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Phase transition qf the Aharonov-Bohm periodicity in metallic cylinders
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A scattering formalism is developed for a random potential on a cylinder with flux i' along its
axis. Simulations show the possibility of a phase transition in the p dependence of an ensemble-

averaged conductance: The periodicity in p changes from h/2e to h/e as the potential is weak-

ened. The critical potential decreases as the sample size increases such that the zero-flux conduc-

tivity is —150e /h.

The study of electron interference in disordered medium
has recently focused on the Aharonov-Bohm periodicity in
the cylinder or ring geometry. The basic phenomenon'
states that all measurable quantities on a cylinder must be
periodic as a function of the flux along the cylinder axis
with period h/e.

Interference effects in disordered systems were predict-
ed2 to yield a conductivity with period h/2e. This predic-
tion was confirmed by experiments on Mg and Al
cylinders, two-dimensional grids, and thin-film rings.
Small size rings, however, have shown h/e oscillations;
also the thin film rings show a change in periodicity to
h/e at high fields.

Theoretical developments have focused on the effects of
ensemble averaging over a random potential. A "typical"
conductivity as measured in an experiment is usually de-
rived by averaging the conductivity over an ensemble of
potentials. ' It was predicted however that in small sam-
ples the ensemble average does not necessarily describe the
measured quantity. " For example, in a one-dimensional
ring electrons move along a single path and detect one
fixed potential; the conductivity has then a period h/e.
Small rings indeed have shown the period h/e.

Numerical simulations on wide rings by Stone and Imry
(SI)' have shown that if an average is taken over a suffi-
ciently large ensemble a period h/2e results. It was also
shown that averaging the electron's energy is equivalent to
ensemble average. ' Thus in a small ring which has period
h/e, increasing temperature would increase the energy
average and thereby yield a period h/2e.

The effect of disorder on quantum interference was also
studied by Nguyen, Spivac, and Shklovskii (NSS). '

Based on simulations of a simplified model NSS claim
that there is a phase transition from period h/e at low dis-
order concentration (x ( 5%%uo) to period h/2e at higher
concentrations (x & 5%). The NSS model involves a
number of approximations. (a) The model considers the
hopping limit, i.e., strong random potentials; hence, self-
intersecting paths are neglected. Interference due to self-
intersections can, however, be an essential feature. (b)
The transmission amplitude is real. (c) Although the sys-
tem is two dimensional, NSS assume that the external
leads are one dimensional.

The NSS model was also studied within an effective
medium theory an h/e period was found for all x A50%,
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where

-Ey(z, m), (1)

exp[(2tt/N )a/ac] Vr(z, m) = y(z, m + 1),

v (z,m) is the random potential, p is the flux in units of
h/e, and E is the energy eigenvalue. Periodic bound-
ary conditions are necessary in the 0 direction, i.e.,
y(z, m+N) tit(z, m). For v(z, m) 0 the eigenfunctions
have a continuous wave vector q and a discrete one n (n is

while an h/2e period appeared at the single point x 50%.
The symmetry of the potential distribution is also an im-
portant ingredient in the proof that an ensemble-averaged
conductance has period h/2e. ' Thus the nonsymmetric
situation requires further study.

In the present work we test the NSS idea on a more
realistic model which includes self-intersections, complex
transmission amplitudes, and multichannel leads. We use
a cylindrical geometry in which the average current flows
parallel to the magnetic field as in the experiments of
Refs. 3-5. Note that the NSS or SI geometries are some-
what different, i.e., they correspond to a wide ring in which
the current flows perpendicular to the magnetic field. Fol-
lowing NSS we ensemble average the logarithm of the
conductivity. We do not find the NSS-type transition; in-
stead, however, we find a transition as function of the po-
tential strength in an ensemble of finite systems. For ran-
dom potentials + v with v & v, the period is h/e while for
v ) v, it becomes h/2e. As the system size increases v,
becomes smaller and probably vanishes for infinite sys-
tems. If, however, the zero-flux conductivity g(0) is fixed
as the size increases, the transition is maintained at
g(0)=150e /h. In the NSS limit v ~ we expect a
period h/2e independent of x (x NO). We finally comment
on experimental realizations of the transition found here.

Consider a cylinder with a continuous coordinate z
parallel to its axis and a discrete angle around the cylinder
8=2ttm/N, where m is an integer 0~ m ~N —1 and N is
the number of channels. The electron's wave function
y(z, m) satisfies the Schrodinger equation
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integer 0~n ~N —1) so that

y~ „(z,m) =exp(iqz + 2ximn/N ),
and eigenvalues q +cos[2x(n+&I))/N]. For a given ener-

gy E, the wave vectors for the longitudinal motion are

q„= [E —cos[2x(n+&)/Nl]'~ . We consider a random
potential of the form v (z,m) =g,. v;6(z —z;)8 . . The v;
at Np sites are chosen randomly so that a fraction x has
v; =+ vo and a fraction 1

—x has v; = —vo. The integral
equation corresponding to (1) yields a set of N~ algebraic
equations for the full wave function at the Np sites,

yz „(i)=exp(iq„z;+2zinm;/N)++vip(2iq„N) exp[iq„ lz; —zi I
+2zin'(m; —m~)/N]y~ „(j).

j n'
(2)

When the argument of q„ in the square root is negative,
Irnq„&0 and the corresponding channel does not have
free incoming or outgoing waves. Equation (2) is solved

by a straightforward inversion of an Np &Np matrix. This
considerable simplification is due to the continuous spec-
trum q .

The amplitudes r„„(r„„)for transmitting (reflecting)
currents from channel n to channel n' are identified from
the asymptotic behavior of yq „(z,m) as z

r„„=8„'„+(2iN) '(q„q„)
& g v; exp( —iq„z; —2+in'm;/N ) y& „(i),

r„„=(2iN ) '(q„q„)
x g v; exp(iq„z; —2+in'm;/N ) y~ „(i).

(3)

The final ingredient is the multichannel Landauer for-
mula's which gives the conductance (in units of e /h ) as

g„(1/q. )(1 —g. ! r.;I'+g. I ..I')

In the limit N ~ g reduces to the simplified form'
g'=g„„ I t„„I . By unitarity and time reversal it can be
shown that g'(&t) =g'( —

&I)). Data on small rings show,
however, an asymmetry with respect to field reversal; we
therefore use Eq. (4) as the appropriate finite system
value.

The conductance exhibits fluctuations which depend on
the choice of random potential and on the energy F. '

These fluctuations are enhanced by numerical limitations
on the sample size and number of samples in the ensemble
average. To minimize the latter fluctuations we simul-
taneously average on the potential and on the energy; both
averages being equivalent as argued by SI. Note also that
Eq. (4) has discontinuities at energies

E =cos[2n(n+p)/N] (n =1,2, . . . , N)

where the number of scattering channels changes. ' The
energy average smooths these discontinuities. In our simu-
lations we choose the energy randomly in the range
E =0.2 ~ 0.05.

We present here ensemble averages on log~o[g(p)]. The
distribution of log~o(g) is considered to be closer to a nor-
mal distribution and the average &log~p(g)) is then a better
representation of a "typical" conductance. ' Note also
that the system size for coherent elastic scattering [as in

Eq. (1)] is limited by a thermal inelastic scattering length
I;. Experimentally, ' cylinder lengths are —10 l; while
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FIG. 1. Flux dependence for 75 samples of size 10X20 and
x =4k. &Flux is hp/e. )

the diameter is ~l;. Thus experiment measures an aver-
age on many subsystems whose size L is of order I;.

%'e choose z; for convenience as integers 1 ~z; ~L so
that the scattering centers are on a lattice of size
Np =N XL. We check each solution for unitarity and
average over I samples in an ensemble.

Figure 1 shows two distinct p dependences. For vv=0. 2
we find a behavior, as found by SI, consistent with a period
h/2e. The small component with period h/e is within the
fluctuation range, which for log~o[g(&l))/g(0)] is —0. 1.
For vo =0.095 we find a clear component with period h/e,
i.e. , h/2e is not a period. The distinct values at p = —,

' and

p =0 remain so even for I =500, so that the SI claim does
not hold for a small vo, the period h/2e does not emerge
with increasing ensemble size.

We consider y—=&log~o[g( z )/g(0)]) as an order param-
eter; when it is zero (within —0.1) the period is h/2e, and
when it is distinctly nonzero the period is h/e. Figure 2
shows this order parameter for 10 (=N) channels, various
L and I. The 10X20 system shows a clear deviation from
period 2 below a critical vo=v, with v, =0.15; for I =50
irregular fluctuations in the vo dependence (of order
—0.1) are still apparent while for I =100 the vo depen-
dence is smooth. Increasing size to 10x 30 or 10x 40 shifts
the transition to a lower v„v, =0.13. In the infinite-size
limit the perturbation calculation should be valid so that

0
Figure 3 shows y as a function of &log~o[g(0)]) rather

than vo, the data correspond to the range 0.06 ~ vo ~0.27.
For vp )0.27, y stays near zero but &log&o[g (0)]) stops in-
creasing, with values fluctuating near 1.9; this indicates an
increasing role of fluctuations as vo increases. Further-
more, as vo increases the amplitude of the p dependence
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FIG. 2. Potential dependence of y (log&p[g( q )/g(0)l) with
average on I samples of size 10xI. and x =4%.

decreases below the 0.1 fluctuation range, a trend seen in
Fig. 1.

Figure 3 shows two remarkable features. First, most of
the irregular dependence of y on vp (Fig. 2) is smoothed in

Fig. 3. Thus y correlates directly with (log~p[g(0)]) and
the fluctuations in Fig. 2 are due mainly to an irregular
dependence of (log~p[g(0)]) on vp. Second, the transition
into period h/e is around (logtp[g(0)]) —2.2 and is in-
dependent of L. Thus the larger systems have a lower U„
but since the conductance decreases with size the transi-
tion occurs at the same typical conductance of g(0) = 150.
This implies a transition even in the infinite-size system,
provided a limit vp~ 0 is taken such that g(0) remains fi-
nite. Note also that the simulations by SI have g(0) =3,
which is indeed in the period h/2e regime of Fig. 3.

Our numerical accuracy is not sufficient to claim a strict
phase transition. The SI data show however that y con-
verges to zero for large vp [or small g(0)] while our data
definitely show a nonzero y for small vp [or large g(0)].
The y 0 situation may result when I ~ even for finite
systems. ' If so, y(vp) is nonanalytic and a phase transi-
tion in a finite, though averaged, system is implied. If,

however, finite-size corrections maintain yWO even as
I ~, then a strict phase transition is suggested only in
infinite samples with the above vo 0 limit.

We find that y depends rather weakly on the concentra-
tion x. This relates to the much weaker dependence of
log~p[g(0)] on x than on vp. In the NSS limit vp

g(0) 0 and we expect a period h/2e for any finite x.
Thus, the NSS transition does not survive in our more
realistic model. Nevertheless, our transition is similar to
that of NSS since in both cases it is the increasing effect of
the random potential which induces the period h/2e.

The transition found here can be interpreted as defining
a mean free path l. When l &L, scattering is significant
and diffusive motion yields the h/2e period; if l &L,
ballistic motion dominates and yields the h/e period.
Since l is determined by the potential parameters v and x,
our result implies that the conductance g(l,L) is —150
when I (v,x) =L. This interpretation implies that the
transition in a finite system, though fairly sharp, is not
strictly a phase transition.

Finally, we comment on two types of experiments which
can be sensitive to the transition found here. Consider first
data on thin film rings which show an h/e period at high
magnetic fields while an h/2e period is present at low
fields together with an uncertain amount of an h/e com-
ponent. In this geometry the magnetic field penetrates the
ring itself, and at high fields the flux enclosed by different
trajectories around the ring can differ by more than h/e.
The logarithmic divergence associated with localization is
then suppressed by a new cutoff ' and the conductance is
enhanced. If this cutoff has the effect of reducing L, a
transition from period h/2e to period h/e with increasing
field is possible. The h/e component then increases with
field rather than staying constant as argued by SI. Fur-
ther simulations on wide rings are needed to confirm this
scenario.

Second, note that by increasing temperature I;(=L) is
decreased and a transition into period h/e is possible. This
competes with an opposite tendency of increasing energy
average which reduces the h/e component. ' For large en-
sembles the first effect should dominate, i.e., period h/e
appearing at higher temperatures.
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FIG. 3. As in Fig. 2 for the dependence on ilog~o[g(0)]).
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