr p

2

(73)

with c = 1 —X. A gain from the acoustic coupling reduces
the single-soliton energy [last term in (73)], while the
soliton-soliton interaction decays linearly with distance
and is repulsive.

Fixed length boundary conditions can be considered by
choosing a p, -dependent ressure P in Eq. (64), such that

fy'(x)dx=0, i.e., P = dx J(x)/L The en.ergy of the
acoustic coupling has then the form (73) with c = I/4A, .

Including the attractive effect of Eq. (56) the coefficient
c becomes c = 1 —A, —2/m. for fixed pressure or
c =(I/4k) —2/w for fixed length. For A, «1, c&0 and
the long-range interaction is repulsive. Figure 4 shows re-
sults of a numerical study of the SSH model ' as defined
in the Appendix; fixed length boundary conditions were
used. The coupling was chosen such that Ao/to ———', ,
which implies A, =0.31. The data fit a straight line and
are inconsistent with an exponential interaction. The data
fit E(p, ) =EsL/p, Ltp ——0.400+0.012p, gp. The acoustic
effect (dashed line) is from (73) with c = I /4A. ,

e(p, )=0.399+0.038p, g, while including the finite cutoff
effect [Eq. (56)] yields e(p, )=0.399+0.029p, gp. In view

V. DIATOMIC LATTICE

where m =x/a is a site index. Using Eq. (1) and neglect-
ing terms which oscillate rapidly with m (as in the Ap-
pendix), we find

HD ia g f——dx [u, (x)u, (x)—u, (x)u, (x)] . (74)

An interesting modification of the model in Sec. II in-
volves an alternating on-site potential. This potential
leads to a gap in the fermion excitation when the band is
—,
' filled, and therefore competes with the spontaneous gap

due to bond dimerization. The on-site potential implies
that the unit cell has two sites so that bond dimerization
does not change translation symmetry as in Sec. II. In-
stead, however, the inversion symmetry center at each site
is broken and bond dimerization is a proper order parame-
ter.

Experimentally relevant systems are diatomic poly-
mers' of the form (AB)„and organic mixed-stack com-
pounds. ' In the latter case the interpretation of phase
transitions as "neutra1-ionic" needs modifications since
bond dimerization was indeed found below the transi-
tion.

In this section we find the soliton and soliton lattice
solutions for the continuum electron-phonon model with
alternating on-site potential of strength +a. The corre-
sponding term in the Hamiltonian is

g ( —1) a
~

1(j(m)
~

0.4I

0405

The total Hamiltonian is H +HD, where H is given by
Eq. (2). The off-diagonal coupling u, (x)v, (x) has now a
complex coefficient A(x)+ia As shown i.n Fig. 5, the
ground states are at +5+Ia and a soliton would interpo-
late between these degenerate states. To find 6, note that
the fermion spectrum is +(uFk +6 +a )' so that hp
in Eqs. (5)—(7) is replaced by b, +a . The energy is then
minimized by

0.4 (g2 2)1/2 (75)

O. I 0.2 0.4

S 0

FIG. 4. Energy per soliton from acoustic phonon interaction
[Eq. (73)]—dashed line; and including the correction (56)—solid
line. The points represent numerical results for a fixed length
SSH model (Ref. 31).

if bp of Eq. (7) satisfies bp~a. If a is too large or the
coupling A, too small, i.e., cz ~ bo, the ground state is not
bond dimerized (5=0).

The unusual soliton charge' can be found from (75)
even without knowledge of the details of h(x). This is
due to the counting rule, proven in I and used extensively
in III. The rule shows that the excess charge Q due to a
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), ImD,

Q

ae
I t

FIG. 5. Ground states and soliton trajectory in the complex
plane A(x)+ ia.

localized configuration is Q =N, b, H/n; b, O is the phase
change of A(x)+ia between the soliton boundaries. As
readily seen from Fig. 5,

Q =+{N,/~)tan '(b /a),
which in general is an irrational value. Spin-carrying soli-
tons have the charge (76) with + 1 additions. ' '

To find explicit solutions I use the transformation (18)
to write the fermion eigenvalue equations

b, (x) —vFb, '(x)=b, (x) —vFA'(x)+a (80)

Equation (78) has the same form as Eq. (8) with b, (x) re;-

placed by h(x). The minimum condition for the total
Hamiltonian as a functional of A(x) is identical to that in
Sec. II and the energy of a soliton pair is given by Eq.
(15). The value of 8 which minimizes {H) is now con-
strained by co——AocosO) e which relates to the possibility
of finding b, (x) in terms of A(x) [Eq. (80)]. The polaron
solution with N, =2, no ——1 has 0=m/4 which is possi-
ble only for cos(~/4) &a/Ap or a&Ap/V2. For fully
charged solitons, no=N the minimal energy is shifted
from ~/2 by the constraint to cosO=a/Ao. The two-
soliton energy, with total charge N„ is then

f«&'(x) & 0 a soliton has e = —a, f=0, and
X

g(x)-exp f 5(x')dx'
0

In general, (79) implies
~
E„~ & a, i.e., no states can appear

in the gap imposed by the cx term. To find single-soliton
solutions, define a field b, (x) by the relation

(En —a )f~(x) = —luF g~(x)+I 6(x)gn (x) 2E, =(4/rr)[b. a tan '{6/a)—]+2a . (81)

a(E„+a)g„(x)= ivF —f„(x) i A(x)f„(—x)
(77) To find the soliton lattice I proceed as in Sec. III and

choose the potential (31), i.e.,

The equations can be decoupled by applying a second
derivative

b, (x)—uFE'(x)=A, cosP, (x), (82)

2—UF +b, (x) uFdl'(x) f—„(x)=(E„—a )f„(x)

(78)

and a similar equation for g„(x) with + 6'(x). The nor-
malization condition u„x + U„x dx = 1 im-

plies now, by using (77) and (78),

f„(x)
~

dx =(s„+a)/c,„,
f ~

g„(x) ~'dx=(E„—a)/E„.
(79)

A single soliton with, say, b, '(x) & 0 has a level at E=a
with g=O and

Xf(x)-exp —f b(x')dx'

with g, (x) given by (32). The self-consistency equation
(21) now becomes a, f (x)

I

'
h(x) = —2lnuF b, (x),+ —,uF

Bx „2(E„+a)

and will eventually determine 6].
The fermion spectrum, shown in Fig. 6, is given by

Eq
——+(co~+a )', where co~ is given by Eqs. (36) and

(41). The eigenfunctions are as in Eqs. (38) and (44), ex-
cept for a normalization change given by Eq. (79). There
are now two midbands which are either fully occupied or
empty, i.e., the average excess charge is +N, /)t, with l
given by (33). With only the valence band contributing,
Eq. (83) becomes

K' —c A, dn (X,k')dX

N, AfP k cn~(g. , k') [[A&dn(X, k')/kcn(X, k')] +a ]
' (84)

with E relating to the cutoff A via (43). Thus, b.(x) of (83)
cancels and self-consistency is achieved. When a=0, (84)
integrates into Eq. (46) with h~ ——b,p [terms of order
(Ap/uFA) are neglected in this section]. The a=O equa-
tion can be subtracted from (84) to yield a convergent in-
tegral as s~O. In terms of the variable x =snQ', k') this
finally yields

where

R(x)=[1—(k') x'+(ka/b, , ) (1 —x )]' ' (86)

1 CXk i 1+xln ln dx,
p 2b, , R (x)[1—(k') x ]'

(85)
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FICx. 7. Gap in the fermion excitation energy for various a
[Eq. (74)] as a function of the soliton density.

FIG. 6. Energy levels for fermions in a soliton lattice with al-
ternating on-site potential a [Eq. (74)].

The gap E~ =6 ~k/(1+k') can be considered as the or-
der parameter of the system. The solutions of Eq. (86) for
Eg as a function of p, =6 1 /kKUF are plotted in Fig. 7.
For a & b,p, Es(0) = b,&0 and decreases as a function of p,
except for 0.98 &a/b, p & 1, where Eg(p, ) has a maximum
at a finite p, .

The most interesting situation is found for a) Ap. In
this case the commensurate system is not ordered (b =0)
and the charged excitation are extended electrons or holes.

However, as soon as p&0, a finite order parameter
representing localized solitons is generated. It reaches a
maximum at a finite p (Fig. 7). Thus the addition of
charge to a nondimerized system enables the bond order-
ing to be spontaneously formed.

We can understand this peculiar behavior by consider-
ing momentum space where the gap Eg is formed at
q =+mp, /2, while the gap 2a remains at q=0. Thus for
p, &0 the competition between the gaps Eg and u is weak-
ened and a finite Eg appears.

The energy of the soliton lattice is obtained with the
same steps as in Eqs. (50)—(55). Note that the energy of
the p, =0 system has a different form when a & bp (6&0)
or a & b,p (b, =0); this yields different forms for the energy
relative to the p =0 system. After some algebra the
soliton-lattice energy EsL becomes

2UF
ESL

S

E, , 2 1 2 2 2
a2 b, ) 6(a —b,p)

2
——

2
(k')2 + (b, p2 —a2 —b, 21)+ ln + a2 —b.p2 —2a21n a

K bp m o K 2R(x)[1—(k') x ) 1 —x

(1+k a /b, ~)[1+(k') x ]—2(k') x [(k') +k a /A~]+
R (x)[1—(k') x ]

k + [1—(k')'x']'"
Xk ln

(1 —x )
2 1/2 (87)

where e(a —Ap) is a step function.
To obtain a low-density expansion consider first the

k'~0 limit of (85), which after some algebra yields

4psin '(a/bp)
b, , =b, 1+ ——+ (k') +O((k') )

2 ah

2UF 2A 2Q . 1 o,+ sin
p, X. ~o

8A . 1 a —25
sin exp~a 5p UFp

(89)

(88)

This expansion breaks down when a~Ap or 6~0. The
energy expansion involves some tedious algebra with the
result

The first two terms are the single-soliton energy as
given by Eq. (81); more precisely, it is the mean energy of
a soliton [b, '(x) &0] with a fully occupied level at + a
and an antisoliton [b, '(x) &0) with a fully occupied level
at —a. The last term of (89) is the long-range interaction
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alloys. In particular, the two-energy-gap structure was
obtained by infrared reflectivity.

The spin-Peierls system is an ideal candidate for observ-
ing soliton lattices. ' ' Here a magnetic field acts as a
chemical potential for spinless fermions and when it
exceeds the single-soliton energy an incommensurate soli-
ton lattice appears. Evidence for such a soliton lattice
structure was found by NMR techniques. '

In conclusion, details of soliton lattice solutions as
presented in this work should provide a basis for compar-
ison with an increasing number of experimental systems.
The latter include conducting polymers, such as polyace-
tylene, (AB)„-type polymers, organic mixed stack com-
pounds, spin-density waves, and spin-Peierls systems.
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APPENDIX

between solitons, which is exponential and repulsive.
Since the soliton width is —vF /6 the factor —2A/vip, in
the exponent measures the overlap between solitons. For
a fixed overlap the repulsive interaction becomes weaker
as +~ho. The energy per soliton is plotted in Fig. 8 as
function of p, /Ao and of p, /A. In the latter case the
weaker repulsion as +~ho is apparent. For a~ Ao and

p, ~0 the curves approach a, the energy of adding a sin-
gle fermion or hole to the nondimerized (b, =0) system.

VI. CONCLUSIONS

A method for obtaining an exact soliton lattice solution
in continuum theories was shown. The low-density limit
of the soliton lattice energy yields beyond a linear term
Fqp, the long-range interaction between solitons. In the
continuum limit this interaction is exponential and repul-
sive; finite cutoff or discreteness effects lead to the inverse
distance forces, which are repulsive in general ~ These ef-
fects are manifest also in the equivalent sine-Gordon
problem, affecting the critical behavior of its
commensurate-incommensurate transition.

The soliton lattice solution is an essential tool in deriv-
ing properties of near- —,

' -filled band fermion systems.
Thus, optical absorption shows two types of transitions:
from the midband with intensity -p, for small p„and
valence-to-conduction-band transitions. The sum of both
absorption intensities satisfies a sum rule which is in-
dependent of p, .

Experimentally, midband transitions were readily ob-
served in polyacetylene, while valence-to-conduction-band
transitions were only recently seen by photoinduced ab-
sorption. The gap 2A

&
/k for valence-to-conduction-

band transitions (Fig. 2) was found to increase with the
doping density [ =2/1, Eq. (33)], in good agreement with
the theory.

The soliton lattice solution was also applied to the
spin-density wave system of Cr and its Cr-Mn and Cr-V

The continuum Hamiltonian with leading corrections is
derived here from the tight-binding SSH model

H = —g [to —a(R +, —R )](C„C„+~+ H. c. )

+ —,K g(R +, —R ) (Al)

C =u (i) —iv ( i)— (A2)

Decompose also R into an acoustic field y and a di-
merization field 6

R =y —( —1) b, /4a . (A3)

All the fields u, v, y, and 6 are considered slowly
varying and therefore independent fields. Substituting
(A2) and (A3) into (Al) and neglecting terms which oscil-
late rapidly as —( —1) yields

H = —g [to —a(y +&
—y )](iu„u„+& iv„v„+,+H. c—. )

——, g(b, +)+b, )(u„v„+)+v„u„+,+H. c. )

+ —,& g (y +~ —y )'+(K/32a') g (d +, +b, )' .

(A4)

Expansion to first order, e.g. , y +&—y(x)+ay'(x), yields

Here, C,C are electron creation and destruction opera-
tors at site m, respectively, R is the ion displacement
amplitude, to the electron transfer integral, a the
electron-phonon coupling constant, and K the elastic con-
stant.

Define now new operators u, v [Eq. (1) with
x =m/a]
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H =a dx to —aay' x I.u x u' x —iv x U x +H. c.

+ —,
' fdx[2b(x) +ah, '(x)][u (x)v(x)+au (x)v'(x)+v (x)u (x)+avt(x)u'(x)+H. c.] . (A5)

Defining vz 2toa——yields for H the continuum part Eq.
(2) plus H„, Eq. (64). Additional -a corrections may
appear if u(x), v(x) are expanded to second order. These
corrections as well as higher-order ones involve diverging
k integrals. An efficient method to avoid this is to rede-

fine the transformation (A2) so that the bound spectrum
coska appears in the continuum Hamiltonian. The acous-
tic coupling as well as the p, interaction in Eq. (73) will
have then different coefficients, possibly improving agree-
ment with the numerical data in Fig. 4.
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