PHYSICAL REVIEW B

### VOLUME 28, NUMBER 11

# Commensurate-incommensurate transitions and a floating devil's staircase

 B. Horovitz,\* T. Bohr,<sup>†</sup> J. M. Kosterlitz<sup>‡</sup> and H. J. Schulz<sup>§</sup>
 Einstein Center for Theoretical Physics, The Weizmann Institute of Science, Rehovot, Israel (Received 6 September 1983; revised manuscript received 24 October 1983)

Renormalization-group equations for the uniaxial commensurate-incommensurate (C-IC) transition in two dimensions are derived. The soliton density  $\rho$  is a nonanalytic function of the misfit parameter  $\mu$  even at high temperatures where only a floating phase (i.e., algebraic correlations with exponent  $\eta$ ) is possible. The singularity at  $\mu \rightarrow 0$  is  $\rho - T\mu \sim \mu^{\eta-3}$ , where T is temperature. In the  $(T, \mu)$  plane the floating phase is singular therefore on all lines where its density (relative to the substrate) is rational; this is the remnant of the low-temperature devil's staircase. At low temperatures a matching procedure with the fermion approach is obtained.

Monolayers adsorbed on substrates of uniaxial symmetry exhibit a variety of phase transitions. Commensurate (C)incommensurate (IC) transitions were found in Xe/Cu(110) (Ref. 1) and H/Fe(110) (Ref. 2), C-fluid transitions in H/Fe(110) (Ref. 2) and Ba/Mo(112) (Ref. 3), and IC-fluid transition in Pb/Cu(110) (Ref. 4). The theory of the uniaxial C-IC phase transition has largely been based on the sine-Gordon model using fermion-boson transformations<sup>5-9</sup> or Bethe-ansatz techniques.<sup>10,11</sup> Within the continuum formulations<sup>5-9,11</sup> the region  $\beta^2 > 8\pi$  is inaccessible, but precisely there renormalization-group (RG) treatment is possible. In Ref. 11 the RG equations for the pure X-Y model (i.e., the system with no domain walls) were applied to complement the Bethe-ansatz solution. In order to implement these equations in a system with walls it was postulated that renormalizations should stop at a length scale comparable with the distance between walls, since the system behaves on larger length scales as incommensurate.

In the present paper we actually derive the RG equations valid in a system with a finite density of walls. Since there has been a considerable confusion as to the nature of these equations and their interpretation, we shall carefully state the boundary conditions used and our cutoff procedure.

If  $T_0$  is the maximal temperature for the commensurate phase, we find that for  $T < T_0$  the RG equations flow to the regime where the fermion description is valid. We then recover the result<sup>10, 11</sup> that the C-IC phase boundary near  $T_0$  is  $\mu \sim \exp(-(T_0 - T)^{-1/2}$ , where  $\mu$  is the chemical potential. When  $T > T_0$  the RG equations indeed show that the temperature renormalization effectively stops at the length scale given by the wall spacing. In this case the system is commensurate only when  $\mu = 0$ ; it is a floating phase (i.e., algebraic correlations) for all  $\mu$ . Yet we find a singularity in the free energy as  $\mu \rightarrow 0$ . It corresponds to a third-order transition when T is near  $T_0$ , and changes to higher-order transitions successively as temperature is increased. In terms of the correlation exponent  $\eta_0 = \eta(T, \mu = 0)$  the singular term is  $\sim \mu^{\eta_0 - 2}$ . At  $T = T_0$  ( $\eta_0 = 4$ ) the singularity is  $\mu^2/\ln\mu$ . A similar singularity appears in  $\eta$  itself in agreement with Ref. 11; i.e.,  $\eta - \eta_0 \sim - \mu^{\eta_0 - 4}$  and  $\eta - 4 \sim -\ln^{-1}\mu$  at  $T_0$ .

At low temperatures the adsorbant can form various commensurate phases of periodicity p/q relative to the substrate periodicity, where  $p \ge q$  are reduced integers. The sequence of phase transitions at all rational p/q corresponds to a devil's staircase.<sup>12</sup> For  $p \ge 5$  dislocations are irrelevant near the C-IC transition and a floating phase separates the C and fluid phases.<sup>13</sup> Our results then show that even within this floating phase there are singularities on all rationals with  $p \ge 5$ . The staircase is now worn out by fluctuations; each step is a singularity in some derivative of  $\rho(\mu)$ . For larger p the C phase appears at lower temperature;<sup>12</sup> thus the singularity is weaker for larger p when  $\mu$  varies at a constant temperature within the floating phase. We call this path of singularities in derivatives a "floating" devil's staircase.

Consider the two-dimensional sine-Gordon with a chemical potential  $\mu$  which couples to the soliton density  $\rho = \int dx_1 \partial \psi / \partial x_1 / (2\pi \int dx_1)$ ; each turn of the field  $\psi(x_1, x_2)$  by  $2\pi$  in the  $x_1$  direction is a soliton wall extending through the  $x_2$  direction. The Hamiltonian (or action) is

$$\tilde{A}\left\{\psi\right\} = \int d^2x \left\{\frac{1}{8\pi^2 T} \left(\vec{\nabla}\psi\right)^2 - \frac{y}{a^2}\cos\psi - \mu\rho\right\} , \qquad (1)$$

where T is proportional to the temperature, y is the substrate pinning potential, and a is the lattice constant. A direct RG treatment of Eq. (1) as previously attempted<sup>14</sup> is not justified. The reason is that  $\mu$  induces singular terms in the field  $\psi$  of the form  $\rho x_1$ . These terms cannot be Fourier expanded and an RG integration of  $\psi$  itself is not straightforward. Instead we define a field  $\phi(x_1,x_2)$  with periodic boundary conditions such that

$$\psi(x_1, x_2) = \phi(x_1, x_2) + 2\pi\rho x_1 \quad . \tag{2}$$

Equation (1) corresponds to a Grand canonical ensemble where the soliton density  $\rho$  is integrated. Instead we use a canonical ensemble with a fixed  $\rho$  with the action

$$A \{\phi\} = \int d^2x \left\{ \frac{1}{8\pi^2 T} \left[ \left( \frac{\partial \phi}{\partial x_2} \right)^2 + (1 - \zeta) \left( \frac{\partial \phi}{\partial x_1} \right)^2 \right] - \frac{y}{a^2} \cos(\phi + 2\pi\rho x_1) \right\}, \qquad (3)$$

where  $\zeta$  represents anisotropy. (The free energy has an additional  $\rho^2/2T$  term.) An RG integration on  $\phi$  is now possible; formally it is similar to that of Eq. (1) except that  $\rho$  is a *fixed* boundary condition and is not allowed to be renormalized.

We proceed to derive RG equations by integrating the high-momentum components of  $\phi$ .<sup>15-18</sup> A detailed derivation is presented in Kogut's review.<sup>17</sup> The only change is that here the second-order term in y generates anisotropic gradient terms involving averages of  $\cos(2\pi\rho x_1)$ . The

#### **RAPID COMMUNICATIONS**

#### COMMENSURATE-INCOMMENSURATE TRANSITIONS AND A ...

resulting RG equations to second order in y are

$$dy = y \left( 2 - \frac{\pi T}{\sqrt{1 - \zeta}} \right) \frac{da}{a} \quad , \tag{4a}$$

$$dT = -y^2 T^3 f_1(\rho a) \frac{da}{a} \quad , \tag{4b}$$

$$d\zeta = -\zeta y^2 T^2 f_1(\rho a) \frac{da}{a} + y^2 T^2 f_2(\rho a) \frac{da}{a} .$$
 (6)

The free-energy change after the RG integration is

$$dF = -\frac{\zeta}{8\pi} \frac{da}{a^3} - y^2 T f_3(\rho a) \frac{da}{a^3}$$
(5)

and the functions  $f_n(\rho a)(n = 1, 2, 3)$  are

$$f_1(\rho a) = \frac{2\pi^3}{\rho a} \int_0^\infty d\xi \,\xi^3 K_1(\xi) J_1(2\pi\rho a\,\xi)$$
  
=  $32\pi^4 [1 + (2\pi\rho a)^2]^{-3}$ , (6a)

$$f_{2}(\rho a) = 2\pi^{4} \int_{0}^{\infty} d\xi \xi^{4} K_{1}(\xi) J_{2}(2\pi\rho a\xi)$$
  
= 96\pi^{4} (2\pi\rho a)^{2} [1 + (2\pi\rho a)^{2}]^{-4} , (6b)

$$= 2\pi^{2} [1 + (2\pi\rho a)^{2}]^{-2} , \qquad (6c)$$

where  $K_1$  and  $J_n$  are Bessel functions. A procedure with a sharp momentum cutoff leads to  $J_0(\xi)$  instead of  $\xi K_1(\xi)$  in the integrals above. The sharp cutoff procedure leads to diverging integrals.<sup>17</sup> Using a smooth cutoff where a mass term represents the cutoff<sup>16,18</sup> leads to Eqs. (6a)-(6c). Our results below are insensitive to these cutoff-dependent details.

Equation (3) is equivalent to a Coulomb gas in an imaginary field  $\rho$ . The RG equations for this problem show<sup>19</sup> that  $\rho$  is renormalized. (Similar equations are given in Ref. 14.) In our approach  $\rho$  is fixed and instead  $\zeta$  is renormalized. Note also that the Bessel functions  $J_n$  are averaged in Eqs. (6a)-(6c) and the oscillations that lead to multiple fixed points<sup>14</sup> disappear.

For  $\rho = 0$  the anistropy  $\zeta$  [Eq. (4c)] is an irrelevant variable and the RG equations reduce to those of the x-y model.<sup>20</sup> For  $\rho \neq 0$  an anisotropy is generated; starting from  $\zeta = 0$  the generated  $\zeta$  is of order  $y^2$ . To lowest order in y we therefore have  $\zeta = 0$  in Eq. (4a) and only the y and T equations are coupled.

For  $\rho = 0$  a phase transition at  $T_0 = 2/\pi + [8f_1(0)/\pi^5]^{1/2}y$ ( $y \ll 1$ ) separates the region where y is relevant ( $T \ll T_0$ ) or irrelevant ( $T > T_0$ ) (see Fig. 1). When y is relevant and  $\rho \neq 0$  the system has two length scales—the correlation length  $\xi$  of the  $\rho = 0$  case,<sup>20</sup>  $\xi \sim \exp(T_0 - T)^{-1/2}$ , and the mean distance between solitons  $1/\rho$ . If  $\xi \ll \rho^{-1}$  increasing the lattice constant up to  $\xi$  is insensitive to  $\rho$  [ $f_1(\rho a)$  is essentially constant for  $\rho a \ll 1$ ]. The RG equations then increase y to order 1 and T is now below  $2/\pi$  (curve C in Fig. 1); in this regime the fermion approach<sup>5-9</sup> is valid. In fact the fermion procedure is suspect when  $T \rightarrow T_0$ . The combination with the RG resolves this difficulty—the length scale of the fermions is identified as the correlation length  $\xi$  of the commensurate ( $\rho = 0$ ) phase. The soliton energy is then  $E_s \sim \xi^{-1}$  (Refs. 5 and 7-9) and since the C-



FIG. 1. RG trajectories for finite soliton density  $\rho \neq 0$  (solid lines) and for  $\rho = 0$  (start at A, B, C and continue into dashed lines when present). The starting points are all on a line y = const ( $\sim$  substrate potential) and  $T_0$  is the C-IC transition temperature (point B) for that value of y. For  $T \geq T_0$  (cases A, B) T stops renormalizing when  $\rho a \geq 1$ . For  $T < T_0$  and  $\rho \xi < 1$  (case C) trajectory flows into regime where fermion description is valid.

IC phase boundary of Eq. (1) is  $E_s = \mu_c$  we obtain

$$\mu_c \sim \exp(-(T_0 - T)^{-1/2}). \tag{7}$$

Sufficiently near this line  $\rho(\mu)$  is small so that  $\xi < \rho^{-1}$  and the fermion result<sup>5-9</sup>  $\rho \sim (\mu - \mu_c)^{1/2}$  is valid.

Integrating the RG equations to the region  $\rho a \ge 1$  should show that y is irrelevant since for  $\rho \ne 0$  the system is always IC. The anisotropy  $\zeta$  indeed tends to make y less relevant in Eq. (4a). From the fermion approach<sup>7</sup> we know that the system becomes extremely anisotropic with  $1 - \zeta \sim (\rho \xi)^2$  as  $\rho \xi \rightarrow 0$ . The RG equation cannot reproduce this since in the region  $\xi < a < \rho^{-1}$  higher-order terms in y are required.

Consider next the high-temperature region  $T > T_0$ . In this case y is irrelevant and the only length scale is  $\rho^{-1}$ . For  $\rho = 0$  the T,y trajectory is a hyperbola<sup>20</sup> which intersects the y = 0 axis at a renormalized temperature  $T_R^0$  (Fig. 1), where

$$(2 - \pi T)^2 - (2 - \pi T_0)^2 = (2 - \pi T_R^0)^2 \quad . \tag{8}$$

The correlation function  $\langle \exp[i\phi(x) - i\phi(0)] \rangle \sim r^{-\eta}$  can also be used to identify  $T_R^0$ ; when y = 0 the system is Gaussian with  $\eta_0 = 2\pi T_R^0$ , where  $\eta_0 = \eta$   $(T, \mu = 0)$ . From Eq. (4a) the asymptotic form of  $y^2$  as  $a \to \infty$  is

$$y^2 \sim a^{4-2\pi T_R^0} = a^{4-\eta_0} \ . \tag{9}$$

When  $\rho a \ll 1$  the RG flow satisfies Eq. (9) for  $a < \rho^{-1}$ . For  $a > \rho^{-1}$  the functions  $f_n(\rho a)$  [Eqs. (6a)–(6c)] decrease rapidly and the pinning potential (-y) stops contributing to the free energy [Eq. (5)]. The reason is that when  $a > \rho^{-1}$ ,  $\phi(x_1, x_2)$  must vary more slowly than  $2\pi\rho x_1$  and then  $\cos(\phi + 2\pi\rho x_1)$  in Eq. (3) averages to zero.

The free energy (5) can now be evaluated. The function  $f_3(\rho a)$  induces a cutoff at  $a \sim \rho^{-1}$  with a free-energy term

$$-\int^{\rho^{-1}}a^{1-\eta_0}da\sim\rho^{\eta_0^{-2}}.$$

Equivalently, the integration can be carried to  $\infty$  with  $f_3(\rho a)$  retained. The anisotropy term in (5) leads to a similar term so that the final free-energy density has the form (for  $\rho \rightarrow 0$ )

$$F = \frac{\rho^2}{2T} + C_1 \rho^{\eta_0 - 2} , \qquad (10)$$

where  $C_n$  (n = 1, 2, ...) here and below are constants independent of  $\rho$ ;  $C_n > 0$  and are of order  $y^2$ . In terms of the chemical potential  $\mu = \partial F/\partial \rho$  we obtain (for  $\mu \to 0$ )

$$\rho = T\mu - C_2 \mu^{\eta_0 - 3} . \tag{11}$$

At the transition  $T = T_0$  ( $\eta_0 = 4$ ) we have  $y \sim \ln^{-1}(a/a_0)$ , where  $a_0$  is the initial lattice constant. The leading singularity then contributes

$$F = \frac{\rho^2}{2T} - C_3 \frac{\rho^2}{\ln(\rho a)} , \qquad (12)$$

and therefore

$$\rho = T\mu + C_4\mu / \ln\mu \quad . \tag{13}$$

The C-IC transition in a (discrete) sine-Gordon model can be transformed into a six-vertex (6V) model in both a horizontal and a vertical field,<sup>10</sup> which is exactly solvable. The fields correspond to the chemical potential  $\mu$  in Eq. (1), the polarization of the 6V model is equivalent to the soliton density  $\rho$ , and  $T > T_0$  ( $T < T_0$ ) corresponds to  $\Delta > -1$ ( $\Delta < -1$ ) in the 6V model (for the definition of  $\Delta$  and a general discussion of the 6V model see Lieb and Wu<sup>21</sup>). Following an analogous calculation for the XXZ spin chain,<sup>22</sup> one finds for  $\Delta > -1$ 

$$F(\rho) - F(0) \propto \rho^2 + D \rho^{2(\pi+\nu)/(\pi-\nu)}$$

with  $\Delta = -\cos\nu$ , and a rather lengthy expression for the constant *D*. Now, the analog of  $\cos\phi$  in the 6V and *XXZ* models is the umklapp operator<sup>23</sup>  $O_{40}$ , so that  $\eta_0 = 2x_{40}$ . Further  $x_{40} = 4/x_{01}$ , and  $x_{01}$  is the thermal exponent of the eight-vertex model, known from Baxter's solution:<sup>24</sup>  $x_{01} = 2(1 - \nu/\pi)$ . Consequently,  $\eta_0 = 4\pi/(\pi - \nu)$ , and from Eq. (14)

$$F(\rho) - F(0) \propto \rho^2 + D \rho^{\eta_0^2}$$

in agreement with our RG result, Eq. (10). Also, for  $\Delta = -1$ , the logarithmic term in Eq. (12) can be recovered in the 6V model.

These results show that the free energy is nonanalytic within the floating phase as  $\mu \rightarrow 0$ . The line  $\mu = 0$  is a singular line for all  $T \ge T_0$  up to the transition to the fluid phase. The singularity becomes weaker for higher temperatures since  $\eta_0$  increases with T. If  $[\eta_0]$  is the integer part of

 $\eta_0$ , then the singularity of Eq. (9) as  $\rho \to 0$  corresponds to a transition of order  $[\eta_0] - 1$ . Just above  $T_0$  it is third order, and in general of *m*th order in the temperature range  $(y \ll 1)$ 

$$\frac{1}{4}(m+1) < T/T_0 < \frac{1}{4}(m+2) \quad . \tag{16}$$

To complete the picture we evaluate  $\eta = \eta(T, \mu) = 2\pi T_R$ , where  $T_R$  is the renormalized temperature in the presence of solitons. Since  $f_1(\rho a)$  approaches zero when a increases beyond  $\rho^{-1}$ , temperature stops renormalizing at  $\rho a \ge 1$  and the trajectory ends at y = 0 with  $T_R > T_R^0$  (Fig. 1). The difference  $T_R - T_R^0$  is found by integrating Eq. (4b) (with  $\rho = 0$  which defines  $T_R^0$ ) along the dashed trajectory in Fig. 1:

$$T_R^0 - T_R \sim - \int_{\rho^{-1}}^{\infty} a^{3-\eta_0} da \sim -\rho^{\eta_0^{-4}}$$
,

which yields

$$\eta = \eta_0 + C_5 \mu^{\eta_0 - 4} \quad . \tag{17}$$

At  $T = T_0$  ( $\eta_0 = 4$ ) this is replaced by

$$\eta = 4 - C_6 / \ln \mu \quad . \tag{18}$$

Our results for  $\eta$  are in agreement with those obtained in Ref. 11.

We conclude that a floating incommensurate phase is not a simple Gaussian system. Although y is an irrelevant variable, integration along its trajectory leads to a singularity in the free energy. Such a singularity appears at all commensurate situations where the ratio of the absorbant/substrate lattice constants is a rational p/q. For higher p values  $T_0$  is lower and the corresponding singularity at a given T [Eq. (17)] is weaker. Thus the  $(T, \mu)$  plane of an incommensurate phase has an infinite number of singular lines; a trajectory crossing these lines is a "floating" devil's staircase.

## **ACKNOWLEDGMENTS**

We thank R. Pelcovits and B. Nienhuis for helpful discussions. We also thank E. Domany and D. Mukamel for organizing a fruitful summer institute. One of us (J.M.K.) acknowledges partial support of a NSF grant, No. DMR-8305022.

- \*Also Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545. Present address: Department of Physics, Ben-Gurion University, Beer-Sheva, Israel.
- <sup>†</sup>Also at Orsted Institute, DK-2100 Copenhagen, Denmark. Present address: Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853.
- \*Present address: Department of Physics, Brown University, Providence, RI 02912.
- <sup>§</sup>Present address: Institut Laue-Langevin, Boîte Postal 156X, F-38042 Grenoble, France.
- <sup>1</sup>M. Jaubert, A. Glachant, M. Bienfait, and G. Boato, Phys. Rev. Lett. <u>46</u>, 1679 (1981).
- <sup>2</sup>R. Imbihl, R. J. Behm, K. Christmann, G. Ertl, and T. Matsushima, Surf. Sci. <u>117</u>, 257 (1982).
- <sup>3</sup>I. F. Lyuksyutov, V. K. Medvedev, and I. N. Yakovkin, Zh. Eksp. Teor. Fiz. <u>80</u>, 2452 (1981) [Sov. Phys. JETP <u>53</u>, 1284 (1981)].

- <sup>4</sup>W. C. Marra, P. H. Fuoss, and P. E. Eisenberger, Phys. Rev. Lett. <u>49</u>, 1169 (1982).
- <sup>5</sup>V. L. Pokrovsky and A. L. Talapov, Phys. Rev. Lett. <u>42</u>, 65 (1979); Zh. Eksp. Teor. Fiz. <u>78</u>, 269 (1980) [Sov. Phys. JETP <u>51</u>, 134 (1980)].
- <sup>6</sup>J. Villain, in Ordering in Strongly Fluctuating Condensed Matter Systems, edited by T. Riste (Plenum, New York, 1980), p. 221.
- <sup>7</sup>H. J. Schulz, Phys. Rev. B <u>22</u>, 5274 (1980).
- <sup>8</sup>Y. Okwamoto, J. Phys. Soc. Jpn. <u>49</u>, 8 (1980).
- <sup>9</sup>B. Horovitz, J. Phys. C <u>15</u>, 161 (1982); <u>15</u>, 175 (1982).
- <sup>10</sup>H. J. Schulz, Phys. Rev. Lett. <u>46</u>, 1685 (1981).
- <sup>11</sup>F. D. M. Haldane, P. Bak, and T. Bohr, Phys. Rev. B <u>28</u>, 2743 (1983).
- <sup>12</sup>For a review, see P. Bak, Rep. Prog. Phys. <u>45</u>, 587 (1982).
- <sup>13</sup>S. N. Coppersmith, D. S. Fisher, B. I. Halperin, P. A. Lee, and W. F. Brinkman, Phys. Rev. Lett. <u>46</u>, 549 (1981); J. Villain and P.

Bak, J. Phys. (Paris) 42, 657 (1981).

- <sup>14</sup>M. W. Puga, E. Simanek, and H. Beck, Phys. Rev. B 26, 2673 (1982).
- <sup>15</sup>P. B. Wiegmann, J. Phys. C <u>11</u>, 1583 (1978).
- <sup>16</sup>T. Ohta, Prog. Theor. Phys. <u>60</u>, 968 (1978); T. Ohta and D. Jasnow, Phys. Rev. B 20, 139 (1979).
- <sup>17</sup>J. Kogut, Rev. Mod. Phys. <u>51</u>, 700 (1974).
  <sup>18</sup>H. J. F. Knops and L. W. J. den Ouden, Physica A <u>103</u>, 579 (1980).
- <sup>19</sup>R. J. Myerson, Phys. Rev. B <u>18</u>, 3204 (1978).

<sup>20</sup>J. M. Kosterlitz, J. Phys. C 7, 1046 (1974).

- <sup>21</sup>E. H. Lieb and F. Y. Wu, in Phase Transitions and Critical Phenomena, edited by C. Domb and M. S. Green (Academic, London, 1972), Vol. 1, p. 332.
- <sup>22</sup>C. N. Yang and C. P. Yang, Phys. Rev. <u>150</u>, 321 (1966); <u>150</u>, 327 (1966).
- <sup>23</sup>M. P. M. den Nijs, Phys. Rev. B <u>23</u>, 6111 (1981). Notations  $O_{40}$ ,  $x_{40}$ , etc. are explained in this paper.
- <sup>24</sup>R. J. Baxter, Phys. Rev. Lett. <u>26</u>, 832 (1971); Ann. Phys. (N.Y.) <u>70</u>, 193 (1972).