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Commensurate-incommensurate transitions and a floating devil's staircase
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Renormalization-group equations for the uniaxial commensurate-incommensurate (C-Ic) transition in

two dimensions are derived. The soliton density p is a nonanalytic function of the misfit parameter JM, even

at high temperatures where only a floating phase (i.e., algebraic correlations with exponent g) is possible.
The singularity at p, 0 is p

—Tp, —p,~, where T is temperature. In the (T, p, ) plane the floating phase

is singular therefore on all lines where its density (relative to the substrate) is rational; this is the remnant

of the low-temperature devil's staircase. At low temperatures a matching procedure with the fermion ap-

proach is obtained.

Monolayers adsorbed on substrates of uniaxial symmetry
exhibit a variety of phase transitions. Commensurate (C)-
incommensurate (IC) transitions were found in Xe/Cu(110)
(Ref. 1) and H/Fe(110) (Ref. 2), C-fluid transitions in
H/Fe(110) (Ref. 2) and Ba/Mo(112) (Ref. 3), and IC-fluid
transition in Pb/Cu(110) (Ref. 4). The theory of the uniax-
ial C-IC phase transition has largely been based on the
sine-Gordon model using fermion-boson transformations-' 9

or Bethe-ansatz techniques. ' " Within the continuum for-
mulations5 9" the region P2 ) 87r is inaccessible, but pre-
cisely there renormalization-group (RG) treatment is possi-
ble. In Ref. 11 the RG equations for the pure X- remodel
(i.e., the system with no domain walls) were applied to com-
plement the Bethe-ansatz solution. In order to implement
these equations in a system with walls it was postulated that
renormalizations should stop at a length scale comparable
with the distance between ~alls, since the system behaves
on larger length scales as incommensurate.

In the present paper we actually derive the RG equations
valid in a system with a finite density of walls. Since there
has been a considerable confusion as to the nature of these
equations and their interpretation, we shall carefully state
the boundary conditions used and our cutoff procedure.

If Tp is the maximal temperature for the commensurate
phase, we find that for T ( Tp the RG equations flow to the
regime where the fermion description is valid. We then re-
cover the result' " that the C-IC phase boundary near Tp is

p, —exp —(To T) '/2, where —p, is the chemical potential.
When T & Tp the RG equations indeed show that the tem-
perature renormalization effectively stops at the length scale
given by the wall spacing. In this case the system is com-
mensurate only when p, =0; it is a floating phase (i.e. , alge-
braic correlations) for all p, . Yet we find a singularity in the
free energy as p, 0. It corresponds to a third-order transi-
tion when T is near Tp, and changes to higher-order transi-
tions successively as temperature is increased. In terms of
the correlation exponent p=7iv)(T, p, =0) the singular term

9 —2
is —p, . At T= To (go=4) the singularity is p, /lnp, .
A similar singularity appears in q itself in agreement with

Ref. 11; i.e., g —qp ——p, and q —4 ——ln 'p, at Tp.
At low temperatures the adsorbant can form various com-

mensurate phases of periodicity p/q relative to the substrate
periodicity, where p «q are reduced integers. The sequence
of phase transitions at all rational p/q corresponds to a
devil's staircase. ' For p «S dislocations are irrelevant near
the C-IC transition and a floating phase separates the C and

fluid phases. ' Our results then show that even within this
floating phase there are singularities on all rationals with

p «S. The staircase is now worn out by fluctuations; each
step is a singularity in some derivative of p(p, ). For larger

p the C phase appears at lower temperature;" thus the
singularity is weaker for larger p when p, varies at a constant
temperature within the floating phase. We call this path of
singularities in derivatives a "floating" devil's staircase.

Consider the two-dimensional sine-Gordon with a chemi-
cal potentia1 p, which couples to the soliton density

p = f dx~ 8&/dx~/(2' f dx~); each turn of the field
P(x~,x2) by 2m in the x~ direction is a soliton wall extend-
ing through the x2 direction. The Hamiltonian (or action) is

A Iy}=Jtd'x, (V'y)' ——~, cosy —pp

where T is proportional to the temperature, y is the sub-
strate pinning potential, and a is the lattice constant. A
direct RG treatment of Eq. (1) as previously attempted' is
not justified. The reason is that p, induces singular terms in
the field P of the form px~. These terms cannot be Fourier
expanded and an RG integration of Q itself is not straight-
forward. Instead we define a field @(x~,x2) with periodic
boundary conditions such that

IP (x],x2) = @(x],x2) + 2m px } (2)

Equation (1) corresponds to a Grand canonical ensemble
~here the soliton density p is integrated. Instead we use a
canonical ensemble with a fixed p with the action

[j '2
W t@I= j~ d'x +(1—~)

[ 8m T Bxq Bx~

0
—~, cos(@+ 27r px )) (3)

where ( represents anisotropy. (The free energy has an ad-
ditional p /2T term. ) An RG integration on @ is now possi-
ble; formally it is similar to that of Eq. (1) except that p is a
fixed boundary condition and is not allowed to be renormal-
1zed.

We proceed to derive RG equations by integrating the
high-momentum components of @.' '8 A detailed deriva-
tion is presented in Kogut's review. ' The only change is
that here the second-order term in y generates anisotropic
gradient terms involving averages of cos(2mpx~). The
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resulting RG equations to second order in y are

dy=y 2— 77 T dQ

41 —( a
(4a)

C 8

dT = y'T'—f't(pa )
a

dj= —& T ft(pa) +y T f2(pa)
a a

(4b)

(4c) /

2/vr To

/
I
I

7R ~R
0

The free-energy change after the RG integration is

dF =— da 2 da—y Tf3(pa)
8m g3 0

and the functions f'„(pa ) ( n = I, 2, 3) are

2m'f')(pa) = Jt

ding

K)(g)Jt(27r pap)
pa

(5)
FIG, 1. RG trajectories for finite soliton density p %0 (solid

lines) and for p=0 (start at A, B,C and continue into dashed lines
when present). The starting points are all on a line y =const (—
substrate potential) and Tp is the C-IC transition temperature (point
B) for that value of y. For T ~ Tp (cases A,B) T stops renormaliz-
ing when pa &1. For T & Tp and pg (1 (case C) trajectory flows
into regime where fermion description is valid.

= 32m [I + (2n pa ) ]

f'2(pa ) = 2rr JI dg& Ky(g) J2(2rrpa g)

(6a)
IC phase boundary of Eq. (I) is E, = p, , we obtain

p, , —exp —(To T)— (7)
= 967r'(2m pa )'[1+ (2n pa ) ']

f'3(pa ) = vr JI dg g K~(()Jo(2rrpa g)

=2' [1+(2m pa) ] (6c)

where K~ and J„are Bessel functions. A procedure with a
sharp momentum cutoff leads to Jo(g) instead of $Kt($) in
the integrals above. The sharp cutoff procedure leads to
diverging integrals. ' Using a smooth cutoff where a mass
term represents the cutoff'6'' leads to Eqs. (6a)—(6c). Our
results below are insensitive to these cutoff-dependent de-
tails.

Equation (3) is equivalent to a Coulomb gas in an imag-
inary field p. The RG equations for this problem show'
that p is renormalized. (Similar equations are given in Ref.
14.) In our approach p is fixed and instead g is renormal-
ized. Note also that the Bessel functions J„are averaged in
Eqs. (6a)-(6c) and the oscillations that lead to multiple
fixed points' disappear.

For p =0 the anistropy g [Eq. (4c)] is an irrelevant vari-
able and the RG equations reduce to those of the x -y
model. For p & 0 an anisotropy is generated; starting
from (=0 the generated ( is of order y . To lowest order
in y we therefore have ( =0 in Eq. (4a) and only the y and
T equations are coupled.

For p =0 a phase transition at To= 2/n + [Sft(0)/m']'i y
(y « 1) separates the region where y is relevant ( T & To)
or irrelevant (T & To) (see Fig. 1). When y is relevant and

p &0 the system has two length scales —the correlation
length g of the p=0 case, ' g

—exp(To T) 'i', and the-
mean distance between solitons 1/p. If g & p

' increasing
the lattice constant up to g is insensitive to p [ft(pa) is
essentially constant for pa « 1]. The RG equations then
increase y to order 1 and T is now below 2/n (curve C in
Fig. 1); in this regime the fermion approach5 is valid. In
fact the fermion procedure is suspect when T Tp. The
combination with the RG resolves this difficulty —the
length scale of the fermions is identified as the correlation
length g of the commensurate (p= 0) phase. The soliton
energy is then E, —g

' (Refs. 5 and 7—9) and since the C-

Sufficiently near this line p(p, ) is small so that g & p
' and

the fermion result5 p —(p, —p, , ) 'i is valid.
Integrating the RG equations to the region pa & 1 should

show that y is irrelevant since for p & 0 the system is always
IC. The anisotropy g indeed tends to make y less relevant
in Eq. (4a). From the fermion approach7 we know that the
system becomes extremely anisotropic with 1 —( —(pg) as

pg 0. The RG equation cannot reproduce this since in
the region g & a & p higher-order terms in y are required.

Consider next the high-temperature region T ) Tp. In
this case y is irrelevant and the only length scale is p '. For
p = 0 the T,y trajectory is a hyperbola which intersects the
y =0 axis at a renormalized temperature TR (Fig. 1), where

(2 vr T) (2 mTO) = (2 mTg)

4 —2~T 4 —
v)

0

y —a R g 0

When pa « 1 the RG flow satisfies Eq. (9) for a & p
For a & p

' the functions f„(pa ) [Eqs. (6a)—(6c)] de-
crease rapidly and the pinning potential ( —y) stops contri-
buting to the free energy [Eq. (5)]. The reason is that when
a & p, @(xt,x2) must vary more slowly than 2mpx~ and
then cos(@+2mpx~) in Eq. (3) averages to zero.

The free energy (5) can now be evaluated. The function
f3(pa) induces a cutoff at a —p

' with a free-energy term
—1—J

' a "da —p"
Equivalently, the integration can be carried to ~ with

f 3(pa ) retained. The anisotropy term in (5) leads to a
similar term so that the final free-energy density has the
form (for p 0)

8 —2F = +Cyp2T
(10)

The correlation function (exp[i@(x) —ip(0)]) —r ~ can
also be used to identify TR, when y =0 the system is Gauss-
ian with qo=2mTg, where 7io=q (T, p, =0). From Eq. (4a)
the asymptotic form of y as a ~ is
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F= P —C
2 2

(12)

and therefore

p = Tp, + C4p/ In@, (13)

The C-IC transition in a (discrete) sine-Gordon model can
be transformed into a six-vertex (6V) model in both a hor-
izontal and a vertical field, ' which is exactly solvable. The
fields correspond to the chemical potential p, in Eq. (1), the
polarization of the 6V model is equivalent to the soliton
density p, and T & To ( T & To) corresponds to 5 & —1

(5 & —I) in the 6V model (for the definition of b, and a
general discussion of the 6V model see Lieb and Wu").
Following an analogous calculation for the XXZ spin chain, '
one finds for 4 & —1

y ( ) y (()) 2+D 2(m+v)/(w —v)

with 5= —cosa, and a rather lengthy expression for the
constant D Now, the ana. log of cos@ in the 6V and XXZ
models is the umklapp operator ' 04p, so that gp=2x4p.
Further x4O=4/xo~, and xo~ is the thermal exponent of the
eight-vertex model, known from Baxter's solution:
xo~ =2(1 —v/Yr). Consequently, go= 47r/(7r p), and from
Eq. (14)

I' (p ) —F (0)cc p + D p
0

in agreement with our RG result, Eq. (10) . Also, for
1, the logarithmic term in Eq. (12) can be recovered

in the 6V model.
These results show that the free energy is nonanalytic

within the floating phase as p, 0. The line p, =0 is a
singular line for all T ~ Tp up to the transition to the fluid
phase. The singularity becomes weaker for higher tempera-
tures since qo increases with T. If [qo] is the integer part of

where C„(n =1, 2, . . . ) here and below are constants in-
dependent of p, C„&0 and are of order y . In terms of the
chemical potential p, = BF/f)p we obtain (for p, 0)

1) —3

p = Tp, —C2p,

At the transition T= To (7i0=4) we have y —ln '(a/ao),
where ap is the initial lattice constant. The leading singular-
ity then contributes

qo, then the singularity of Eq. (9) as p 0 corresponds to a
transition of order [qo] —1. Just above To it is third order,
and in general of m th order in the temperature range
(y « I)

4 (m+1) & T/Tp& 4 (m+2) (16)

qp
—4

'g = 7) p + C5 p,

At T = Tp (gp= 4) this is replaced by

q = 4 —C6/ Inp,

(17)

Our results for q are in agreement with those obtained in
Ref. 11.

We conclude that a floating incommensurate phase is not
a simple Gaussian system. Although y is an irrelevant vari-
able, integration along its trajectory leads to a singularity in
the free energy. Such a singularity appears at all commens-
urate situations where the ratio of the absorbant/substrate
lattice constants is a rational p/q. For higher p values To ls
lower and the corresponding singularity at a given T [Eq.
(17)] is weaker. Thus the (T, p, ) plane of an incommensu-
rate phase has an infinite number of singular lines; a trajec-
tory crossing these lines is a "floating" devil's staircase.
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To complete the picture we evaluate 7i= q(T, p, ) = 27r T~,
~here TR is the renormalized temperature in the presence
of solitons. Since f~(pa) approaches zero when a increases
beyond p ', temperature stops renormalizing at pa & 1 and
the trajectory ends at y =0 with Ts & Ts (Fig. 1). The
difference Ts —Ts is found by integrating Eq. (4b) (with
p =0 which defines T~) along the dashed trajectory in Fig.
1:

p " 3 &p &p-4
~R ~" i -~' d~ p

P

which yields
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