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Charge-density waves with electron-electron interactions
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Charge-density ~aves (CDW) in one-dimensional conductors are studied by treating the electron-phonon
interaction in the adiabatic limit, while weak-coupling electron-electron interactions are solved by
renormalization-group methods. An exponent 5 defines a renormalization of the effective electronic energy
and gap. For a half-filled band system with a backward scattering g& & 0 (g& ( 0), a bond- (site-) centered
CDW is enhanced. We also consider effects of disorder, such as in polyacetylene, and estimate 5 by the
phonon-gap relation.

The appearance of a charge-density wave (CDW) in the
ground state of a one-dimensional (1D) metal was noticed
by Peierls' in an electron-phonon system. In the last decade
or so, many compounds were found which exhibit
CDW's, ' and the need for solving a more realistic model
became increasingly important.

The Peierls solution involves two assumptions: (a) the
adiabatic limit for the phonons, and (b) neglect of direct
electron-electron (e-e) interactions. The first assumption is

justified when the phonon frequency ~ is low compared
with the gap 2A in the electron spectrum. This situation is
valid in many compounds, particularly in polymers such as
polyacetylene. The second assumption, however, may not
be justified even for weak interactions. It is thus the aim of
this paper to solve the CDW problem in the adiabatic limit
but with weak e-e interactions.

The problem with on-site and nearest-neighbor interac-
tions was studied by perturbation theory, by finite-chain
calculations, by Monte Carlo simulations, and by a varia-
tional procedure. Also, the spinless electron case was
solved exactly. Here we consider the general situation of
e-e backward and forward scatterings with couplings gi and

g2, respectively, and umklapp coupling g3, which is present
in a half-filled band. %e use the renormalization-group
(RG) method, '0 which is valid for weak coupling b. « A,
where A is an electronic cutoff energy (2A = electronic
bandwidth) .

For incommensurate systems (g3 = 0), we find that a
CD% is enhanced by long-range repulsive interactions. For
a half-filled band there is a significant distinction between a
bond CDW and a site CDW, i.e., a CDW with its extrema
centered on bonds or on sites. For gi ) 0 bond CDW is
enhanced, but a site CDW is eliminated by the e-e interac-
tions. For g] (0 both types of CDW are enhanced, with
the site CD% more strongly enhanced. The effect of e-e
interactions is contained in a single exponent 5, which af-
fects both the gap 24 and the renormalized phonon fre-
quency co~. By introducing a varying degree of disorder, a
functional relation of 5 and co~ is obtained, and this
phonon-gap plot can determine 5 and a disorder exponent p.

I

A CDW describes an ion displacement with wave vector
2kF (kF is the electron's Fermi wave vector) and amplitude
4~. The Hamiltonian depends on 4~ in the form"

H~ = Ed X ak +k /3 k +k ~+H.c. +Ad /(2mwFX), (1)
k, a

where v~ is the Fermi velocity, A. is the dimensionless
electron-phonon coupling, and ak (g ) is the creation
operator for a right- (left-) moving electron with wave vec-
tor k and spin o-. The first term in (1) is H, ~b, the
electron-phonon coupling, while the second term is the pho-
non elastic energy. [If the band is not half-filled, + 2kF are
independent distortions and the second term in (1) has to
be doubled; i.e. , A. is replaced by X/2 (Ref. 11)].

The rest of the Hamiltonian contains the electron kinetic
energy H, with the conventional linearized dispersion for
the electrons and H, , with the e-e couplings g], g2, and
g3. ' (Here g; are dimensionless; i.e., they are those of Ref.
10 divided by 2rruF. ) These interactions correspond to
backward (gt), forward (g2), and umklapp (g3) scatterings.
The problem is solved in two steps. First, the e-e interac-
tions are eliminated by the RG integration and lead to a re-
normalized gap 6 and electron energy E;(Ad). The second
step is to minimize E(A )dtogether with the last term in
(1).

The 2kF vertex coupling bd corresponds to interacting
electrons with energy cutoff A. Perturbation theory in g
can be used to find the contribution of electron states with
energies between 03 and A (co & A) to a vertex function
b, (g, co/A). If this function satisfies a scaling relation'0
then the electron states can be successively integrated down
to the largest characteristic energy, which is either Ad or 5
itself. This procedure sums logarithmically divergent in-
tegrals [ —ln(co/A ) ], which are present only for
ru & max(Ad, b, ). This approach is valid for g « 1 and
ln(h/A) » 1 so that the logarithmic terms are indeed
dominant.

A straightforward summation of diagrams to second or-
der' in gI yields for the most diverging terms

A(g' ~/A) = Ad (I + (2gl g2 +g3) ln(~/A) + [(2gl g2+g3) p (gl g2) +glg2 g3(gl +g2)] ln (~/A)] (2)
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This is a scaling function if it satisfies a relation of the form

A(g" (g, A'/A), o)/A') = Z(g, A'/A)A(g, o)/A), (3)

where g are the renormalized couplings with cutoff A'. To
first order we need

Z (g. , A'/A) = 1+ (2gt —g3+g3) ln(A/A') + 0 (g')

which together with the known g (Ref. 10) shows that (3)
is satisfied also to second order. Equation (3) can now be
used to obtain a Lie equation:

ink(g, o)/A) = ink(g (g, A'/A), ru/A')
/cd

gy. The charge-density wave response function is given by'
' —28

QP 6 QJ 1muFN(h) =
A (o 25

where 5 is the same exponent defined above. Note that for
8 0 (no e-e interactions) this reduces to the Peierls result
ln(A/b, ). The phonon propagator with zero frequency is—[1—2h. vruFN(b )1, and 5 is a static solution if the gap
equation 1=2X7ruFN(A) (Ref. 13) is satisfied. An equiv-
alent way of obtaining the gap equation is to minimize the
electronic energy E; (Aq ), defined as

—2E; (Ag )/n uF ——(H, + H, , + H, ph )

1= —[ 2gg (g, cu/A) —g, (g, ru/A )

+g3 (g, o)/A) j (4)

with the last term in (1), i.e., BE;(Aq)/Bhq =Aq /2X. Com-
parison with the other form of the gap equation leads to the
electronic energy

Note, however, that for 5 & 0 the gap is enhanced;
4 & 4q, and therefore the lower integration limit is the re-
normalized gap h. Integrating Eq. (5) between the limits
A(g, 1)=hq and /3(g, A/A) =A yields a self-consistency
equation for 4, A = A~(A/A), or

A =A(A /A)'~" +'& (6)

The leading behavior is obtained by inserting the fixed point
values g,

' = g, (g, 0) with the combination 5 —= g2' —2gt'
—g3'. In conventional perturbation theory the integration
range is hq & cu & A with A(g;, 1) =Aq and A(g;, A~/A)

Equation (4) then yields

A = A(A, /A)'-'

E; (bg) =„muFN(Q')Q'dQ'
2/(1+ S)

1+6 A,
45 '. A

The gap equation is then
r ' 1/28

5=A
5+X

and for the ion displacement
r (1+S)/2S

Ay=A 5+ A.

2

45

(10)

The exponents in Eqs. (6) and (7) coincide to first order
in 5, but differ in higher orders. As shown below, a CDW
is present in the ground state only if 8 ) 0, and then Eq. (6)
is appropriate.

From the known fixed points'0 the exponent 5 can be
determined as summarized in Table I. Note that when 5 is
of order 1 the second-order RG used here is not sufficient.
More reliable values are known for —gt = Ig3I =

6 (Ref.
10). In the following, however, we do not need the precise
value of 5.

We next derive the gap equation and the electronic ener-

Equations (9) and (10) show that A increases with 5
while Q reaches a maximum, though at a value beyond our
weak-coupling assumption. N(b, ) diverges at 6 0 for all
5 & 0, and a CDW is then present in the ground state. For
5 ( 0 the ground state does not show a CDW. Note that a
CDW in the present adiabatic limit has long-range order.
Allowing a low but finite phonon frequency, the half-filled
band still has long-range order, while the incommensurate
case has only algebraic order.

We now discuss the results in Table I and compare them
with other methods. The most reliable value of 5 is for the
incommensurate case with g3 ) 0 (Ref. 13), since 5 is small.

TABLE I. Second-order renormalization-group results for the CDW exponent 5.

e-e couplings Type of CDW

g1 & 0, g3=0

g1&0, g3=0

2'

g~ & 0, lg3 I
) gj 2g2

g~ ) O, lg3 I & g3

@ & 0, lg31 & gl 2g2

incommensurate

incommensurate

bond

site

bond

site

bond or site

bond or site

2 +g23 1

1

2

1 [y+(g 2g )2 g2 ]1/2

[ (2g g )2 g2 ]1/2

2
—

2 [(g1 —2g2) —
g3 ]
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If the long-range coupling dominates g2 & g~ /2, then 5) 0
and the CDW is enhanced. When 5 is of order 1, its value
is not exact, but can still be used to compare relative
enhancements in different regimes. When gl = g3 = 0 a
transformation into a boson system followed by a first-order
RG (Ref. 14) leads to

25 = 1 —[(1—2g2)/(1+ 2g2) ]'

A Bethe ansatz solution yields

5= (2/vr) cot '(g2/2) —1

both X and 4 from their ordered values P~, 4p. The reso-
nance condition for Raman scattering allows us to deter-
mine &/X as a function of 5/bp. '6 Data on trans (C-H)„or
-(CD)„show the relation g /A. = 1 —0.371n(b/dg) for
0 & In(5/d~) & 0.7, while for trans cls -mixtures g /A. = 1
—1.01n(h/Ap) in the available range 0 & in(h/Ap) & 0.2.

The effect of disorder is described'6 by adding to Eq. (9) a
term —lY or b4~~ '+ . The power p signifies the type of
disorder and b is its strength. Eliminating b from the modi-
fied co~ and 4 equations yields the phonon-gap relation

~ /Z = 1 —(2 —p) In(b. /Ap)
both results yield, in weak coupling, 5= g2, as in Table I.

The most studied case in that of the half-filled band with
a Coulomb repulsion 27rvF V & 0 between electrons rn sites
apart. The case with a real Ad implies" that the CDW

+ (2 —p ) (2 —p + 5 ) ln' (5/Q ) + 0 (ln' (b,/Q ) )

(12)

bd exp(2ikFx) + H.c.= 2bq cos(2kFx)

is a site CDW. In this case a decomposition into slowly
varying right- and left-moving fields" yields gl ——g3

( —1) V, while g2 =g V . (These are the 2kF
and zero Fourier transforms of V . ) When Q is ima-
ginary, the CDW is 2~+ ~sin(2kFx); i.e., it is a bond CDW.
Our derivation with a real Ad holds after the transformation
t2k lak, , since then the form of Eq. (1) is retained with a
real ~4d ~. This transformation has the effect of changing
the sign of g3, i.e. , gl = —g3 = g ( —1) V . This sign
change is significant since V & 0 and Ig31& gI 2g2 g3
is then relevant; i.e. , it flows to a large value gf =sgn(g3).
Thus, even if g3 is small, its sign results in a large change in
its renormalized value. For gl & 0 bond order has 6= 2,
while site order has 8 ( 0; i.e., a site CDW is not a possible
phase. If gl & 0 both types of CDW are possible, with the
site CDW more strongly enhanced.

Monte Carlo simulations' show that Vp(= U) enhances
the bond CDW while a site CDW is reduced, in qualitative
agreement with our results. Finite chain calculationg show
that Vt & U/2 favors a bond CDW while VI & U/2 favors a
site CDW; a presence of V2 favors bond CDW even if
VI & U/2. This is clearly consistent with our results, since
gl ——U —2VI+2V2 in this model; gl & 0 favors bond CDW
while gl & 0 favors a site CDW.

An important consequence of our theory is the frequency
of oscillations in Ad, which is measurable by Raman

scattering. An effective Lagrangian is obtained from Eq.
.(9) with the kinetic term (BAd /Bt) /(27rkvF pup), where cop

is a bare phonon frequency. Expansion around the
minimum then yields for 2R = (co~ /cup) [or 2A.

= +~=I (re~/cu„) with X normal modes'5]

i.=(~+5)/(1+5) .

Finally, we comment on Raman scattering data of po-
lyacetylene (CH)„and show how disorder effects can yield
information on the coupling constants. Disorder changes

This relation is consistent with data on mixtures and yields
p = 1; 5, however, cannot be determined due to the limited
range of the data. Data on trans (CH)„d-o not fit Eq. (12)
with 5 & 0. Instead, "intrinsic" disorder is assumed i.e.,

is replaced by X(1+b). The phonon-gap relation be-
comes

2, /i. = I —2~ ln(A/Ap)
—2KB ln (5/6o) + 0 (ln3 (6/b, ) ) (13)
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The accuracy with which the linear term fits the data implies
0 & ~8~ & 0.3. Both types of disorder may correspond to b

being a scaling variable. The effect is then described by a
crossover function, which for weak disorder replaces E; (Ad )
by

E, (~, ) [I+b~)~ '"""']-
Intrinsic disorder has, then, p =2, while "extrinsic" disor-
der has its leading term with p = 1.

The expected fixed point in Table I is 5=
2 . The data

then implies that g are small and that the RG integration
range [In(A/A) = 2 in (CH)„] is not sufficiently large to
fully renormalize g. If g ln(A/A) « 1, then just perturba-
tion theory [Eq. (2)] yields 8 =g2 —2gt —g3. Note that the
on-site interaction U cancels in this expression. Thus an in-
termediate U can affect soliton excitations, ' while the effect
on the ground state (through 5) is weak.

In conclusion, we have shown that the Peierls model can
be solved also with weak e-e interactions. Of particular im-
portance are phonon-gap plots which allow us to test the
cog —4 functional relation and yield information on the mi-
croscopic coupling constants.
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