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Sohtons in the Peierls condensate: Phase solitons
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The electron-phonon system in one dimension is studied within the adiabatic (Hartree) and
Hartree-Fock approximations. The equations of motion for the Peierls order parameter at zero
temperature are derived from a microscopic Hamiltonian and an effective Lagrangian is construct-
ed. Charged phase solitons describe systems whose electron density is at or near M-fold commen-

surability with M &3. For M=2, the order parameter is real in the adiabatic approximation, but
becomes complex when both acoustic and optical phonons are coupled, or for a nonadiabatic theory.
The latter is studied with a Coulomb exchange force and phase solitons are derived. The soliton

charge is 2/M for all M & 2. When M =4, the pinning potential can be anomalously low, in agree-
ment with data on TaS3 and similar compounds.

I. INTRODUCTION

Thc clcctfon-phonon system ln onc space dimension ls
of considerable interest, both theoretically and experimen-
tally. ' Peierls noticed that the system is unstable to-
wards formation of a charge-density wave (CDW) with
wave vector 2kF, where ky is the Fermi wave vector, and
formation of a gap 2b, at the Fermi level. The system is,
however, not a simple semiconductor; as shown by
Frohlich, the CDW can move rigidly and carry current.
This motion is pinned by either impurities, interchain cou-
pling, or commensurability. The Frohlich mode then ap-
pears as an infrared "pinned mode" or in dc conduction
when the field exceeds a threshold value.

Here we focus on commensurability pinning, which is
present when the CDW wavelength is commensurate with
the underlying lattice constant a, i.e., 2k'/(2m/a) =X/M
is rational. The integer M is defined as the order of com-
mensurability. This system is of further interest as it
leads to the well-known sine-Gordon equation for the
phase field. ' Rice, Bishop, Krumhansl, and Trullinger7
showed that the soliton solutions of this sine-Gordon
equation carry charge, and being thermally excited they
contribute to the conductivity. The soliton is translation-
ally invariant, unlike the commensurate system, and there-
fore restores the conductivity associated with the Frohlich
mechanism.

Another manifestation of solitons is the description of
systems near commensurability. In these systems the
ground state consists of commensurate regions separated
by "discommensurations, " or a "soliton lattice. "'
The single soliton is a limit of an incommensurate system
becoming commensurate. Here the solitons are in the
ground state and not thermally excited as in the commen-
surate case.

The derivation of the soliton-bearing equation from the
microscopic Hamiltonian was reported in Ref. 8, where
thc Qonllncar lntclactlon was duc to lntcl'chain coupling.

In Sec. II the details of this derivation are given and the
case of Mth-order commensurability, M&3, is studied.
The adiabatic (or Hartree) approximation is used and the
effective Lagrangian is derived in terms of the amplitude,
phase, and their derivatives up to second order. The adia-
batic approximation is justified when the phonon frequen-
cy too satisfies cooed„' or when interchain tunneling is
large compared with h. '~ In the latter case the system ls
three dimensional and solitons are then two-dimensional
domain walls.

We study here solitons whose charge is 2/M and spin is
zero. Spin-carrying solitons are also known' '; these
are usually described- by singly occupied gap states. '
The derivative expansion is useful in this case only if the
system is near coexistence with a spin-density wave.
This will be further studied in a subsequent article.

The case of the half-filled band M =2 is studied in Sec.
III. In the adiabatic (Hartree) approximation the order
parameter is real and phase solitons do not exist. The ef-
fective Lagrangian does not allow amplitude solitons
where the amplitude reverses sign, since the derivative ex-
pansion diverges when the amplitude vaiiishes. Thus the
phenomenological derivation of amplitude solitons' is not
justified. Indeed, when avoiding the derivative expansion,
amplitude solitons can be found. Another subse-
quent article will discuss these solitons in detail.

The order parameter for the M =2 system becomes
complex when the electrons couple with two phonons
whose coupling constants are out of phase, e.g., acoustic
and optic phonons. Acoustic phonons prefer the CDW
maxima to be in between sites, while optic phonons prefer
them on sites. The phase variable describes, then, the in-
terplay bctwccn these two posltlons.

A similar situation occurs when a single phonon cou-
pling is considered beyond the adiabatic approximation or
when direct electron-electron interactions are present. In
particular, the system with an exchange long-range nonre-
tarded (e.g., Coulomb) interaction is considered. The or-
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der parameter is complex and phase solitons are found as
reported in Refs. 25 and 26. The details of this derivation
ale glvcil 111 Scc. III Rlld tllc possibility of all aftl'Rctlvc 111-

teraction between solitons is studied.
Section IV summarizes the results, and the relevance to

experimental data is studied. In particular we find that
when M/4 is an integer and the tight-binding approxima-
tion is used two relevant matrix elements vanish. The
commensurability potential is then reduced to about that
of an M+2 system. This can explain the low depinning
fields of TaS3, (M =4), and similar comr)ounds.

The Appendixes give derivative expansions, the relevant
continuity equation, diagrammatic derivations, and a suf-
ficient condition for attraction between solitons.

II. EFFECTIVE LAGRANGIAN: M & 3

In this section the electron-phonon system in one di-
mension is studied for incommensurate or M&3 com-
Inensurate systems. The average charge density is

po
——2kF/n. and the order of commensurability M is de-

fined by

2kF /(2m/a) =p()a /2—=X/M,

with X,M reduced integers. Thus the fraction of filled
states in the electron band is X/M.

The electron-phonon Ham1lton1an 1s g1ven by

H=gekC kC k+ pe, qRqC kC k q+gcoqaqaq, (2)

where C, k and Rq are the electron and Phonon oPerators
with momentum k and q, respectively, s is the spin index,
Rq ——aq+a q, ek and uq are the electIon and phonon
dlsPers1ons, and gk q 1s the electron-Phonon couPllng con"
stant. In the tight-binding model, which has been applied
to polyacetylene, "
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FIG. 1. Electron spectrum for an M =5,X= 1 commensurate
system, i.e., k~ ——m. /(Sa). Important regions of electron states

[Eq. {4)]are marked. Commensurability energy involves five re-

peated 2k~ scatterings 1~2~3—+4—+5—+1. Energy is mea-

sured from the Fermi level and is shown in units of 2t for a
tight-binding spectrum with t the transfer integral. Extended-
zone scheme is used.

~q Sk~, 2k~R2k~+q '

For the relevant states in Eqs. (4) and (5) with
I
"

I «kp
I q I

«2k~ the, dependenc~ of gk +k 2k„+q on k,q is

neglected and also ~q 1s replaced by 0=~2kF.
The approximated Hamllton1an ls now decomposed 1nto

H =H&c+Hc. The incommensurate part H&c contains
only the states m =1,2 near the Fermi surface. With the
use of linearized spectra,

&+k„+k ——+upk (
I
k

I
((k~)

g(, q
———4ai sin( —,

' qa)cos[(k ——,
' q)a], (3) where U~ is the Fermi velocity, and a dimensionless cou-

pling,
where a is the lattice constant and a is a constant. In ad-
dition to the Hermiticity condition gk q

——gk q q, Eq. (3)
also satisfies gk q

———g k q. The latter condition is a re-
sult of an inversion symmetry which applies in general to
acoustic phonons. On the other hand, coupling with a po-
larization field, i.e., optical phonons, has opposite parity
and then gkq

——g k q. An examPle is gkq
——g, a con-

stant. "
In the following we consider the weak coupling system

where only phonons with q =+2k~ are iInportant and the
relevant electron states are

C,'k'=C, (3 3 )k +k, m =1,2, . . . , M, Ik I
«k~. (4)

A =2
I gk, ,ik, I

'/(truznio»

we obtain

S,k

+ y (g C(1) C(2) +H )
s, k, q

+(An.up) 'g(
I hq I

3+
I
5 Iz/ru()) .

Thus C,"k' and C,'k' describe states near the Fermi surface
while the states 3 (m &M are far from the Fermi surface.
The range of wave vectoI's k can be formally extended to

I
k

I
&kF and then the states in Eq. (4) cover the whole

phase space. The states 3 & m &M connect the important
Fermi-surface states by multiple scattering of 2k' pho-
nons, as illustrated in Fig. 1.

We define the order-parameter field,

All sums involve
I
k

I
&(kF and

I q I
«2k~, and g

the conjugate momentum of bq (=Bb,q/Bt). In the last
term of (7) we summed both +2k+ components.

The commensurate part Hc involves the states which
are far from the Fermi surface. We are concerned below
with a small gap 5 at the Fermi surface, such that
&&(

I &(3 2m)k„I, 3&nt (M. We therefore neglect the

dependence of c'(3 2~)k +k on k and obtain
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Ma, = g ge c,', 'c,'„'
m=3 sk

M

gp a C'm'lC, 'm+,"
m=2 s, k, q

where C,'k +"——C"' and

Pm g(3 —2m)kp, 2kF /Skp, 2k~ &

&m =&(3—2m)k~

For the tight-binding model of Eq. (3),

P =cos[(m —1)2m.j&&i/M] .

(8) Note that for N &2 some of the energies em are negative.
All the approximations made in the transition from Eq.
(2) to Eq. (7) and Eq. (8) are justified in the weak coupling
limit b, « W, where W is of order of the bandwidth [see
Eq. (15)]; this is also known as the continuum limit. '

We define the Fourier transforms of the fields C,'k' and

by ug™(x)and b,(x), respectively, with 1&m &M.
These are slowly varying fields in the weak coupling case.
The Hamiltonian Eq. (7) + Eq. (8) finally becomes

M
II= g fdx —lUpug (X) llg (X)+EUpug (X) ug (X)+ g &mug (X)ug (X)

Bx Bx m =3

+ [A(x)ug" (x)u,' '(x)+b, (x) g p u,' ' (x)u,' +"(x)+H.c.]
m=2

(12)

The strategy which we use to solve the problem involves two steps. (a) The use of the equations of motion of u,' '(x)
to eliminate the electronic degrees of freedom in favor of the phonon field b,(x) and its derivatives. This is accomplished
by use of a derivative expansion in terms of the slowly varying field b, (x). (b) The second step uses the equation of
motion of the phonon field. Here we consider the adiabatic approximation, i.e., b, (x) is a classical field and its equation
of motion is derived from a variational principle. This can alternatively be derived from the Hartree term in a diagram-
matic expansion. Finally, an effective Lagrangian in terlns of b, (x, t) and its derivatives is constructed so that it repro-
duces the equations of motion.

A. Electron equations

In this subsection we use the electron equations of motion to obtain various electron expectation values in terms of
((x) and its derivatives. The equations of motion from (12) are

i u,'"(x,—t)= iUF u—,'"(x,t)+b(x, t)u,' '(x, t)+pktA (x, t)u,' '(x, t),

l ug '(x&t)—=iUF ug '(x&t)+5 (x&t)ug "(x&t)+p2b(x&t)ug '(x&t), (13b)

smug '(x, t) = Pmb, (x, t)ug —+"(x,t) Pm lh t(x, t)u,' "(x—, t), 3 &m &M . (13c)

The term iBu,' '(x, t)/Bt for 3 &m &M is neglected, since
we are concerned with states near the Fermi surface, i.e., it
is much less than e u,' '(x, t).

The states 3 & m &M can be eliminated from Eqs. (13a)
and (13b) by using Eq. (13c) successively. In this process
the state m is shifted to m+1, eventually reaching either
m =1 or 2. Two types of corrections are generated: Di-
agonal terms with m =1 in (13a) and I =2 in (13b) or
off-diagonal terms with m =2 in (13a) and m =1 in (13b).
Diagonal terms involve only the amplitude

I
Z(x, t)

I
and

amount to a shift in the chemical potential. These terms
are present even in the incommensurate system and unless
compensated for they will change the original value of kF.
We therefore add to the Hamiltonian a term which can-
cels the diagonal terms in the ground state,

2

sH =g fdx g u,' "(x)u,' '(x) ff (
I

5
I
)dx/ fdx .

s m =I[

(14)

M —2
—i'yo ( —1) &mM M

e
P2 =3P

(15)

To leading order f=
I
p2b,

I
/e3k . (N«e

I p2I =
I pM I

by inversion symmetry. ) The diagonal corrections are
neglected below. They lead to higher-order effects in
Z/W —renormalization of UF and an asymmetry between
solitons and antisolitons. (See Appendix A for details. )

The off-diagonal terms involve the product
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where 8') 0 is a large energy scale comparable to the
bandwidth, and —$0 is the phase of the right-hand side.
We define a new order parameter by

b, (x, t) =Z(x, t)+ ' e
[Z'(x, t)P-' —y, (16)

prM —2

5(x, t) =6(x, t)e'&'" "=b, , (x, t) i—52(x, t),
hi(x, t) =6(x, t)cosg(x, t),
b2(x, t) = —b,(x, t)sing(x, t) .

(17)

and the conventional ' amplitude 6(x, t) and phase P(x, t),
both real fields, by

The ion displacement field (Fourier transform of R ) is
given by

R(x, t)=Z(x, t)e /gk 2k +H.c. =26(x, )cos[2kFX+p(x, t) —pg]/g+0(b, '/gW ), (18)

where gk 2t,„=g exp(i Pg ).
The electron equations now reduce to

involves a slowly varying part, which is diagonal and gives
the density,

i P, (x,t—)= iUFo3— +b i(x, t)o i+62(x, t)o2 g, (x,t),

(19)

p(x, t) = i+Tr[—G, (x, t;x, t+)],

and a fast varying part which is the CDW,

pCDw(x, t) = —i+Tr I [o,cos(2kFx) +o2sin(2kFX) ]

(26)

where 1(t, is a spinor field, X G, (x, t;x, t+) )I, (27)

u,'"(x,t)
lP (X, t) =

u, (x, t)
(20)

where t+ approaches t from above.
The slowly varying part of the current operator is

UFg Q 03' with the expectation value,

and 0; are the Pauli matrices.
Consider next the time-ordered Green's function (2X2

matrix),

J (x, t) = —LUF Tl[ o3 Gg( xt|ixpt )] (28)

By using the zeroth-order solution in derivatives [Eq.
(Al)] and the sum Eq. (All),

G, (x, t;x't') = i ( T[g,(x—, t)g, (x', t')] ),
which, by using Eq. (19), satisfies

(21)
A(x, t) 2'

pcDw«, t) = —po
' » cos[2kF+p(x, t)],

UF kF b, (x, t)

i—+ivFa3 b, i(x, t)oi b2(x—, t)o2 G, (x,—t;x', t')
Bt Bx

(29)

G, (x, t;x't')=pe'F'" "' ' " ''G (co,p, x, t),
CO,P

(23)

=5(x — )x5(t t') . (22)—
By using the Fourier transform,

where E, is the electron cutoff energy, of the order of the
Fermi energy, or UI;kF.

The slowly varying observables, to first order in deriva-
tives are derived in Appendix A [Eqs. (A7) and (A9)] with
the result

Eq. (22) reduces to p(x, t) =pc+/'(x, t)/m, j (x, t) = p(x, t)/m, — (30)

. 8
&—UFP&3 —41(xit)o I —52(xit)%2+1 +lUFcT3

Bt Bx

X G, (e3,p;x, t) = 1 . (24)

The Green's function can now be solved in a derivative
expansion as shown in Appendix A. This expansion is
valid when i/i, UF iy'i,

i
b, /hi, alid UF(b, '/5)((6,

i.e., for a slowly varying order parameter.
Consider first the density and current observables. The

total density, p, = [p( a) ) —p( —oo ) ]/vr . (31)

where the prime is 8/Bx and the dot is a/at.
Note that the equation of continuity p(x, t) = —j (x, t) is

satisfied by the first-order result Eq. (30). The equation of
continuity is proven in general in Appendix B.

Although Eq. (30) is true locally only to first order in
derivatives, it is very important to note that the global
charge associated with any static localized configuration
of 6(x),P(x) (e.g. , a soliton) is given to all orders in
derivatives by

g(
~
u,"'(x)e +u,' '(x)e

i ), (25) To prove this we start from a ground state (b„P con-
stant) and switch on the nonzero value of Eq. (31) adiabat-
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ically. The exact conservation law (Appendix B)
p(x, t)= j'—(x, t) implies that after the switch on (taboo),
p(x) =F'(x), where F(x) is a local function of b(x), P(x),
and their derivatives. In other words, the accumulated
charge is the divergence of the time-integrated current at
the boundaries. From Eq. (30) we identify
F(x)=P(x )/m + derivative terms. At the boundaries
x =+ ao the derivative terms vanish and Eq. (31) is ob-
tained.

Thus to prove Eq. (31) we need the derivative expansion
(30) only far from the soliton center, where the first-order
term is sufficient. At the soliton center, (30) may not be
sufficient or the derivative expansion may even diverge—
still the proof holds and Eq. (31) is valid. There is, how-

ever, a single case for which the proof formally fails, and
that is when the amplitude A(x) vanishes at some x =xo.
This case can be considered in a limiting procedure, but
since the phase is not defined when b, (xo) =0 various lim-

iting procedures can differ by extra 2m rotations, and their
charges then differ by even integers.

Note that if h(x)&0 for all x, Eq. (31) is readily applied
to each spin component separately, resulting in

p» ——p„=—,p„' the soliton spin is therefore zero. To ob-

tain a spin-carrying soliton b, (x) must pass through zero
and then the difference p„—p„may change by an integer.
This can also be represented by different phases of the t
and $ density wave components. ' ' '

The soliton charge Eq. (31) is a well-defined observable
when the charge is measured by a smooth sampling func-

tion f(x) such that f(x)=1 over a region of width L
around the soliton and then falls to zero in a distance
I. ' ' The fluctuations in the soliton charge vanish when
I,L —+ oo. Note also that the integrated charge of the fast
varying part Eq. (29) with the sampling function vanishes
in the same limit.

5(Q~~H ~P) 5H
)5b, (x, t) 5Z(x, t)

(32)

The missing terms are

H + H =E 6 =0, (33)

since (f
~

1t ) is fixed by normalization.
By using Eq. (32) in the Hamiltonian Eq. (12) we obtain

B. Phonon equations

The model is now finally solved by considering the
equations of motion for the phonons, or for the order-
parameter fields b, (x,t). In the adiabatic limit h(x, t) is
considered a classical field which minimizes (P

~

H
~
g).

The expectation value is taken with respect to the electron
operators, and

~
g) is an electron eigenfunction, i.e., at

any given time t, b, (x, t) is considered as a static potential
and Eq. (13) is solved to find

~ f ), i.e.,
H

~
P) =E[4(x,t)I

~
P). This is the adiabatic limit —the

electrons follow instantaneously the ion positions. The
Feynman-Hellman theorem then states that

M
A(x, t)+ 2

—— Amvzg (—u,' ' .(x, t)u,'"(x,t))+ g P* (u,' +" (x, t)u,' '(x, t))
COO S m =2

(34)

Equation (13c) is now used to eliminate u' ' in favor of u'" or u' '. Diagonal contributions, (u' ' u' '), m =1,2, are
again neglected. Adding the contribution of (14) to (34) precisely cancels these terms in the ground state. For the effect
on excitations see Appendix A. There are M —1 equal off-diagonal terms, and with definition (16) we obtain, to lowest

order in 6/8'and 5,
~ ~

b(x, t)+ 2
—M ' e '= Anuzg(u, —(x, t)u, (x,t)) .

b, (x, t) [b, (x, t)] (2)~ (&)

coo 8'
S

(35)

This is also known as the self-consistency equation; the
electron wave functions in presence of the potential b, (x, t)
[Eq. (19)] have to reproduce this potential via Eq. (35). A
similar set of equations is known in the theory of super-
conductivity as the Bogoliubov —de Gennes equations.

An alternative method of deriving Eq. (35) is di-
agrammatic perturbation theory. '" The Hartree approxi-
mation [Fig. 2(a)] is equivalent to the adiabatic limit. It is
justified when coo«b, (Ref. 13) since all other diagrams
involve virtual phonon lines which contribute powers of
coo/h. This was also demonstrated for the phonon ex-
change term' [Fig. 1(b) with phonon exchange]. The con-
dition mo«h is the precise criterion for the validity of
the adiabatic approximation. The Hartree approximation
is also justified when the interchain tunneling is large
compared with 6, and small-momentum phonons are
neglected. ' Details of the diagrammatic approach are
given in Appendix C.

(a) (b)
/

(c)

-kF -5kF ( 5-2M)kF +k

FIG. 2. Contributions to the electron equation of motion: (a)
Hartree (or direct) term, and (b) exchange term. In both (a) and
(b) solid line is the 2&(2 electron's Green's function in the spinor
representation, Eq. (22). Wavy line is the phonon's Green's
function. (c) Umklapp scattering in an Mth-order commensu-
rate system [Eq. (1)]. Electron with momentum —kF is scat-
tered M —1 times to a kF —2m%/a (same as a +k~) state. Here
solid line is an electron in the normal (not spinor) representation.
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We proceed now to eliminate the electron degrees of
freedom from Eq. (35) by using the derivative expansion
for the right-hand side to second order. Since this is a
rather tedious calculation, it is worthwhile to consider
first a simpler situation where the amplitude b, is assumed
constant, b, (x, t) =b,o, and only a single equation for P(x, t)
is needed. In analogy with the derivation of the continui-
ty equation (Appendix B), multiply Eqs. (22) and Bl by
o.3, substract their traces, and take the limit t'~t+, x'~x.
The result is

1 8 . c}J(—x, t) uF —p(x, t)
Bx

—41m[k (x, t)(u,' '(x, t)u, (x,t)}]=0. (36)

Now we can use the derivative expansions to first order
Eq. (30},and from Eq. (35) we obtain

46o "
2 4~ 5o

1+ 2 P vt, P"+— sin(MP+Po) =0 . (37)
A coo ~M —2

The more general coupled equations for h(x, t),P(x, t)
are obtained from the derivative expansion in Appendix
A. Substituting Eq. (A17) in Eq. (35) we obtain (choosing
for simplicity Po

——0)

2Ec
b.= A,kin + 2 (hp —6)

~o

126
(uFE' —vFb, b,"—5 +b,h)

N(0)=2/(m. uF) is the density of states, and the effective
phase and amplitude Inasses are given by

My/m =1+45 /ko Mt, /m = I+125 /Atoo . (41)

The overall prefactor in (40) is determined so that the
corresponding Hamiltonian is the correct energy density,
e.g., the first term in (40) is the electron condensation en-

ergy

g [«k+~'}'"—
I

~k
I 1

kgo

E„=+[(u k) +
I

6
I

+2
I

b,
I

cos(M$+$ )/W ]'

+ [( k)2+ g2] l/2 (42)

where Eqs. (16) and (17) were used and lowest order in
b, /W is retained. To the same order, the phonon energy
becomes

/A~uF = [6 2(b, /W —)cos(MP+Po)]/AmuF .

The space and time derivatives correspond to the energies
involved with local fluctuations in the density or current
[see Eq. (30)] and to the ion kinetic energy.

An alternative method of deriving the commensurabili-
ty effect is to diagonalize the Hamiltonian (12) in momen-
tum space considering b, and P to zeroth order in deriva-
tives. This is in accord with the derivative expansion
where both derivatives and b, /W are small. The only
phase-dependent term in the determinant of (12) is the
product 6 + 2P +H.c. Neglecting the phase-

independent terms as above, the low-lying eigenvalues

I
Ek

I

«Ware

+Md, (h/W)M cos(MQ), (38) (43)

4A

+ 4 (b/W) sin(MP) =0 .4M

(39)

Equation (36), in fact, leads to Eq. (39), which for a con-
stant 5, is the self-sustained Eq. (37).

Equations (38) and (39) correspond to the following La-
grangian density:

2E, 1 g2 M~(A) g2
~(&,P) =N(0) —~' ln +—— +

2 5 2 2A, m

Ma(Q) g2 v~ 2 g 2

246, ' 8 3b,'

The last term in (43) is precisely the commensurability en-

ergy, i.e., the last term in Eq. (40). Thus instead of solv-

ing systematically the commensurate problem as we did in
deriving (40), one can use this faster method, i.e., first
solve the incommensurate case and then add the comrnen-

surability energy of Eq. (43).
An unusual feature of the tight-binding result [Eq. (11)]

is that when M is a multiple of 4, P~ =0 for m =1+M/4
and 1+3M/4. In this case we expand P(k) = +ka and the
corrected electron dispersion is

Ek (uFk) +b, 2a —k— cos—(MP),
~M —2

where W is defined as in Eq. (15) but excluding the two
vanishing 13 's. Thus uz is renormalized and the leading
term in the commensurability energy E„comes from
the ln(2E, /b, )=1/A, term in Eq. (40), i.e.,

8'
+ ( b, / W) cos(MQ ) . ,

gME„=N(0)— cos(MQ),
~M —2

(45}

i.e., the Euler-Lagrange equations of (40) for the fields
b(x, t) and P(x, t) reproduce precisely Eqs. (38) and (39}.

where

1,=2k, (uz/Aa)
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Thus the vanishing of two P 's reduces the commensura-
bility energy by an additional -(b, /W) factor.

b, =2E,e

Corrections of order 6/W are neglected in (47). Small os-
cillations around the ground state give the amplitude and
phase phonon dispersions,

Cpg = ( 126p+ VFg ), Coy =COF + VFg
2 m 2 2 2 2 2 m 2 2

Mg Mp

where the pinning frequency is

(48)

m 4M
M

2 m g2(g /W)M —2 (49)

and the masses M2„M~ are evaluated at 5= b,p. Equation
(48) agrees with the results of the linearized theory (ex-
cept for a factor of 4 in the q coefficient of cod„which is
an algebraic error).

The commensurability effect is not neglected in the co~

equation; it is small but important when q —+0, giving the
pinning frequency of the CDW. For an incommensurate
system, co~(q =0)=0, reflecting the translational invari-
ance associated with the Frohlich mechanism of a sliding
CDW.

Consider now nonlinear solutions of Eqs. (38) and (39).
Phase solitons, or "P particles, " are obtained from Eq.
(39) if the amplitude is assumed to be constant. This is a
reasonable assumption since the phase variation affects
the amplitude with corrections of orders (b,p/W) ((1.
This leads to Eq. (37), i.e., the well-known sine-Gordon
equation,

2
m 2 NF

VFP" — sin(MQ) =0 .
Mp M

(50)

The soliton represents a topological defect connecting ad-
jacent ground states of P. Thus its integrated charge from
Eq. (31) is +2/M.

As discussed above this is an observable fractional
charge. ' ' ' ' Note that the system is defined to have
fractional charge 2N/M per unit cell [Eq. (1)]. This how-
ever is not a measurable fractional charge since one needs
a sharply localized sampling function and the charge fluc-
tuations are then finite. In contrast the soliton fractional
charge is measurable, i.e., the charge fluctuations are arbi-
trarily smal1.

The soliton width is

d = [(A,/4M )(W/b, p) ]'

and the static solution of Eq. (50) is

P, (x)=(4/M)tan '[exp(+x/d)], (51)

C. Solutions of the effective Lagrangian

The microscopic derivation is thus completed and the
solutions for Eqs. (38) and (39) are now considered. The
ground state is /=0, +2m/M. , +4m/M, . . . , and b, =b,p,
where

Since W»b, p P, (x) is slowly varying on the scale of the
coherence length VF/b, p, i.e., d »vF!kp. Thus the soliton
solution is consistent with the derivative expansion. When
M is a multiple of 4, replace W by W and A, by A, [Eq.
(46)j for the tight-binding model.

The incommensurate system with interchain coupling
which produces on-chain backscattering was studied
in Ref. 8. The nonlinear energy now involves
b,th cos(Pt —P ) where l, m are indices of the interacting
chains. Solitons exist also in this system; to lowest order
in the interchain coupling set QI =0 on all chains except
one, and the soliton then solves the sine-Gordon equation
with M = 1 in sinMP. Therefore its charge is +2.

The effective Lagrangian is extremely useful for deriv-
ing the response of the system to external fields. The
relevant interaction Lagrangian is added and the equations
of motion are then derived. The interchain coupling of
Ref. 8 can be introduced in this manner. Another impor-
tant example is the response to an electromagnetic field.
The interaction Lagrangian, using Eq. (30), is

—Ape/' A„eg
~EM (53)

where A is the electromagnetic vector potential, x is the
chain direction, and e is the electron charge. The equation
of motion for the phase, Eq. (39), has now an additional
term on the left-hand side whi. ch is —2evzE, where
E = —A„—Ap is the electric field along the chain. This
equation has been the basis for the study of nonlinear con-
ductivity in CDW systems. ' The CDW is depinned
when 2evFE exceeds the coefficient of the sinMp term in
Eq. (39). This defines a threshold field

E, =m' M E, /(32evF ) . (54)

The linearized equation gives the low-frequency conduc-
tivity, '

icocoF m /M~
cr(co) =

CO —COF

where co& ——8v~e is the plasma frequency.
The situation near commensurability is also easily han-

dled. Since P'(x, t) represents addition of charge to the
commensurate system the Hamiltonian has an additional
term, (M/2m)pg'(x, t). —The coefficient p is the chemi-
cal potential for solitons, or pM/2 is the chemical poten-
tial for the electron charge. For the phase-only problem
(constant amplitude) there is a commensurate-to-
incommensurate (C-I) transition as function of p when
p=E, . For p&E, the single-soliton energy is negative
and the ground state is a soliton lattice. ' The transi-
tion is continuous, implying that solitons repel each other
(see Appendix D).

corresponding to solitons (+) or antisolitons ( —). By
substituting P, (x) in Eq. (40) the soliton energy is ob-
tained,

8bp
E, = [( I/A, )(bp/W) ]'i
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The case of the half-filled band needs a special treat-
ment s1ncc 1Q thc case cons1dcI'cd 1Q Scc. II with
kp ——m/2a, the order parameter has only one component.
The states +2k~=+m/a are identical and from Eq. (5),
b.(x) must have the same phase as gk 2k, i.e., the phase is

frozen and only amplitude variations are allowed. Anoth-
CI' way to see this is through the ion displacement at the
SltC Pg,

R„-b cos(2kzna +P rtps)
=—( —1)"b,cos(P P)—

[Eq. (18)]. Thus only the product icos(P —Ps) is relevant
and the ion field is determined by a single component.

Slncc thc groUnd state ls doubbj dcgcncratc Rt +60 1t
should be possible to have a soliton connecting +ho with a
constant phase such that it passes through 6=0. This is
an "amplitude soliton. " However, near 5=0 the deriva-
tive expansion is not valid; its expansion parameter b, '/5
diverges. The effective Lagrangian (40) diverges at b.=O
Rnd caQIlot bc Used to stud/ amplitude solltons.

Thus the use of a phenomenological Lagrangian which
allows amplitude solitons, as attempted in Ref. 19, is not
justlf1cd. AInplltudc solltolls cail bc fo1111d by other
alcthods avoiding thc dcrivatlvc expansion. Herc %vc

extend the model of Sec. II into situations where the order
parameter is complex and the method of derivative expan-
S1OQS CRQ bC applied.

The frozen phase is a consequence of considering a sin-
glC phonon COUpllQg 1Q thC adiabatic 11ID1t. Thke C1CctI'OQS

Rrc cQslavcd bY thc lons RQd do Qot have independent

«IQQRIQ1cs; thc or«Icr palRIDctcr is then JUst 8 single-phonon
field. More general cases allow for a complex order pa-
rameter. We consider here the following situations.

(a) Adiabatic limit of electrons coupled to two phonons
with coupling constants which have different phases.
Variations of P are now allowed and represent the inter-
play between the two phonon fields.

(b) A single phonon field beyond the adiabatic limit.
The order parameter, defined as an electronic response
[Eq. (22)], acquires higher-order contributions through
virtual phonons Rnd becomes coHlplcx.

(c) Addition of direct electron-electron interactions. As
in case (b) the electrons feel each other directly and not
just through the static phonon field. This allows for addi-
tional self-mass terms and the order parameter is complex.

First, consider case (a) of two phonons in the adiabatic
limit. As an example we take an acoustic phonon with a
pure imaginary coupling [Eq. (3)] and an optical phonon
anth 8 real coupling constant. The coupling constants
gk 2k are g«and g,p, the bare frequencies are ai«and
61», alld thc dlmenslonlcss collpllilgs, Eq. (6), al'c A,«alld
A»y Icspcctlvcly

We define the order parameters 4;(x) (t =1,2) by their
Fourier transform,

~I(q) =g.p~ 2f, +& ~2(q) =Ig.Ã2'k, +&

with R'p and R" the two phonon fields. The fields 5;(x)
Rrc Ical s1ncc +2k' Rrc Idcnt1cal states Rn«I gop RIll Eg~c
are real. This feature is the manifestation of the M =2
commcnsurabilitg. Thc Hamiltonian 1Q thc splnor nota-
tloll [Eq. (20)] ls tllc11

H = g Jdx iu~g, (x)oi —t/i, (x)+51—(x)@,(x)ol@,(x)+b, ( 2)xt, I( )cxrgE, ( )x
I)X

+Idx I (2k»~u, )- I[a21(x)+3,21(x)/~2»]+(2a„~u, )-I[a22(x)+i 22(x)/a1'2, ] I . (57)

Note that A, in Eq. (12) is replaced here by 2A,,p or 2A,„.The extra factor 2 is an iltlportant feature of the M =2 sys-
tem; it arises from the single 2kF mode, while in (12) we suinmed on the two independent +2k' modes. Thus the restor-
ing force when M =2 is reduced by a factor of 2, strongly enhancing the Peierls instability in this case. Note also that if
one of the couplings vanishes, say A,,p=O, then 51(x) is frozen to b, i(x) =—0 and the order parameter has only a b2 com-
ponent.

The equations of motion are obtained by variation with respect to KI(x) and 52{x) [using Eq. (32)] or by the Hartree
term (Appendix C). The result is

EI(x,t)+ b, ,(x, t)/co, p
—A,,pIruF g (g, (x)o l—p, (x)},

S
4 4 {58)b2(x, t)+62{x,t)/co«= A,„Irupg{g—,(x)cr2tP, (x) }.

By using the derivative expansion (A17) the equations in terms of 5 and P [Eq. (17)] are readily obtained. These equa-
tions correspond to the following effective Lagrangian density:

W(~,y) =X(0) —~2 ln
+2+ g 2/ »2

2 5 2 4A,,

~I

~2+~ 2/aiac us~
2 b, ' 1 ~
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The ground state for, say, A,„&A,,~, is
—1/(2A, )e= ce (60)

and P=m/2+nm (n is an integer). Note the significance
of the factor 2 in the exponent of Eq. (60) as compared
with Eq. (47). The small-oscillation spectra are similar to
Eq. (48) with the replacement A, ~ZA, „, and the pinning
frequency is

cop ——8P(m/Mp)b, , (61)

where P= (A,,~' —A,,')/4.
Soliton-type solutions interpolate between degenerate

minima with a phase change of +m. The soliton charge
from Eq. (31) is therefore +1. This system was also stud-
ied with strong coupling terms retained. It was then
found that the soliton charge may be irrational.

The derivative expansion is justified when 13«1, i.e.,
the energy difference between P=rr/2 and / =0 is small.
In this limit the amplitude is constant and the static soli-
ton energy becomes

(62)

Es
0.4

0.0
0.0

1

I.O
I

2.0 3.0

FIG. 3. Single soliton energy E, as function of
P={A,,~' —A,, ')/4 in case (a) [Eq. (57)] or of P=A[y{22,+y)]
in case (c) [Eq. (64)]. Solid line is the numerical solution (Ref.
26) of Eqs. (69) and (70) valid for small P, and dashed line is the
expected exact solution of Eq. (58) or Eq. (67) approaching the
known result 2/m at P~ co.

The soliton energy as function of P is plotted in Fig. 3
(dashed line). The plot is based on a mapping to the sys-
tem, which is considered next [Eqs. (68) and (69)], its nu-
merical solution, and the known value for P—woo. 2'

A more detailed discussion follows the case considered
next.

Cases (b) and (c) extend perturbation theory beyond the
adiabatic or Hartree limit. We consider, in particular,
case (c) with electron-electron forward scattering in the
Hartree-Fock approximation and electron-phonon cou-
pling in the adiabatic limit. Case (b) is qualitatively simi-
lar' but more difficult to handle since phonon exchange
is a retarded interaction and then the order parameter in
Eq. (22) is nonlocal in time, i.e., 6;=6;(x,t, t').

The electron-electron Coulomb interaction is represent-
ed by

Hi=y~u~X fdx 4, (x)14,(x)g,'(x)ly, (x) .
$,$

This interaction involves only forward scattering, i.e.,
small momentum transfer. (It corresponds to the conven-
tional nonretarded gq and g4 couplings. ' ) The corre-
sponding potential in real space has a range ro with
a «rp «u~/&„where M., is the gap in the commen-
surate system. The condition ro~ga means that only
small momentum transfer is involved, while the condition
p'p ((uF/6, allows the use of a local interaction in Eq.
(38) for the slowly varying field lt, (x).

The total Hamiltonian is then

H =gfdx iu~g, (x)os— P, (x)+h(x)Pg(x)oiP, (x) +(2A~uF) ' fdx[b, (x)+6 (x)/cop]+Hi,
Bx

(64)

with Z(x) a real field. The ion displacement field at site n (x =no) is R (x)-(—1) b,(x).
The Hartree™Fock scheme is justified when interchain tunneling is large compared with 6, . Instead of tunneling, the

phonon field can be the source of interchain coupling which allows the long-range order, and reduces the fluctuations.
More precisely, if the electron-phonon interaction is dominated by the Hartree term (for cop«b, , ) then perturbation
theory in y involves powers of yl (2En, /h, )-y/1, for y «1,. Thus the Hartree-Fock scheme is also valid when
cop((5 aild y ((A,.

We assume that the system is charge neutral on the scale of the coherence length uF/6 so that the direct (Hartree)
term of (63) is canceled while the exchange decoupling gives

Hi" —— 2ymu~g fdx[u,"'—(x)u,' '(x)(u,' ' (x)u,'"(x))+H.c.—
~
(u,"' (x)u,' '(x))

~ ] . (65)

The order parameter, as the off-diagonal electron self-mass, becomes

h(x) =b, (x)—2ymu~(u, ' ' (x)u,'"(x) ) . (66)
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Since we consider here spinless excitations, b, (x) is independent of which spin states are summed. The self-consistency
equation is obtained by variation of (64) with respect to Z(x),

h(x, t)+A(x, t)/coo ———AnuFQ(g, (x, t)o if, (x, t) ) . (67)
S

In terms of the amplitude and phase fields [Eqs. (17), (66), and (67)] the real field h(x) satisfies

b (x, t)cosP(x, t) = h(x, t)+ 2 b (x, t) .2A, +y—
2~o

(68)

Use of the derivative expansion [Eq. (A17)] in Eq. (67) yields equations for b, and P. The same result is obtained by di-
agrammatic approach from Fig. 2(a} for the phonon coupling and Fig. 2(b) for Hi (see Appendix C). After some algebra
these equations become

z, z z
( uF b '

uF b,b," b.—+b,b,}- 2k,
2 cosP (b cosP),

126,' (2A. +y) coo dt
y+ i,(1—cos2$ )-5=6 ln

y(2A, +y)
ygi . ( 2 „- 2A, b, . 8

sin(2$)= , (uFp" —p)+—
2 i sing

2
(b, cosp) .

y(2A, +y) '
(2A, +y) coo Bt

These equations correspond to the following effective Lagrangian density:

(69)

(70)

2E,
W(b, P) =N(0) b, ln —+—

2 6 2
Ab, uF, 2

2(2A, +y) 2y(2A, +y) 8
[1—cos(2 )]—— ' +

'
2

'2
1 2 6 k 8+ 2

—b, cos
8 3Z' (u+) )i~' at

(71)

6,=2E,exp[ —I/(2A, +y)] .

Small oscillations around the ground state yield the
dispersion for amplitude and phase phonons,

24K,E,
co~—— 1+ z (126,, +uFq ),

(2A, +y) coo

~z, z z
coy

— k~ +uF g (73)

The commensurability is manifested by the pinning po-
tential -b, cos2$ which has the same form as in Eq. (40)
with M =2. The peculiar feature of this pinning potential
is that its coefficient diverges when y —&O, A,&0. In this
limit the phase must be frozen to its ground-state value
cos2$= 1 and the order parameter is real. Indeed, it was
noted above that in the Hartree approximation (for y~O
the exchange contribution vanishes) phase excitations are
not possible.

Note that the ion kinetic energy [last term in Eq. (70)]
involves the product b, cosP, in agreement with Eq. (68).
Nonadiabatic interactions, such as the exchange term, do
not confine the electrons to the ion positions and allow
dependence on both b, cosP and hsing. In other words,
the charge can now oscillate relative to the ions, as well as
with the ions.

Consider next the solutions for the coupled-phase-
amplitude equations. The ground state has
/=0, +n, +2m, w.ith amplitude,

The derivative expansion is valid for co«b, , which
from (73) implies A, «y. In particular the phase-mode
frequency is independent of coo, to reduce its frequency the
pinning potential from the electron-phonon coupling must
be reduced, i.e., A, «y.

Before studying soliton solutions, we note that the static
solutions of this case are equivalent to those of the previ-
ous case of two coupled phonons. This is achieved by the
correspondence 2A,„~2k,+y and 2A,,&~y for A,„&A,,F, or
an interchanged correspondence when k,~& k„. To show
this we note that Eqs. (17), (66), and (67) for static solu-
tions, are identical to those of Eq. (58) with the required
correspondence in coupling constants. [The absence of
spin sum in Eq. (66) implies a factor —, in this compar-
ison. ] Furthermore, the energy (H ) of Eqs. (64) and (65)
is equal to that of Eq. (57} when the equations of motion
are satisfied. This completes the proof for the
equivalence; note that it is independent of the derivative
expansion.

We proceed now to study the soliton solutions. The de-
generacy of the ground state implies the existence of phase
solitons which interpolate between /=0 and P =+@ with
total charge +1 [Eq. (31)]. This conclusion is exact to all
orders in the derivative expansion as shown below Eq.
(31).

The static soliton solution of Eqs. (69) and (70) were
studied numerically by Grabowski et al. as function of
the parameter P=A, /[y(2A, +y)]. Their result for the sol-
iton energy is shown in Fig. 3 (solid line). For P«1 the
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soliton is wide compared with vF/b, , which is the validity
condition for the derivative expansion. The parameter P
maps into P=

~

A,,~' —A,, '
~

/4 of the previous case; thus
Eq. (62) applies here also (for P « 1).

For P & 1.48 an unusual behavior appears —bound states
of two or more solitons exist. At P=1.48 the single-
soliton width is -4vp/h„so that the derivative expan-
sion is not rigorously valid. The result shows, however,
that a strong pinning potential is more likely to produce
an attractive force between solitons. A strong pinning po-
tential implies a large soliton energy.

This statement is made rigorous in Appendix D where
we show that when the soliton energy E, satisfies
E, & 6, /v 2 then solitons attract each other; the proof is
independent of the derivative expansion. Figure 3 indeed
shows that if the Lagrangian (71) is maintained for large P
then E, p b.,/~2 for P & 1.6, rather close to the observed
value for attraction. Note that the condition of Appendix
C is a sufficient one, i.e., if E, & b„/v 2, solitons may or
may not attract.

However, for all values of P in the weak coupling sys-
tem (A, ,y «1) the soliton energy satisfies E, &2h, /n. To
show this we use the mapping to case (a) and note that a
solution to Eq. (58) with b,q(x) —=0 is possible —this is just
the pure amplitude soliton whose energy for the form
(57) is well known to be 2h, /nThe va. .riational principle
then yields that E, at the minimum-energy configuration
is E, &25, /m. . Therefore, by allowing an additional de-
gree of freedom (the phase when y&0), the soliton energy
can only decrease.

The correct form of the soliton energy is shown by the
dashed line in Fig. 3. This is a universal function of the
parameter P, which can be defined for all local Hartree-
Fock theories. This function connects the various forms
of charged solitons in M =2 systems: pure-phase solitons
[Eq. (62)] for P«1, coupled-phase-amplitude solitons
[Eqs. (69) and (70) solved in Ref. 26] for P &0.5, and pure
amplitude solitons for P~ co.

The condition of Appendix D is not satisfied
(2/m=0 67 & 1/V .2=0.71), implying that the solitons of
the original system [Eqs. (64) and (65)] probably do not at-
tract each other. [The conclusions of Ref. 26 are, of
course, valid for the Lagrangian (71) as such, without re-
lating it to Eq. (64).]

The soliton energy can increase when additional terms
are present in the Hamiltonian, e.g., a phonon dispersion
term -5' (x). The criterion of Appendix D is an effi-
cient method for relating this energy to the interaction be-
tween solitons.

IV. DISCUSSION

The formalism of the effective Lagrangian was
developed and applied to M) 3 fold commensurate sys-
tems in Sec. II and to M =2 commensurate systems in
Sec. III. The "phase-only" problem, where amplitude
variations can be neglected, is appropriate to M & 3, or to
M =1, which is the case of interchain coupling. The ef-
fective Lagrangian of this problem has been inferred '
from the small-oscillation theory. The present derivation
gives a microscopic basis for the nonlinear equations. It
shows that the picture of phase solitons is basically

450

3~v u
bp

2m.v u,

' 1/2
0

'2
60

M=3

M=4

(74)

(75)

where r is the transfer integeral (ek = 2t coska)—. An ex-
tra factor of Aolr in Eq. (75) is a consequence of
i 2 P4 0 [Eq (11)]

If the electron-phonon coupling constant is independent
of the electron momentum (e.g., for optical phonons) then
P =1 for all m. The soliton energies become (assuming
still a tight-binding dispersion for the electrons)

860

3~~31

1/2
0

(76)

50 60 M=4.
7T 2i, i '

The depinning field is readily found from Eq. (54) and the
relevant soliton energy [Eqs. (74)—(77)].

The Frohlich mechanism of a sliding CDW was con-
firmed so far only in systems which are at or near M =4
commensurability, e.g., NbSe3, TaSi (Ref. 27)
(orthorhombic and monoclinic), and Ko &&Mo03.~i In par-
ticular, orthorhombic TaS3 becomes M =4 commensurate
below 130 K with a threshold field of E, =0.2—0.4
V/cm. From conductivity and magnetic susceptibility
data ho-700 K, t=1.3 eV and then A, =0.22 [Eq. (47)
with E,=2t). Equations (54) and (75) yield E,=0.3

correct; however, the picture of amplitude solitons'" is
misleading. In the latter case the derivative expansion
fails and an effective Lagrangian cannot be obtained.

Experimental manifestations of phase solitons are their
contribution to the conductivity and their effect on the
nonlinear I Vc-urves. ' It has been shown that the I-V
curves in tetrathiafulvalenium —tetracyanoquinodi-
methane (TTF-TCNQ) at low temperatures are non-
linear, and the contribution of phase solitons has been
suggested. In this incommensurate system the nonlineari-

ty can come from the interchain coupling, as discussed in
Ref. (8).

The case of the half-filled band, or M =2, is of more re-
cent interest as it applies to polyacetylene. There is con-
siderable evidence that addition of charge by doping or by
photogeneration creates spinless charge carriers. ' The
phase solitons of Sec. III indeed carry charge but not spin.
They are the continuation of charged amplitude soli-
tons into situations which require a complex order
parameter.

It is useful to have results for the soliton energy for the
most frequent applications, namely M =3 and 4. For the
tight-binding model, using Eqs. (11), (15), and (52) for
M =3 and the modification of Eq. (46) for M =4, we ob-
tain
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V/cm (with E, =0.36 K), while Eqs. (54) and (77} yield

E,=600 V/cm (with E,= 16 K). The tight-binding model
is therefore in good agreement with experiment. The van-

ishing of the matrix elements P2 and P4 account for the
rather low depinning field in TaS3 and in similar systems.

A critical field can also be defined for near-

commensurate systems. The fact that only systems at or
near M =4 commensurability manifest a sliding CDW
may be related to the anomalously low depinning field of
such systems.

In conclusion, we have shown the existence of phase
solitons in all M) 1 commensurate CDW systems. The
M =1 case corresponds to interchain coupling and may
be relevant to TTF-TCNQ. The M =2 case corresponds
to the half-filled band and is relevant to polyacetylene. '

The M =4 case is relevant to TaS& and similar com-

pounds. The M )3 systems are of special interest as they
allow fractionally charged solitons.

The soliton-bearing equations were derived from a mi-

croscopic Hamiltonian by developing the methods of
derivative expansions and effective Lagrangians. These
methods are efficient tools in the study of a growing num-

ber of physical systems.

c} . 8
p(x, t) =pa+i+'Tr Go(co,p;x, t) iuFoi +i

Bx Bt
cd,p

X Go(co,p;x, t) (A5)

The 8/c}t term can be written as

2
——,

' —g'Tr[GO(co, p;x, t)]= ——,
' g'

Therefore,

=0. (A6)

EI62 —626 )
p(x, t) =po+4iuFQ'

~ q (co E+i5)—

=pc+(2m)'b P'f. de(e +b, )

,—N(0)fde fdco/2n, . e=uzp
co,p

and N(0)=2/nuz is the density of states for both spina.
The zeroth-order solution gives g' 1=po, while to first

order,
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=p, +P'(x, t)/n. .

(A7)

APPENDIX A: DERIVATIVE EXPANSIONS

co +uFp cry +5
& (x, t )0i+ 6 i (x, t )cT2'

Go(~ p'»t) =
N —E +l6

where E =(uFp) +5, b, =5&(x,t)+62(x, t), and 8=+0.
The exact Green's function has the form

(A 1)

In this appendix the procedure for the derivative expan-
sion of the Green's function in Eq. (24) is shown and the
relevant traces are evaluated to second order in deriva-
tives.

The zeroth-order solution of Eq. (24) is (spin index is
omitted)

For the current Eq. (28) we obtain, to first order,

j (x, t) =iu~ +Tr crsGO(co, p;x, t)
co,p

j (x, t) = p(x, t)/rt . —

Next consider the trace

(A9)

X tuF&s +t Go(co p;x, t} . (A8)
Bx Bt

The c}/c}x term is written in the form of (A6) and van-
ishes, while the c}/c}t term corresponds to —c}/c}x in (A7),
so that

G(co,p;x, t) = g G„(co,p;x, t),
n=0

where

G~(co p~x t)=( —1) Go(co~p, x, t} l UpC73 + l
c}x c}t

Tr[cr, G(x, t;x, t)]=+'Tr[criG(co, p;x, t)] .

The zeroth-order solution gives

2E,2+' =N(0)b iln
~p CO —E

(A 10)

(A 1 1)

1
'

n

X Go(co,p;x,t), (A3)

The first-order term vanishes, while the second-order term
involves the following integrals:

and each derivative acts on all terms to its right.
First consider Eq. (26),

p(x, t) = i g' Tr[6 (co—,p;x, t+ ) ] .
CO,P

(A4)

co +e
( —E )"

2co +5
(~2 E2)3

=0, n&3

~ 4co +b, ~ 18co +36,
(

2 E2)4 (
2 E2)5

(A12)

The prime indicates a factor 2 for the spin sum so that (A13)
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l ~t
N(0) „~ (co E—)

g4

N(0) (
' E—)'

4
(A14)

(A15)

N(0) ~ (A16)
A),P

All these integrals are converging and the momentum cut-
off (or E, ) is taken to be infinite. The corrections which
are neglected are powers of b, /E, « 1.

The trace of the second-order term is a straightforward
although lengthy calculation, with the result

2E,
Tr[cr&G(x, t;x, t)]= —iN(0) b, cosP ln

4~ 12''sing(uF'P" —P) — — cosg(vF'b, ' b, ' vF'—b,—b,"+d, h) (A17)

The trace of a2G is obtained from (A17) by replacing P with P+n /2.
Consider next the effect of the diagonal renormalization, as discussed below Eq. (14). The equations of motion, with

the shift (14) in the chemical potential, are [the average in (14) replaces b, by hp]
r

+
~ P2 ~

[~ (xyt) ~Q]/W+&uFcr3 ~](xyt)crf +2(xyt)cr2 g(x&t) —0
&

-a '', ' a
(A18)

and Eq. (35) has an additional term on the left-hand side,

h(x, t)[pu p(x)]—
~ P2

~

Anv~/W,

where po is the space average of p(x).
The diagonal correction in (A18) shifts the zeroth-order Green's function by

5Gu(co, p;x, t)= —GQ(coyp;x, t)[b, (x, t) —bu]
~ P2 /W .

(A19)

(A20)

The second term in (A18) can be eliminated by a shift in the frequency summation except for derivatives which act
directly on it. The change in electronic expectation values is at least of first order in derivatives, i.e.,

Tr[cr~56&(x, t;x, t+)]=QTr o&Gu(cu, p;x, t) iv~cr3 +i Gu(co,p;x, t)
N, P

—i b, 'sing
2m. 8' (A21)

where the integrals (A12)—(A15) were used. Replacing cr&

in (A21) by cr2 results in replacing sing by cosP, while re-
placing it by 1 or o.

3 results in zero. Substituting these re-
sults with Eq. (30) in the phonon equation (35) plus (A19)
yields the additional terms —

~
P2

~

A,up kg'/W and
4

~ Pz ~

uFb, h'/W on the left-hand sides of Eqs. (38) and
(39), respectively. This corresponds to an additional term
in the Lagrangian Eq. (40),

5W=N(0)(
i 13q i

uF/2W)[b, (x, t) —bo]$'(x, t) . (A22)

Linearizing the h(x, t) equation around b,o and substitut-
ing the result in the phase equation yields

2

MvF' 1——I@21'W 4'"

COI;

M
1 —M ~P~~ sin(MQ)=08

(A23)

instead of Eq. (50). The effect of diagonal corrections is
to renormalize the Fermi velocity and shift the commen-
surability term. The latter correction introduces a small
asymmetry between solitons and antisolitons which is of
higher order in b, /W than the terms retained in Eq. (50).

APPENDIX B: EQUATION OF CONTINUITY

Consider the Green's-function equation (21) and the adjoint of Eq. (22). Interchanging primed and unprimed variables
yields

G(x, t;x't') i, ivFcr3— , —b, ](x', t'—)cry —b2(x', t')cT2 ——5(t t')5(x —x') . —
Bt' Bx' (B1)

Substracting the traces of Eqs. (22) and (Bl) and then taking the limit t'~t+, x'~x gives
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p—(x, t)+ j (x, t) =0,
Bt

'
Bx

(B2)

where the density and current are defined in Eqs. (26) and (28). The fact that the Hamiltonian involves only a first-order
8/Bx, as does Eq. (Bl), leads to the equation of continuity (B2) with only the slowly varying fields.

The derivation is the same also if nonlocal interactions are considered, and the order parameters have the general form
b; (x, t;x', t').

APPENDIX C: DIAGRAMMATIC APPROACH

Consider first the incommensurate case of Sec. II, i.e., only the states m =1,2 in the Hamiltonian equation (12) are re-

tained. The equation of motion in the Hartree approximation [Fig. 2(a)] is

l +lUF03
dt Bx

G, (x,t;x't')=5(x x')5—(t t') —,'i —~g—k pk
~ fdx "dt"Dp(x, t;x",t") g o;Tr[o. ;Gg (x, t;x",t")]

l =1,2

&& G, (x, t;x', t'),

where the trace includes the s' spin sum and the phonon propagator is
—1

Do(x, t;x', t')=g ~e '"' ' 5(x —x')= 1+ ~
— 5(t —t')5(x —x') .i co(t t')— —

67 —
COO O mo Bt

(C2)

Comparing Eqs. (22) and (Cl), the self-consistency equation is obtained,

b;(x, t)+b;(x, t)/too 2 in
—l—u&Tr[o;G, (x, t;x, t+)], t =1,2

which is the same as Eq. (35) except for the commensurability term.
The effect of commensurability can now be added. When Eq. (1) is satisfied, then a +2kF phonon can scatter a +kz

electron to a —kp state in M —1 steps. This is in addition to its previous effect of scattering a —kF electron into a +k~
state. The umklapp process is demonstrated in Fig. 2(c), completing Eq. (35). Each interaction involves a factor of
b, (x, t) from the loop and a factor P /e, 3 & m &M from the internal electron line.

Consider next the Hartree-Fock scheme for the Hamiltonian Eq. (64). The direct term [Fig. 2(a)] with the interaction
(63) involves the density

QTr[G, (x, t;x, t+ )]

and affects the diagonal elements of the Green's function. This direct term is neglected here by the assumption of
"charge neutrality. "

The contribution of the electron-phonon coupling to the exchange term [Fig. 1(b)] is small if coo « b„.' ' Therefore
the exchange term is dominated by the nonretarded interaction (63) which contributes to the equation of motion the
terms

N(0) ' '' ' ' '' ' X(0)G, (x, t;x, t)G, (x,t;x', t') = go;Tr[cr;G, (x, t;x, t)]G, (x,t;x', t') .

In the last sum only the i =1,2 terms are retained and the
corrections to the diagonal elements are neglected. These
corrections correspond to the g4 coupling, ' i.e., interac-
tions between electrons on the same side of' the Fermi sur-
face, and usually lead to a renormalization of UF.

Combining Eq. (Cl) (with g ~2g and the sum has
only i =1) with Eq. (C4), the self-consistency equations
become

Q2
b i(x, t)= —,'im. uz 2A, 1+ —

2~2 Bt2

XTr[criG, (x, t;x, t+)],

b~(x, t) = ,'i ye u~Tr[o2G—,(x, t;x, t+ )] .

These equations are identical to Eq. (67) when expressed
in terms of Z(x) of Eq. (66).

APPENDIX D ATTRACTING SOI.ITONS

In this appendix the following statement is proven: In a
Hartree or Hartree-Fock theory, if E, & 6, /V 2, then soli-
tons attract each other at long distances. Here E, is the
energy of adding an isolated unit charge to the system
(called here for convenience a soliton) and 2h, is the
Peierls gap. This result is of interest only to M =2 sys-
tems, since for M & 3, E, «&, [Eq. (52)].

The proof involves the following three steps.
(a) When the electron chemical potential is varied a

commensurate-to-incommensurate ( C I) transition occurs. -
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This transition is of first order if and only if solitons at-
tract each other at long distance. To see this consider the
charge density (relative to the commensurate density} 5p
as a function of the chemical potential p. (5p is the order
parameter for the C Itr-ansition. } Now if solitons attract
each other at long distance then the system with a too
small 5p is unstable since the attraction favors smaller dis-
tances between the solitons. Thus the curve 5p(p) does
not include states with too low densities, i.e., it is discon-
tinuous. On the other hand, if the transition is of first or-
der, jumping from 5p=0 to a finite 5p=5p*, then a sys-
tem with 0&5p&5p must phase separately into regions

which have either 5p=0 or 5p'. Therefore solitons tend
to approach each other, i.e., their long-distance interaction
is attractive. Note that this interaction is not necessarily a
two-body effect which leads to a two-soliton bound state;
it can be a collective interaction.

(b) Consider the Gibbs free energy 6(p, ) =E —p5p. In
the commensurate phase 5p=O, and the energy F. is just
the condensation energy of the Peierls phase. For the
Hartree of Hartree-Fock theory of Secs. II and III this
gives

6,(p)= b, /2muF .—

In the incommensurate limit the gap is b,o«h, [Eqs. (47}
and (60}] so that its condensation energy is small com-
pared with (Dl). The energy is then just the energy of
adding 5p electrons to a metal, or changing kF by m 5p/2,

(D2)

The chemical potential is

p = ='IrUF5p/2,
Bp

and therefore the Gibbs free energy for a metal is

6 (P)= —P'/(~Up) .

(D3)

(D4)

Comparing Eqs. (Dl) and (D4) shows that the metal has a
lower Gibbs free energy if p &p„where

p, =6, /~2 .

(c) The final step is to show that if E, & b,, /v 2 then the
C-I transition is of first order. For p,, &p&E, a state
with low 5p is not favored as compared with commensu-
rate phase since it costs an energy of (E,—p)5p&0 (low
5p means sufficiently low so that higher-order terms in 6
can be neglected). However, for p &p, 6 & 6„i.e., the
metal is favored as compared with the commensurate
phase. Thus at p=@,, there is a C-I transition which ex-
cludes low soliton density states, i.e., it is a first-order
transition. From (a) solitons then attract each other,
completing the proof.

Since there is some condensation energy from the in-
commensurate phase gap the condition may be improved,
giving a slightly lower bound on E, as a sufficient condi-
tion for attraction.

For spinless fermions (the spin-Peierls system ) the
same derivation applies except for spin factors of 2. The
density 5p of solitons, each with half-charge, is half the
charge density. The result is that solitons attract each
other for E, & 6, /v 8.
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