First-Order Transition in Doped Polyacetylene

Recently Kivelson and Heeger $(KH)^1$ have proposed that doped polyacetylene undergoes a first-order transition from a lattice of charged solitons into a polaron metal. In this Comment I show that thermodynamic consequences of this conjecture explain and tie together a variety of experimental data. The experiments considered are (a) a very sharp transition in the ESR response as function of the electrochemical potential μ , μ ² (b) a plateau in the relation $\mu(\rho)$, ³ where ρ is the excess charge density on the polyacetylene chains (or the doping density), and (c) the diversity of data on the Pauli susceptibility X_P for chemically doped sam $ples.$ ^{2, 4}

The KH conjecture is shown schematically in Fig. 1(a). The free energy is monotonic, but has a cusp at some density ρ_c where the free energies of two distinct configurations cross. KH propose that $\rho < \rho_c$ corresponds to charged solitons, while $\rho > \rho_c$ corresponds to polarons. The following reasoning, however, is independent of the detailed nature of the two configurations.

The form $F(\rho)$ in Fig. 1(a) implies that there are two densities ρ_1, ρ_2 connected by a line $F_{eq}(\rho)$ [the dashed line in Fig. 1(a)] with slope μ_c ,

$$
F_{eq}(\rho) = F(\rho_1) + \mu_c(\rho - \rho_1), \quad \rho_1 < \rho < \rho_2,\tag{1}
$$

such that the line is tangent to $F(\rho)$ at both ρ_1 and ρ_2 . In terms of the chemical potential $\mu = \frac{\partial F}{\partial \rho}$ [Fig. 1(b)], $\mu_c = \mu(\rho_1) = \mu(\rho_2)$. Equation (1) is equivalent to the finding of a μ_c for which the Maxwell equalarea condition holds,

$$
\int_{\rho_1}^{\rho_2} \mu(\rho) \, d\rho = \mu_c (\rho_1 - \rho_2). \tag{2}
$$

The meaning of this standard construction is phase separation: Divide the total volume V into volumes V_1, V_2 with densities ρ_1, ρ_2 , respectively, such that $V = V_1 + V_2$ and $\rho V = \rho_1 V_1 + \rho_2 V_2$. The resulting free energy $[F(\rho_1) V_1 + F(\rho_2) V_2]/V$ is precisely Eq. (1), which is lower than the homogeneous $F(\rho)$ [Fig. 1(a)]. Thus for $\rho_1 < \rho < \rho_2$, the equilibrium situation is that of a two-phase system separated in space. It also follows that it is μ_c (and *not* ρ_c) which defines a proper first-order phase transition; at μ_c , the density jumps from ρ_1 to ρ_2 .

It is interesting, however, that the KH conjecture implies $\partial \mu / \partial \rho > 0$, so that the homogeneous solution is locally stable. When this metastable situation is realized, it should exhibit hysteresis around ρ_c .

Phase separation in doped polyacetylene is unique since one phase has $X_P=0$ (solitons), while the other phase has $X_P \neq 0$ (polarons). Thus $X_P(\mu)$ shows an abrupt jump at μ_c in agreement with recent data.² The

FIG. 1. (a) Schematic free energy for a homogeneous system (full lines) and a phase separated system (dashed line); (b) as in (a) for the chemical potential.

plateau in $\mu(\rho)$ (Ref. 3) is also an obvious consequence $[Fig. 1(b)].$

When ρ is fixed and $\rho_1 < \rho < \rho_2$, phase separation predicts that X_P increases with the volume of the ρ_2 phase, i.e., $\chi_{\rm P}(\rho) \sim \rho_2 V_2 / V = \rho_2(\rho - \rho_1) / (\rho_2 - \rho_1)$. Phase separation also accounts for the presence of two types of spins. 4 It is possible, however, to achieve the homogeneous metastable phase with $X_p = 0$ for $\rho \leq \rho_c$. The latter situation is of considerable interest in view of its unusual relation with the conductivity.^{1,2} Metastability thus accounts for the diversity of the $\chi_{\rm p}(\rho)$ data. 2,4

Data with Na doping³ shows $\rho_1 \approx 1\%$ and $\rho_2 \approx 6\%,$ which correlates well with the large jump in $\chi_{\rm p}(\mu)$.² Similar data on other dopants and a reanalysis of $\chi_{\mathbf{p}}(\rho)$ data should establish the important values of ρ_1 , ρ_2 . The transition is driven by on-chain interactions to the extent that ρ_1 , ρ_2 are dopant independent.

Finally, it should be noticed that the microscopic origin of the KH conjecture and the nature of the polaron metal are not conclusive.¹ On the other hand, the KH conjecture does account, as shown here, for a large variety of experimental data.

Baruch Horovitz Department of Physics Ben-Gurion University Beer-Sheva 84105, Israel

Received 9 August 1985 PACS numbers: 71.30,+h, 71.38.+i, 72.80.Le

¹S. Kivelson and A. J. Heeger, Phys. Rev. Lett. 55, 308 (1985).

²F. Moraes, J. Chen, T. C. Chung, and A. J. Heeger, to be published.

 3 L. W. Shacklette, N. S. Murthy, and R. H. Baughman, Mol. Cryst. Liq. Cryst. 121, 201 (1985).

D. Davidov, S. Roth, W. Neumann, and H. Sixl, Z. Phys. B 51, 145 (1983).