SUPERCONDUCTIVITY IN QUASI ONE-DIMENSIONAL METALS AND THE OPTIMAL PHONON FREQUENCY

B. HOROVITZ*, H. GUTFREUND and M. WEGER

Racah Institute of Physics, Hebrew University, Jerusalem (Israel)

Abstract

The transition temperature, T_s , to singlet superconductivity in quasi one-dimensional metals is studied as a function of the phonon frequency ω_0 . When both electron-phonon and electron-electron couplings are present, T_s has a maximum at a finite ω_0 . When the electron-phonon interaction dominates and ω_0 is too *small*, superconductivity is eliminated by charge density waves, while if the electron-electron interaction dominates and ω_0 is too *large*, superconductivity is eliminated by spin density waves.

The question of the maximum superconducting transition temperature in one-dimensional metals has been of interest for quite some time. The competition between the CDW Peierls-Frohlich transition at $T_{\rm p}$ and the BCS superconducting transition at T_s was pointed out by Bychkov et al. [1] who suggested that $T_p = T_s$. Taking into account the retarded nature of the interaction it was shown [2] that $T_s > T_p$ for a small electron-phonon coupling constant λ , and $T_s < T_p$ for large λ , and at the crossover, T_s attains its maximum value T_s^{max} . T_s^{max} is related to the phonon frequency and ranges from $T_s^{\text{max}} \cong \omega_{ph}/50$ to $T_s^{\text{max}} \cong \omega_{ph}/20$, depending on the relative strength of forward and backward scattering [2]. The recent discovery of superconductivity in organic metals [3] at temperatures around 1 - 2 K confirms this result, since the phonon frequency is of the order of 50 K. Thus, the phonon frequency plays a dominant role in determining the maximum transition temperature T_s . Organic metals consist of molecular crystals which in addition to the external mode phonons (translations and vibrations), also contain internal mode phonons - bond stretching vibrations, molecular twists, bends, rocking motions, etc. These phonons possess much higher frequencies; the C=Cstretching vibrations are at about 1400 cm^{-1} , for example. Thus, if these modes are responsible for electron-phonon coupling, much higher values of

^{*}Presently at Physics Department, Ben Gurion University, Beer Sheva, Israel.

 $T_{\rm s}$ are in principle possible. This was pointed out quite some time ago [2], and the coupling of the electrons with these modes is indeed found to be rather strong [4].

In addition to CDW instabilities, SDW instabilities must also be considered. Indeed, most of the quasi one-dimensional systems are CDW or SDW. The parameter space of the problem includes coupling constants for backward scattering (\bar{g}_{1e}) , forward scattering (\bar{g}_{2e}) , umklapp scattering when the band is half full (\bar{g}_{3e}) and the corresponding retarded interactions via phonons: λ_1 , λ_2 , λ_3 . In addition one needs the phonon frequency ω_0 and the electronic cut-off energy E_c [5]. More generally one needs to specify both the longitudinal transfer integral (t_{\parallel}) and the transverse one (t_{\perp}) [6]. Below, however, we consider the case of weak coupling and not too large anisotropy, *i.e.*, $\bar{g}_i \ln t_{\parallel}/t_{\perp}$, $\lambda_i \ln t_{\parallel}/t_{\perp} \ll 1$. If this condition is not satisfied, one may use in some cases a renormalization-group procedure [7, 8] to redefine the coupling constants and then $E_c \cong t_{\perp}$.

The umklapp process is of special importance in the superconductors known so far as the $(TMTSF)_2X$ family [3]. Superconductivity is possible only if the umklapp process is suppressed by either pressure or by disorder of the counter ions for $X = ClO_4$. This conclusion was first reached [5] by examining the pressure dependence of both T_s and T_{SDW} and by correlating the disorder feature of $X = ClO_4$ with the appearance of superconductivity at ambient pressure. This conclusion was further supported [8] by data on $(TMTTF)_2X$ compounds. Note that these arguments are independent of the type of umklapp, and the controversial issue [5, 8] of whether \bar{g}_3 or λ_3 is more pressure dependent should be settled by further experiments.

In the present study we consider the case $\bar{g}_3 = \lambda_3 = 0$, which is favorable to superconductivity. The transition temperature is given by [5]

$$T_{\rm s} = \omega_0 \exp\left\{-\left(\lambda - \frac{\mu}{1 + \mu \ln E_{\rm c}/\omega_0}\right)^{-1}\right\}$$
(1)

where $\lambda = (\lambda_1 + \lambda_2)/2$ and $\mu = (\bar{g}_{1e} + \bar{g}_{2e})/2$. This is the usual weak coupling form for T_s [9] and is valid here because of the decoupling of the superconducting channel from the $2k_F$ divergencies for $T_s \leq t_1$ [2].

The competing instabilities are those of the CDW, SDW and triplet superconductivity (TS) with the transition temperatures for $T_c \ll \omega_0 \ll E_c$ given by [5]

$$T_{\rm c} = \omega_0 \exp\left\{-\left[\frac{1}{2}\bar{g}^{\rm R} + \frac{1}{2}\left(\frac{\bar{g}^{\rm N}}{1 - \frac{1}{2}\bar{g}^{\rm N}\ln E_{\rm c}/\omega_0}\right)\right]^{-1}\right\}$$
(2)

where \bar{g}^{N} , \bar{g}^{R} are given in Table 1 for each phase. The phase diagram is shown in Fig. 1, where $\bar{g}_{1} = \bar{g}_{1e} - \lambda_{1}$ and $\bar{g}_{2} = \bar{g}_{2e} - \lambda_{2}$.

Consider first the region where attractive interactions dominate and assume then that $\mu_1 = \mu_2 = 0$. In this case, superconductivity competes with the CDW phase. This competition has been studied in detail [2]; in weak coupling the coexistence line is given by

	\bar{g}^{N}	ğ ^R
S TS CDW SDW	$ \begin{array}{c} -\overline{g}_{1e} - \overline{g}_{2e} \\ \overline{g}_{1e} - \overline{g}_{2e} \\ -2\overline{g}_{1e} + \overline{g}_{2e} + 2\lambda_1 \\ \overline{g}_{2e} \end{array} $	$\lambda_1 + \lambda_2 \\ -\lambda_1 + \lambda_2 \\ -\lambda_2 \\ -\lambda_2 \\ -\lambda_2$

TABLE 1 Values of \bar{g}^{N} and \bar{g}^{R} for each phase

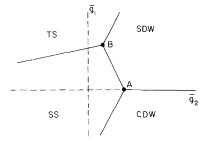


Fig. 1. Phase diagram in the (\bar{g}_1, \bar{g}_2) plane $(\bar{g}_1 = \bar{g}_{1e} - \lambda_1, \bar{g}_2 = \bar{g}_{2e} - \lambda_2)$.

$$\lambda_2 = \frac{1}{2} \lambda_1 \frac{1 + \lambda_1 \ln E_c / \omega_0}{1 - \lambda_1 \ln E_c / \omega_0}$$
(3)

The transition temperature T_s increases with both λ_i and ω_0 , but when the λ_i are beyond the line of eqn. (3), CDW takes over. The crossing line allows higher T_s as ω_0 increases, *e.g.*, for $\lambda_1 = \lambda_2 = \lambda$ the maximal T_s is $T_s^{\max} = \omega_0^4 / E_c^3$. This temperature increases with ω_0 , and leads one to hope that high values of T_s are possible in organic metals where high frequency intra-molecular phonons are strongly coupled with electrons.

Consider next the region where repulsive interactions dominate, $\mu_i > \lambda_i$. In this case retardation renormalizes μ to $\mu^* = \mu/(1 - \mu \ln \omega_0/E_c) < \mu$ and superconductivity is allowed, as shown in Fig. 1. The competing phase here is the SDW phase. Apart from this competition, there is an interesting behavior of T_s , namely it has a maximum at an optimal values ω_0^{\max} of the phonon frequency, given by

$$\omega_0^{\max} = E_c \exp\left\{\frac{1}{\mu} - \frac{1}{\lambda}\right\}$$
(4)

The transition temperature at this frequency is

$$T_{\rm s}^{\rm max} = E_{\rm c} \exp\left\{\frac{1}{\mu} - \frac{4}{\lambda}\right\}$$
(5)

 $T_{\rm s}$ as a function of ω_0 is shown in Fig. 2(a) for $\mu < \lambda$ and in Fig. 2(b) for $\mu > \lambda$ with $\lambda = 0.4$. As μ becomes larger than λ the peak in $T_{\rm s}(\omega_0)$ moves to lower frequencies and to lower transition temperatures.

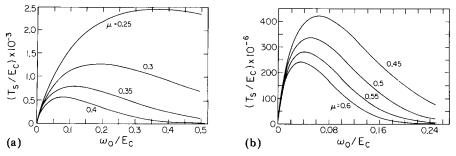


Fig. 2. T_s as a function of ω_0 (eqn. (1)) for $\lambda = 0.4$ and various values of μ .

For a fixed λ and μ the optimal ω_0 is given by eqn. (4). For this frequency the system becomes superconducting only if it is within its phase boundary of Fig. 1. Superconductivity is allowed for $\mu > \lambda$ because of retardation effects (the μ^* effect) and if ω_0 is too high this effect is weakened and SDW will take over. Thus superconductivity is allowed if ω_0 is sufficiently *small*, in contrast with the case $\lambda > \mu$, where superconductivity is allowed when ω_0 is sufficiently *large*. For $\lambda < \mu$ the optimal case is $\mu_1 = \lambda_1$ and then the value of ω_0 at the crossover is

$$\omega_0^* = E_c \exp\left\{-\frac{8(\mu - \lambda)}{\lambda_1(4\lambda - \lambda_1)}\right\}$$
(6)

This will limit the attainability of T_s^{\max} (eqn. (5)) if $\omega_0^* < \omega_0^{\max}$. Figure 3 shows ω_0^* as a function of λ_1 ($\lambda_1 = \mu_1$) for the λ , μ parameters of Fig. 2(b). The values of ω_0^{\max} are marked by a star; for values of λ_1 smaller than the abscissa of the star, then $\omega_0^* < \omega_0^{\max}$ and the SDW instability does not allow the maximal T_s (eqn. (5)) to be reached. This shows the importance of increasing λ_1 , even if μ_1 is also increasing.

Finally we consider the region $\lambda_1 > \mu_1$ but $\lambda_2 < \mu_2$. In this case superconductivity is restricted to values of ω_0 which are neither too large or too small. To see how this happens, consider the S-CDW coexistence line in Fig. 1, whose equation is

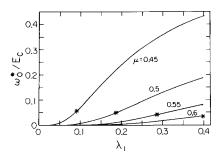


Fig. 3. The crossover frequency ω_0^* from superconductivity to SDW for $\lambda_1 = \bar{g}_{1e} (\bar{g}_1 = 0)$ as a function of λ_1 for $\lambda = 0.4$ and the values of μ corresponding to Fig. 2(b). The star marks the position of ω_0^{\max} , the maximum of T_s in Fig. 2(b).

$$\bar{g}_{1}\left[1 + \frac{3}{2}(\lambda_{1} + 2\lambda_{2})\ln E_{c}/\omega_{0}\right] - 2\bar{g}_{2} = -\frac{1}{2}(\lambda_{1} + 2\lambda_{2})\ln E_{c}/\omega_{0}$$
(7)

As ω_0 increases, the intersection of this line with $\bar{g}_1 = 0$ moves to the left while its slope increases towards +2. Thus if for a given ω_0 a point is very close to the coexistence line on its superconducting side and $\lambda_1 > \bar{g}_{1e}$, $\lambda_2 < \bar{g}_{2e}$, then both an increase or a decrease in ω_0 will eliminate superconductivity by forming a CDW phase.

The conclusion that we reach from these calculations is that for the internal modes, which possess a high phonon frequency, the transition temperature is determined essentially by $\lambda - \mu$, where μ is the unrenormalized Coulomb coupling, which is large. As a result, $\lambda - \mu$ is small, (or even negative) and it is difficult to obtain a high value of T_s . For the external modes, which possess a low phonon frequency, the transition temperature is determined by $\lambda - \mu^*$, where μ^* is the renormalized Coulomb coupling, which is small. However, the small prefactor $\omega_{\rm ph}$ limits T_c . Thus, a maximum value of T_c may be obtained for an intermediate value of $\omega_{\rm ph}$.

References

- 1 Y. A. Bychkov, L. O. Gorkov and I. E. Dzyaloshinskii, Sov. Phys. JETP, 23 (1966) 489.
- 2 H. Gutfreund, B. Horovitz and M. Weger, J. Phys. C, 7 (1974) 383; B. Horovitz, Phys. Rev. B, 16 (1977) 3943.
- 3 K. Bechgaard in Proc. Intl. Conf. on Low Dimensional Conductors, Boulder 1981, Mol. Cryst. Liq. Cryst., 79 (1982) 357; D. Jerome, ibid., p. 511.
- 4 A. J. Heeger, in J. T. Devreese and R. P. Evrard (eds.), Highly Conducting One Dimensional Metals, Plenum Press, New York, 1979.
- 5 B. Horovitz, H. Gutfreund and M. Weger, Solid State Commun., 39 (1981) 541 and in ref. 3, p. 591.
- 6 B. Horovitz, H. Gutfreund and M. Weger, Phys. Rev. B, 12 (1975) 3174.
- 7 V. N. Prigodin and Yu. A. Firsov, JETP, 49 (1979) 813.
- 8 V. J. Emery, R. Bruinsma and S. Barisic, Phys. Rev. Lett., 48 (1982) 1039.
- 9 W. L. McMillan, Phys. Rev., 167 (1968) 331.