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The a.c. conductivity of an overdamped one dimensional sine-Gordon 
system with a low density of kinks is evaluated. This corresponds to a 
nearly commensurate charge or spin density wave with a kink-lattice repre- 
senting the deviation from commensurability. The results explain the 
unusually broad crossover regime of NbSe3 as compared with the similar 
but more commensurate compound TaSa. When TaS3 becomes commen- 
surate (T ~< 130 K) we predict that its a.c. response increases and its shape 
slightly sharpens. 

THE PHENOMENON of charge density wave (CDW) 
transport in NbSe3 and TaS3 is of considerable recent 
interest [1]. NbSea exhibits two CDW transitions at 
Tt = 142 K and 7'2 = 59 K with the wavevectors [2] 
ql = (0, 0.2412, 0) and q2 = (0.5, 0.2604, 0.5) respec- 
tively. The conductivity is non-ohmic when the electric 
field E exceeds a critical value E e and well-defined 
frequencies in the noise spectrum appear in a d.c. field. 
These phenomenon are associated with depinning of the 
CDW, which is pinned by either impurities [3] or by the 
lattice [4]. 

The theory for lattice pinning is based on the values 
of ql (or q2) being almost commensurate with a lattice 
reciprocal wavevector. To gain the commensurability 
energy the CDW is mostly commensurate except for a 
lattice of kinks (solitons) or discommensurations [5, 6] 
which carry the excess charge Aqy/rr = qy/zr -- I/2b, 
where b is the lattice constant. Since the charge of a 
single kink is [6] 1/2 the kink density is nk = --0.035/b 
and nk = 0.042/b for the two CDW's respectively; thus 
the distance between neighbouring kinks is 28b and 24b 
respectively. 

Recent data on TaS3 (in its orthorhombic phase) 
shows [7] that it is closer to being commensurate with 
nk = 0.02/b below 210 K, and becomes commensurate 
(n~ = 0) below 130 K. This system exhibits similar non- 
ohmicity and frequency generation [7, 8] as NbSe3. 
TaSa is therefore an excellent candidate for studying the 
effect of  commensurability on both linear and non-linear 
response. In particular the critical field Ee is smaller in 
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the commensurate phase [7], in agreement with the 
model for lattice pinning [4]. 

Here we are mainly concerned with the CDW linear 
response to an a.c. electric field. The qualitative features 
of the a.c. response have been interpreted by an over- 
damped oscillator in a periodic potential [9-11 ]. The 
oscillator degree of freedom describes the oscillation of 
rigid CDW, neglecting internal degrees of freedom. This 
model, however, does not fit the rather broad crossover 
region of NbSe3 while it fits better the data of TaS3 
[12]. 

The rigid CDW model corresponds, in the context of 
lattice pinning, to an Mth order commensurate system, 
i.e. the ratio of CDW wavelength to the underlying 
lattice constant in an integer M. The oscillator degree of 
freedom is a phase variable ~(t) such that the CDW has 
the form ~ cos [(2rrx/b + ~)/M]. The phase variable is 
sufficient to describe charged configurations for 
M~> 3 [6]. 

NbSea and TaSa are almost M = 4 systems. The use 
of phase variable is then justified with a constraint to 
describe the deviation from commensurability. This con- 
straint means that ~ is space dependent such that its 
average gradient reproduces the correct incommensurate 
wavevector. This space dependence is achieved by a 
phase-kink lattice [5, 6]. 

In the present paper we extend the oscillator model 
to include the internal degrees of freedom. The CDW is 
then described by a space and time dependent field 

(x, t). We find that the presence of phase kinks 
broadens the crossover region of the a.c. response. This 
is in agreement with data on both NdSea and TaSa, i.e. 
TaSa being closer to commensurability has a lower kink 
density and therefore fits better the single oscillator 
model [9-12].  From a fit to the NbSea data one can 
determine the coherence length $ (or kink width). This 
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length is not available from other data since the electron 
gap is not yet known. 

The equation of motion for ~ in the presence of 
damping, commensurability and an expectric field 
E exp (icot) is given by [4] 

-~--+ ~ - t z @ "  + sin ff = Eei°~t,/E,, (I) 
¢.O02 02 c 

• vhere dot is a/at and prime is 8/bx; COo is the pinning 
frequency, co c the crossover frequency and Ex is the 
depinning field if the system were commensurate. (In 
general Ec 1> E~ [4].) The kink density imposes the 
boundary condition f ~k'(x, t) dx/L = 2rrnk where L is 
the length of the system. The kinks are considered to be 
two dimensional walls which are deformable along the 
chain direction x. Thermal fluctuations are not included 
since these walls are macroscopic objects. 

We are interested in situations where the density of 
kinks is small enough to ignore their mutual interaction, 
i.e. nk = nkt '< 1. In this limit each kink contributes 
independently, and by the same amount, to the a.c. res- 
ponse of the system. (If antikinks are present, they 
contribute to the a.c. current with the same sign as kinks 
since having opposite charge [6] they oscillate 180 ° out 
of phase with respect to the kinks). The current is 
defined by [4] 

J = epeff(~)/(4irS), (2) 

where Pen is the fraction of the total electron density 
which participates in the CDW transport, S is the area 
per conducting chain and (~) is the space average of 
O~b/at. We derive the dimensionless conductivity 0(w) = 
(~b)El/[E0oc exp (/cot)] so that the actual conductivity is 

a(w) = A0(¢~); A = epeff¢oc/(4irSEO. (3) 

We employ the perturbation theory developed by 
Fogel et al. [ 13, 14] to expand around the single soliton 
solution ~ks(X ) = 4 tan -1 [exp (x/t)], 

~b(x, t) = ~bs(X) + Xr(t)~k's(x) + X(x, t), (Xr, X < 1). 

(4) 

Here Xr(t) represents the amplitude of the translation 
mode (~k's(x)) which is specifically separated from the 
remaining response, with the constraint 

f ~k's(x)x(x, t) dx = 0. (5) 

With this separation, X(x, t) contains the kink shape 
oscillations and the background response [13-16]. 

Substitution of equation (4) into equation (1) and 
subsequent linearization in ×T(r) and X(Z, r) yields 

( ~ ;  + ~ ) / r  ~ + ~r~;  + x - × "  + (cos ~ , )×  = 

= E eff~r/E1, (6) 

a.c. CONDUCTIVITY AND APPLICATION TO NbSe3 AND TaSs Vol. 49, No. 2 

where F = ¢o0/co c, z = x/ t ,  r = tooe and ~2 = oo/~o e. The 
eigenfunctions f (z)  satisfying the Schroedinger type 
equation 

- ~zz2 + cos ~bs(Z ) f (z)  = e2f(z), (7) 

form a complete set consisting of a single "bound state" 
(translation mode) 

t 

fb(z) = ~ks(z), e~ = 0, (8a) 

and a continuum of extended modes, 

eikz 
f~(z) = ~ - - ' ~ k ( k  + i tanhz), e~= 1 + k 2. (8b) 

Therefore, if X(Z, r) is expanded in continuum modes, 

X = ~: Xk(r)j~(z), (9) 
k 

then it is automatically orthogonal to fb = ~b's(z) as 
required by equation (5). 

We now multiply equation (6) by ff's(z) and 
integrate over z to obtain 

IrE e iI2r 

Xr([2) = 4Ex iI2 -- ([2/F) 2" (10) 

The space average yields a factor of 2nnkt and hence the 
translation mode contribution to the conductivity is 

Ir2 t~ k 

0T([2) = 2 1 +i[2 /r"  (11) 

In the strongly overdamped limit (P >> 1) and in the 
frequency range of experimental interest [9] 
([2 ,~ 1-')07, is independent of frequency, OT "" ½ir~k- 

The more interesting (i.e. frequency dependent) 
contribution to a([2) is that due to the continuum of 
extended modes f~(z). These modes define the Greens' 
function for the propagation of X(Z, r) which after a 
frequency integration yields the continuum part of the 
conductivity 

If,. I (t/L) Y (z) d~ dF(k), (12) 
K 

0c(~ )  = 

where 

e~,F(k) = 
i[2 

e~ + i[2 -- ([2/r) 2" (13) 

The background oscillations contribute a term of order 
L to the sum in equation (12). To separate this term we 
subtract from equation (12) (using the completeness 
relation [14] of {fk,fb}) 

(t/L)F(O) ~ fk(z) dz = F(0)(1 -- Ir2/2L). (14) 
K 

The non-trivial perioidic boundary conditions on.fh(x) 
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Fig. 1. Real part of the frequency dependent conductivity, excluding the frequency independent conductivity of the 
kink translation mode. 0 c = 0 = Or. The curves are for various values of the kink density nk = nk~. 
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Fig. 2. Same as Fig. 1 for the imaginary part. 

[14] yield 

f fk(z ) dz = -- (~/L )l/2n(ek sinhlrrk) -l 

with which the remainder of equation (12) is easily 
calculated. Finally, replacing 1 [L by n~ (each kink 
contributes equally) results in 

f OkF(k) 
0c(~2) = (1 -- 2~k)F(0) + 2 ~ .  tanh½1r-----k dk. 

o 

In the strong damping limit this reduces to 
~ 2  

Re 0c(~ ) - 1 + ~------5 (1 -- 2~k) -- 4~k~22 

f 3e~ + ~22 k dk 
x e~(e~ + ~2~) 2 tanh ½1rk 

(15) 

(16) 

~2 
Im Oe(~2) = 1 + ~), 2(1 - -  2 ~ k ) - -  8t~k ~"~ 

of e~ k dk 
X (e~ + ~22) 2 tanh½7rk" (17) 

Before discussing these results let us present an 
alternative derivation which exploits the previously cal- 
culated kink polarizability [ 13], defined as 

as(~2) = (E eiar/E1)-l f dz zaz×(z, r). (18) 

Integrating equation (18) by parts and using ~ = i~2x we 
find the current (X) except for a surface term, i.e. 

i~2xn(r ) -- i~2flk ~ dz zazx(z, r) (19) 
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where 

x B ( r )  = x ( -  + 00, r )  = 
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E e~nT/E1 
(20)  

1 + is2 - ( s2 / r )  2 " 

The surface term (20) achieves the desired separation of 
the current equation (19) into a background term and to 
the kinks' contribution. The continuum part of  the con- 
ductivity is then 

iI2 
%(I2) = I + i~2 --(~2[F) 2 ig~&,%(fa). (21) 

The kink polarizability %(~2) can be written in the over- 
damped limit as [13] 

rr 2 In 2 zr[1 -- (i/Q) + ~ (Q/2/)] 

,',,(~2) = 2i~2 + 1 + i-----~ + ifaQ sinh 0r/2)Q 

~, (-- 1)n[/3(n) + 1 -- (1/2n)] 
+ 4 (22) 

n=1/" (4n 2 -  1)(1 - - 4 n 2 +  iI2) ' 

where 

1 ~2)1/2 + 1}u2 2{(1 + ~22) u 2 -  1 } 1 / 2 + ~ 1 ( 1  + 

(23) 

Q _ 

and/3(x) is given by the series [17] 

/~(x) = ~. (--1)a. (24) 
~=0 x + k  

For these formula can be evaluated numerically in a 
straightforward manner and we present results for 
Re Oc(I2) and Im ~e(~2) in Figs. 1 and 2, respectively, for 
a few values of  the kink density fla. Note the rather large 
effect of na even for values as small as 0.1 ; our assump- 
tion of non-interacting solitons becomes suspect for 
values of  nk much above this. With some straightforward 
but tedious algebra, it is possible to obtain the limiting 
forms of oc(~) for low and high frequencies: 

Re %(g2) -+ Fa=(I -- 6.300ak) 
~2 -+ 0: (23a) 

Im 0c(~2) -+ ~2(1 -- 5.674h~) 

Re Oc(~)  -+ 1 - ½r?aa 
>> I: (23b) 

Im Oe(I2 ) -+ ~2-t(1 -- 4&,). 

It is worth noting that for high frequencies, the total 
conductivity o = o r  + Oe approaches unity, independent 
of  ha. This can be seen directly from equation (1) since 
the sin ~k term becomes ineffective at high frequencies. 

Before discussing NbSe3 and TaSa, we note that our 
results are also relevant for highly one dimensional sys- 
tems where kinks can be thermally activated. In that 
case n~, is the density of  kinks plus antikinks and is 
temperature dependent. 

We have not yet attempted a detailed for to the data 
of NbSea since the data is not complete, mainly in the 

high frequency regime. However, the main feature of the 
data, namely the unusually broad crossover regime, is 
consistent with the presence of kinks. As can be seen 
from equation (17) the kinks introduce a continuous 
range of crossover frequencies at w = we(1 + k 2) where 
0 < k < oo. The underlying reason is that the kinks break 
the translation invariance of the system and then all 
wavevectors k can couple to the spatially uniform elec- 
tric fields. The increase of the crossover regime with na 
is also clear from Figs. 1 and 2. 

To obtain an estimate of  the parameters involved at 
T = 42 K we used wc "~ 400 MHz [1, 9], the high 
frequency limit of Re Oc/Od.c. ~ 1.1 (at(W) = a (w)  -- 
Od.c. is the frequency dependent part) and the low 
frequency limit of Im Oe/Od.e. "~ 0.6 W/We [9, 11 ]. Using 
equations (3) and (23) we find fia = 0.1, while the 
overall data [ 12] is consistent with nk = 0.1-0.2. Since 
nk "" 0.04/b the kink width is 2~ "" 5b - 10b. Note that 
the curves in Figs. 1 and 2 when rescaled to the same 
height become less distinct. Therefore a detailed fit is 
more difficult when the parameter A [equation (3)] is 
unknown. 

The a.c. conductivity of TaSa, in contrast with that 
of  NbSe3, fits well the overdampled oscillator result 
[ 12]. This is consistent with TaS3 being closer to 
commensurability with na = 0.02/b [7]. 

A distribution of w c values, representing random 
impurities, may also explain the broad corssover region 
in NbSe3 [9]. This, however, is inconsistent with the 
TaSa data, since TaS3 has more impurities than NbSe3 
[8] and yet its crossover region is narrower. Thus the 
deviation from commensurability seems to be the most 
relevant parameter which can explain the different AC 
response of NbSe3 and TaS3. 

The recently discovered commensurate-incommen- 
surate transition in orthorhombic TaS3 at ~ 130 K [7] 
provides a remarkable opportunity of studying the 
effects of commensurability on both nonlinear [4] and 
linear response. In the commensurate phase (T ~< 130 K) 
we predict an increase of both real and imaginary parts 
of  the a.c. response (see Figs. 1 and 2). This is due to the 
frequency independent contribution of the kink transla- 
tion mode [equation (11)] which disappears in the com- 
mensurate phase. The d.c. conductivity is then reduced 
while the a.c. response is increased. Other effects how- 
ever may also modify the intensity of the a.c. response - 
an increase in the number of conducting chains [7] 
[reducing S in equation (3)] or a change in the gap which 
affects Et. Independent measurements of these 
parameters (e.g. by crystallography and infra-red absorp- 
tion) are necessary before our prediction on the 
intensity of the a.c. response can be tested. 

We also predict a slight sharpening of the 
frequency dependence in the commensurate phase. 
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Unlike the overall intensity, this feature is uniquely 
related to the absence of phase kinks in the commensur- 
ate phase. 

In conclusion, our results account for the unusually 
broad crossover regime in the a.c. response of NbSe3 as 
compared with that of TaS3. Further data on TaS3 at 
various temperatures, corresponding to different phase- 
kink densities, is extremely important for elucidating the 
role of commensurability in these sliding CDW 
compounds. 
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