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Resonant Raman scattering is used to quantify the effect of disorder and extrinsic order on
Peierls systems such as (CH)„. We introduce "k plots" in which the phonon and gap distribution
are related and characterize the system by the functional dependence of the gap 2A on the coupling

For cis-rich trans-(CH)„ the disorder is extrinsic with energy A~ and p = 1. For all trans (CH)„-
the 2 plot yields intrinsic disorder, i.e., variation in the e pcoupl-ing. cis-(CH)„ is ordered with a 5 lo

extrinsic gap of the full energy gap of 1.95 eV.

PACS numbers: 78.30.Jw, 71.38.+i, 72.80.Le

It is now well established that fully conjugated poly-
mers, of which trans-polyacetylene is the simplest ex-
ample, undergo a spontaneous symmetry-breaking di-
merization due to the Peierls instability. ' The strong
electron-phonon (e-p) interaction renormalizes the
phonons and thus uniquely allows analysis of the elec-
tronic system by investigation of the phonon spec-
trum. The technique most suitable for this is resonant
Raman scattering (RRS), since the RRS cross section
is strongly peaked at the electronic energy gap, 2b.

In this work we introduce a method based on RRS
which permits analysis of various modifications of the
Peierls-type interaction using a "A.-plot, " a plot of an
experimentally determined parameter X [see Eq. (3)
below], or I/A. , vs in(2b, ). The method is especially
powerful in quantifying the effect of disorder on in-
homogeneous Peierls systems, where the phonon and
gap distributions are correlated.

When our method is applied to polyacetylene (PA)
it is found that while the disorder in all trans-PA is in-
trinsic and originates from variations in the e-p cou-
pling ), that of vis-rich trans-PA is extrinsic and re-
flects a breaking of the twofold ground-state degenera-
cy. In ordered systems having an extrinsic gap 5, in
addition to the dimerization gap 4d, A=Ad+5„"
each contribution can be determined separately. For
cis PA we f-ind 2b,, = 0.11 eV and 2b, = 1.95 eV.

We describe the resonantly enhanced Raman vibra-
tions in terms of amplitude modes (AM) associated
with oscillations of the dimerization. In this theory
the gap and the phonon spectrum are respectively
determined by the first and second derivatives of the
electronic condensation energy (H„) = —N (0)E, , de-
fined as the electronic energy in the dimerized state.
N (0) is the density of states at the Fermi energy in
the undimerized chain, N(0) = (7rt), where t is the
nearest-neighbor transfer integral. In the dimerized
chain, the ground-state gap 2A is determined by the

equilibrium condition

eE, (~)/a~, = ~,/2l . (1)
The renormalized phonon frequencies co„are given by
the solutions of

(co p)'
p 2

n

1

1 —2x
(2)

E;(b, ) = Ep(A) + bbP, (4)

where Ep(b ) is the condensation energy of the pure

where co„and X„are the bare phonon frequency and
the corresponding dimensionless e-p coupling, respec-
tively, for each mode, and A. = XA.„. In Eq. (2) A. is
the renormalization parameter given by

2A. = 1 —2A. "d E; (b, )/Bb, d. (3)
2g can be evaluated from the RRS experimental fre-
quencies, by use of the product rule for AM 2 3:

R/ p)2

The AM RRS cross section a-~ is strongly peaked
at the laser energy hcoL ——2A. Therefore it is obvious
from Eqs. (1)—(3), how one can analyze the electronic
system using RRS: o-~ is peaked at 2A determined by
E, while the co„are determined by E,". Therefore,
the form of E, (A) can be inferred from the experi-
mentally determined relation b, (X). Since E; (Is, ) con-
tains all the interactions (e.g. , e p, e e, impurit-ies, a-nd

disorder) the experimental determination of its form is
essential.

We now discuss the modifications of E; (Is, ), 2A, and
2X caused by intrinsic or extrinsic disorder. Intrinsic
disorder is defined as a distribution in the coupling
constant (e-p and/or e-e). Other contributions to E;
such as impurities or defects are defined as extrinsic
disorder. Since the effect of extrinsic disorder on E; is
small, we expand E, (b, ) leaving the following leading
term:
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system. The disorder is represented by a distribution
in the values of b. When Eo(h) has the inversion
symmetry 5 —6, p = 1 breaks this symmetry, and
the ground state becomes nondegenerate. But when
the disordered system itself has the symmetry

—6, the leading term in Eq. (4) has p = 2.
An example of 6 —5 symmetry breaking is soli-

ton defects in trans-PA. ' Another possibility for p = 1

is finite open chains —the ends prefer double bonds
which thus determine the sign of 6; the effect is
stronger (larger b) for odd chains which contain neu-
tral solitons. An additive extrinsic gap component 5,
fixes the sign of 4 and thus corresponds also to p = 1.
For weak impurities which collectively form one-
dimensional (1D) or 2D domains with opposite dimer-
ization signs5 we find p = 2.

For a 1D Peierls system 5 = bd and Eo(h) is given
by3, 6
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E (b) = —,
' 6'[in(2E, /6)+ —,

' ], (5)

where E, is a cutoff energy; for a tight-binding ap-
proximation E, =4t. With use of Eqs. (1) and (3) we
find in this case a gap 2AO ——4E, exp( —I/2X) and a re-
normalization parameter A.p

= ~.
With insertion of Eq. (5) into Eq. (4) and use of Eq.

(1) the ground-state gap equation becomes
-'t.63

0

0.04
0.07
0.89

I/2A. = In(2E, /5). (8)

We recently discussed the RRS from AM in
trans-PA [Fig. 1(a)] where a distribution in A. [P (A. ) ]
causes the dispersion of cu„with coL. The structure of
each line is composed of a primary line co~ and a satel-
lite t0„'. Both components are determined by Eq. (2):
the primary by the peak of P(X) and the satellite by
the resonance condition ht0L =26, (X). To obtain a

pure experimental relationship we normalized the AM
product-rule relation at h coL ——2.7 eV:

3

j I [oo„'(2.7)/o)„'(t0L) ]'= i. (2.7)/i. (c0L ).
n= 1

We plot this relation vs In(itcnL ) in Fig. 2(a). The
Peierls relation [Eq. (8)] is clearly consistent with the
data with E, = 6.3 eV. This shows that the disorder in
trans-PA is intrinsic and can be described by variation
in A. . From E, =6.3 eV we get t =1.6 eV which is
within the acceptable range of the nearest-neighbor
transfer integral. '

ln(b/60) = bpA~ (6)

In terms of 4p and A. p of the pure system, our basic X-

6 relation is

)/), = (2 —p)ln(a/b, ,) +1.
On the other hand the X-6 relation for intrinsic disor-
der in the Peierls system with variation in A. is
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FIG. 1. (a), (c) RRS spectrum of all trans (CH)„and a-
95'lo cis 5'lo trans sa—m-ple-[data of Lefrant et ai. (Ref. 8)].
(b), (d) The function Do(oo) for the trans and cis isomers
and the respective co„, X„/X values. The horizontal lines P,
I", S', and C give respectively the frequencies of the pri-
mary peaks in all trans (CH)„[P in F-ig. 1(a)], the primary
and satellite peaks of the 5% t(c) sample [P' and S' in Fig.
1(c)],and the peaks of the cis isomer [C in Fig. 1(c)].

The experimental straight line of Fig. 2(a) can be
used to test any theory that attempts to include direct
Coulomb interaction or short-chain distribution to ex-
plain the RRS data in trans-PA. Consideration of a
distribution in the e-e interactions in either Hartree-
Fock theory or in strictly 10 system leads to X-5 re-
lations which are incompatible with the data. This jus-
tifies our formalism, retaining only e-p interactions.
The Huckel-type short-chain model " is also not
compatible with the experimental X-5 relation of Fig.
2(a), unless one postulates an ad hoc variation in both
t and A. with the length of the chain.

The dispersion co„(cuL) in trans chains in partially
isomerized PA samples [denoted t(c)] is very dif-
ferent from that of trans-PA. This is shown in Fig.
1(c) for a 5% t(c) samples [similar behavior is ob-
served also for a 20% t(c) sample ' ]: (i) The pri-
mary frequencies of t (c), o&g', are higher than those of
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FIG. 2. (a) The product II [a)„'(2.7)/o)„* j'= ) (2.7)/i.
(n = 1—3) vs In(tcuL ) for all trans (CH)„at 300-K (Ref. 3).
(b) The product g(co„"/co„) = 2/ko (n = 1—3) vs ln(t~t. )
for t(c) samples at 80 K (Refs. 8 and 12). P corresponds to
the primary frequencies of all trans (CH), The-full li.ne
through the data points is a linear fit with slope of 1. The
dashed curve describes the expected variation for an intrin-
sic disorder mechanism [Eq. (8)].

0.8 0.9

all trans, cap. (ii) The satellite frequencies co„" shift to
substantially higher frequencies compared with co„ in
all trans [Figs. 1(a) and 1(c), A. L

= 647 nm]. (iii) ca„"
are extremely sensitive to small changes in ~L. This is
demonstrated in Fig. 1(b) where the horizontal lines
intersect the Do(ca) of trans PA and yield cup, -ca~', and
cu„" at A, L ——647 nm. We conclude that A. which deter-
mines the peak of P(k) is higher in t(c) samples
compared with that of aII trans PA and that th-e X(coL, )
relationship in the t (c) samples of cis-rich PA is ex-
tremely different from that of all trans samples. This
means that the inhomogeneity in t(c) is quite dif-
ferent from that of all trans.

To obtain a pure experimental relationship we nor-
malize the AM product-rule relation for c0„*' in t (c) by
co~ of trans-PA:

3

II (o)„"/c0t') 2 = i./ko.
n=1

We plot this relation in Fig. 2(b) vs In(tcuL) for 5%
t (c) 8 and 20% t (c).' The straight line has a slope of
1 and from Eq. (7) we conclude that p = 1 and b & 0.
To emphasize the difference between the RRS disper-
sion in t (c) and that in trans PA-, we plot in Fig. 2(b)
(dashed line) the k-5 relation for intrinsic disorder
[Eq. (8) with E, =6.3 eV] as X vs In(itt0L). The
dashed curve clearly does not fit the t(c) data. We
therefore conclude that the disorder in t (c) is extrinsic
with p = 1. In general p = 1 corresponds to a structural
asymmetry, i.e., a breaking of ground-state degeneracy
induced in the trans chains during the isomerization
process. In cis-rich t (c) samples where short-chain ef-
fects are probably more relevant, the ) plot of Fig.
2(b) is very different from that of Fig. 2(a) for trans
PA This indicates that short chains are unlikely to ac-
count for the RRS data in trans-PA.

The distribution in the homogeneity parameter b
translates into a distribution in P, [see Eqs. (6) and
(7)]. The RRS response of t (c) is then double peaked
[Fig. 1(c)] corresponding to ta„determined by Eq. (2)
with different values of X. The primary frequencies
so~' are determined by X of the maximum in the distri-
bution, whereas the satellites m„" are due to X at reso-
nance: 2b, (P, ) =tcoL. We have successfully fitted the
complete t(c) RRS spectrum at different taL using
Do(cu) of trans PA-

For polymers with an additive extrinsic gap com-
ponent 6, such as cis-PA or polythiophene, ' the full

gap can be written as 2A = 2A, + 2hd, where 5, is
fixed. In this case the confinement par ameter4

y = 5,/2kb, measures the relative strength of
trans PA correspon-ds to y=0. Using Eqs. (1) and (3)
in the Peierls approximation [Eq. (5)] we find for the
ground-state gap b, = Ao exp(y), and for the renormal-
ization parameter X= X(1+y). We use these rela-
tions to analyze the electronic properties of cis-PA.

Unlike the symmetric trans, the asymmetry in the cis
backbone structure' causes the third-nearest-neighbor
distance to alternate in phase with the dimerization
pattern 6 2t3 (t3 is the third-nearest-neighbor
transfer integral) . In cis PA (as i-n trans-PA) the
predicted' three Ag modes below 2000 cm ' are
strongly coupled to the e1ectrons; these lines are
marked by the letter C in Fig. 1(c). The RRS lines are
much narrower than those of trans PA and do not shi-ft

with cuL, indicating that cis-PA is ordered. Using the
three RRS frequencies and the two available relative
intensities we show in Fig. 1(d) that we have found a
function Dz" (t0) and a value of 2A. =0.42 [line C in
Fig. 1(d)] which fit the cis PA RRS spect-rum.

Using 2k = 0.37 and 260= 1.7 eV as for trans-PA
and the relations for A, (y) and for b, (y) concluded
above, we derive y = 0.15, 2A = 1.95 eV, and 2b, ,
=0.11 eV. The value found for y is much smaller
than that anticipated before'; however, the calculated
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full gap of 1.95 eV coincides with the band-edge pho-
toluminescence found in cis-PA. ' Moreover, we
found that the derived value of ~, is in reasonable
agreement with the value of the third-nearest-neighbor
transfer integral in cis-PA structure.

In conclusion, we have shown an efficient method
of analyzing the effects of disorder in conjugated poly-
mers and demonstrated it in trans, trans-cis mixtures,
and cis polyacetylene.
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