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Tunnel current noise spectra of spins in individual dimers of molecular radicals
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We report the detection of electron spin resonance (ESR) in individual dimers of the stable free radical 2,2,6,6-
tetramethyl-piperidine-1-oxyl (TEMPO). ESR is measured by the current fluctuations in a scanning tunneling
microscope (ESR-STM method). The multipeak power spectra, distinct from macroscopic data, are assigned to
dimers having exchange and Dzyaloshinskii-Moriya interactions in the presence of spin-orbit coupling. These
interactions are generated in our model by interfering electronic tunneling pathways from tip to sample via the
dimer’s two molecules. This is the first demonstration that tunneling via two spins is a valid mechanism of the
ESR-STM method.
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I. INTRODUCTION

The attempt to detect and manipulate a single spin in
individual molecules is a fundamental challenge [1–5]. A
promising tool to monitor the electron spin resonance (ESR)
on the nanometer scale is based on a scanning tunneling
microscope (STM) that measures current-current correlations
in a static magnetic field (ESR-STM) [6–12], rather than
using external radio frequency (rf) fields. The experiments
so far resulted in a signal at the Larmor frequency, a signal
that is sharp even at room temperature and whose frequency
varies linearly with the applied magnetic field [9,11]. Such a
current spectrum has been observed in several spin systems,
including dangling bonds [6,7], metal impurities in silicon
[8], and adsorbed paramagnetic molecular radicals [9,10]. On
the Si(111)7 × 7 surface, two peaks show up and relate to
defects that differ in STM images [11,12]. ESR-STM has
been used to detect the hyperfine spectrum of a single spin in
SiC [13,14]. Similarity to macroscopic ESR was demonstrated
in the spectrum of silicon vacancy [14], showing hyperfine
contributions from 29Si nuclei.

Recently, a different type of ESR-STM was observed at
low temperatures, using a spin-polarized tip and rf irradiation
[15–18]. Furthermore, single spin ENDOR (electron nuclear
double resonance) was performed [19] by applying an rf
field at frequencies of the nuclear transitions and monitoring
the intensity of the hyperfine line observed by ESR-STM;
this facilitated measurements of the hyperfine coupling, the
quadrupole coupling, and the nuclear g factors.

Several theoretical models for ESR-STM have been put
forward [20–24], and it was shown that tunneling via a single
spin cannot explain the observations [20,21]. Instead there
must be at least two tunneling channels in parallel (see Fig. 1)
that interfere and generate ESR-STM [20,21,24]. The two
channels are most likely due to two distinct spin sites: One
is the target scanned by the STM probe, while the other is
possibly located on the tip itself. The lack of direct evidence

for the second spin has made elusive the interpretation of the
experiments.

In the present work we consider a system of 2,2,6,6-
tetramethyl-piperidine-1-oxyl (TEMPO) molecules that tend
to agglomerate and are likely to form dimers (see Fig. 2). The
TEMPO molecule is a stable free radical carrying a spin 1/2,
hence a dimer would be an ideal setup for forming parallel
tunneling routes that lead to the ESR-STM phenomenon. In
our experiment, neither tip nor substrate are spin polarized and
rf radiation is not applied. We find spectra of the tunneling
current where the Larmor resonance is split into more than
six peaks. These can be assigned to two spins, i.e., a dimer,
subject to hyperfine splitting and effective interactions in-
duced by the tunneling process into the electrodes. We model
the data with a master equation developed for the electronic
environment [24,25] (see Fig. 1). Our theory provides a gen-
eral framework for describing the ESR-STM phenomenon for
any pair of spins, be it radical molecules, impurity atoms, or
quantum dots, in particular it accounts for our experimental
data on TEMPO with reasonable parameters. We note also that
the dimer scenario is of much interest to quantum information
science, since by tuning parameters, a long-lived dark state is
available and quantum entanglement can be achieved [25].

II. EXPERIMENT

The STM is a homemade conventional Demuth-type STM
as described elsewhere [19]. An impedance matching circuit
is essential for transferring the rf signal from 108 � at the
STM to 50 � at readout. To compensate for the huge reduction
in voltage, an active circuit creates a larger voltage at read-
out which is uniform over the required range of frequencies
(broadband impedance matching).

The experiment includes a field modulation of amplitude
0.05 G and frequency ωm/2π = 30 kHz. Any field-dependent
resonance is frequency modulated so that the ESR spectrum,
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FIG. 1. Two TEMPO molecules with unpaired electrons are
loosely adsorbed on a Au substrate [see Fig. 2(d) for the chemical
structure]. A tip is scanned and held at a relative voltage V , providing
an electronic environment for the two localized spins. The tunneling
current I passes in parallel via the molecules causing spin flips, and
its fluctuations reveal the level structure of the spins.

as measured by the spectrum analyzer, has a component
S′(ω) cos ωmt . A lock-in amplifier identifies the spectral
derivative S′(ω) which is integrated to produce our data. This
modulation method ensures that only field-dependent spectral
features are detected. In the ESR-STM experiments we per-
formed, the molecules are deposited on gold films of thickness
100 nm on Mica [26]. TEMPO is dissolved in toluene and
drop casted on the surface at a concentration of 0.041 g/25 ml,
corresponding to one monolayer. After drop casting the sam-
ple is put in a UHV chamber (pressure range 10−10 torr), and

FIG. 2. (a) STM image of the Au(111) surface before de-
position of TEMPO. (b) Au(111) after deposition with single
molecules. (c) TEMPO adsorbed on Au(111) after spectral data
acquisition. Images (a) and (b) are 30 × 30 nm2 while im-
age (c) is 10 × 10 nm2. Tunneling conditions: (a) −1 V, 0.4 nA;
(b) −0.1 V, 0.5 nA; (c) −0.5 V, 0.5 nA. (d) The molecular structure
of TEMPO. The unpaired electron occupies a pz orbital on the N − O
bond [29].

tunneling probe data are taken at room temperature. The clean
Au surface shows flat terraces of variable shape, some of
them triangular [Fig. 2(a)]. After deposition, the molecules
disperse as individual entities fairly uniformly on the surface
[Fig. 2(b)] and tend to agglomerate within a few hours, yet
individual molecules are still seen [Fig. 2(c)]. Our spectra
are taken shortly before the configuration of Fig. 2(c). STM
studies of TEMPO adsorbed on Si(111)7 × 7 have shown that
the molecule adsorbs with its NO axis [Fig. 2(d)] normal to
the surface [27]. More relevant here are studies of TEMPO
with Au spheres, showing the disappearance of the ESR signal
when the NO group is close to the Au surface [28]. The
probability that two NO groups are near each other is small
so that the formation of directly interacting spins, e.g., via
dipole-dipole interactions, can be neglected. In our setup, we
only need that the half-filled NO orbitals are close to the
tip and to the substrate to allow for parallel tunneling: The
interactions are then generated via these tunneling processes.

The g tensor and hyperfine coupling of TEMPO are well
documented [29], showing an almost isotropic g factor g ≈
2.007 (within .5%). The eigenvalues of the hyperfine interac-
tion with the nuclear 14N spin are 17, 15, and 94 MHz for the
x, y, and z directions, respectively (the singly occupied p or-
bital of N defines the z axis). The dominant hyperfine coupling
a in the direction parallel to the magnetic field depends on the
molecular orientation and possibly on averaging due to rota-
tional motion. Hence a is a fitted parameter that turns out to
be 50–80 MHz between various molecular sites. The nominal
external magnetic field, perpendicular to the surface, is 230 G,
which with g = 2 would correspond to a Larmor frequency of
ν = 644 MHz, yet we take ν as a fitting parameter, allowing
for uncertainties in the actual field. Experimental spectra of
the tunnel current are taken in 9800 channels (points in the
spectrum analyzer) covering the range of 580–780 MHz, each
channel requiring about 50 μs acquisition time. This is short
compared to the spin lifetime of the 14N nucleus, typically
in the range of 0.5–1 ms (Ref. [30]), so that we may assume
fixed spin states. The spectrum analyzer averages 200 spectra,
however, so that eventually nuclear spin flips occur, and an
ensemble of all levels is probed. A whole spectrum of a single
site takes 90 s.

The data for a clean Au surface (Fig. 3) shows no magnetic
field-dependent modes in our frequency range; in this case
field modulation is not applied since both a 230-G field as well
as zero field are measured. Data including deposited TEMPO
molecules (using modulation) is exhibited below, together
with theory fits.

The ESR of two TEMPO molecules depends sensitively on
the hyperfine interaction. The molecule has three 14N nuclear
spin states whose hyperfine coupling to the unpaired electron
spin splits the ESR into ν, ν ± a. A dimer with two spins
has then nine hyperfine states with nuclear spin projections
m, m′ = 0,±1. When electrons transit between the electrodes
(tip and substrate) through two TEMPO molecules, exchange
tunneling events occur and generate interactions between
the two molecular spins as well as dissipation (linewidth
�) [24,25]. Both interactions and dissipation depend sen-
sitively on the energy levels of the two molecules being
either degenerate (m = m′) or nondegenerate (m �= m′). We
assume that a � � (confirmed by our analysis) so that the
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FIG. 3. ESR-STM data on a clean Au surface with a field of
230G and without a field. The absolute value of the difference is also
shown.

distinction between the two types is well defined. In the
three degenerate states, more (secular) terms contribute to
the master equation and generate a stronger exchange in-
teraction (as compared with nondegenerate states), as well
as Dzyaloshinskii-Moriya interactions [25]. The ESR-STM
spectra we take result from an ensemble average over both
cases, leading in general to overall eight peaks for a given
dimer. We note that the behavior in the relatively prominent
dips between the peaks is most informative: Their positions
determine the bare hyperfine parameter, and their shapes are
sensitive to couplings among degenerate pairs.

III. MODEL

We review first a generic model, that has two spin sites,
each tunnel coupled to the tip as well as to the substrate
(Figs. 1 and 4). The spins have Larmor frequencies ν1, ν2 that

FIG. 4. Illustration of an exchange-tunneling process between
L, R electrodes (tip and substrate) via two localized spins in parallel.
An electron tunneling from the L electrode is spin flipped at one lo-
calized spin site while it is not spin flipped at the other localized spin
site. In addition the latter spin is rotated by the spin-orbit interaction
upon tunneling into the R electrode, represented by the unitary û.

may or may not be equal. The Hamiltonian has the form,

H = H0 + HL + HR + Hxt,

H0 = 1
2ν1τz ⊗ 1 + 1

2ν21 ⊗ τz,

Hxt = J1c†
RσcL · τ ⊗ 1 + J2c†

RσûcL · 1 ⊗ τ + H.c., (1)

where ν1,2 involve the nuclear quantum numbers m, m′, as
spelled out in Eqs. (3) and (4) below. HL, HR correspond
to noninteracting electrons on the tip (L) and substrate
(R), respectively. The exchange-tunneling Hamiltonian Hxt,
sketched in Fig. 4, involves local operators cL, cR for the tun-
neling electrons on the tip and substrate, respectively, σ, τ are
Pauli matrices for the tunneling electrons and either of the two
localized spins, the tensor product of the latter corresponds to
spin 1 ⊗ spin 2. The hopping terms J1,2 in Eq. 1 are derived
from tunneling via a localized state that has strong on-site
Coulomb repulsion, which eliminates doubly occupied or zero
occupied electron states, a procedure known as the Schrieffer-
Wolff transformation [24,31]. For spin 2, the hopping involves
angles θ, φ of a unitary matrix û = eiσzφeiσyθ/2 that represents
spin-orbit interactions. The spin-orbit interaction is essential
for allowing the current-spin coupling [24] and also affects
the effective interactions [25] [see Eq. (2)].

The system-bath model defined by the Hamiltonian H has
been treated in Refs. [24,25] within a Born-Markov master
equation. The tunneling elements generate linewidths �1, �2

for either spin, and remarkably, also effective spin-spin in-
teractions. They contain an exchange coupling Jex and a
Dzyaloshinskii-Moriya coupling JDM given by

Jex

JDM

}
= 4J1J2N2(0)� cos 1

2θ

{
cos φ

sin φ
, (2)

and are spelled out in Eqs. (3) and (4). These couplings can
be fairly large as they depend on the electron bandwidths in
the electrodes � (Fig. 4); N (0) is the density of states of
either electrode. The resulting master equations for the density
matrix are presented in the Appendix.

The effective interactions depend on ν1, ν2 being degen-
erate or not. This is determined by the hyperfine couplings.
We keep in H0 the hyperfine component a that is parallel
to the magnetic field, a transverse hyperfine coupling b can
be neglected since it affects the spectra only in second order
∼(b/ν1,2)2. Such terms may cause a small difference between
the two hyperfine splittings and even shift ν1,2. The eigenen-
ergies that appear in H0 are ν1 = ν + am and ν2 = ν + am′
where the fixed quantum numbers m, m′ = 0,±1 label the nu-
clear spin states. In the degenerate case m = m′, the effective
Hamiltonian (apart of dissipative terms) is

Hdeg = 1
2 (ν + am)[τz ⊗ 1 + 1 ⊗ τz]

−Jexτ ⊗ τ + JDM[τx ⊗ τy − τy ⊗ τx], (3)

with the exchange and DM couplings defined in Eq. (2). The
eigenstates, levels, and transition frequencies are listed in
Table I. Note that the hyperfine transitions ν + am, m = 0,

±1 are split by the interactions. In particular JDM is responsi-
ble for the splitting of the T 1 → T 2, T 2 → T 3 transitions.

The nondegenerate dimer states m �= m′ have an
anisotropic exchange coupling (being the only secular
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TABLE I. Spectra and transitions of degenerate dimers (first four lines where tan ψ = JDM/Jex, J = √
J2

ex + J2
DM, and nuclear levels m =

m′ = −1, 0, 1) and nondegenerate dimers (last line where s, s′ = ±1 are electron spin states). The S, T notation refers to singlet or triplet
states that decouple exactly in the limit JDM = 0. Transitions are given only near the Larmor frequency ν.

Eigenstates Energy levels Transition frequencies

S : |↑↓ mm〉 − eiψ |↓↑ mm〉 2J + Jex S → T 1, T 3 :
T 1 : |↑↑ mm〉 ν − Jex + am (ν + am) ± 2(J + Jex )
T 2 : |↑↓ mm〉 + eiψ |↓↑ mm〉 −2J + Jex T 1 → T 2, T 2 → T 3 :
T 3 : |↓↓ mm〉 −ν − Jex − am ν + am ± 2(J − Jex )
|ss′m �= m′〉 1

2 s(ν + am) + 1
2 s′(ν + am′) − ss′Jex ν + am ± 2Jex

term [25]), and the effective Hamiltonian is

Hnondeg = 1
2 (ν + am)τz ⊗ 1 + 1

2 (ν + am′)1 ⊗ τz

− Jexτz ⊗ τz. (4)

The spectrum and transition frequencies are listed in Table I.
Also in this case the hyperfine transitions are split by the
interactions.

The fluctuations in the tunneling current arise from spin
flips. We model these by time correlations of two spin op-
erators, one carries a current with spin flip τ±, the other
carrying a current without spin flip τz. (There are additional
combinations from flips of both spins [25], but outside our
frequency range and not considered here.) Hence the current
correlations are proportional to

C2(ν1, ν2, ω) = 〈(τ− ⊗ τz )t (τ+ ⊗ τz )0〉ω (5)

+ 〈(τz ⊗ τ−)t (τz ⊗ τ+)0〉ω + (+ ↔ −),

where 〈. . .〉ω is a Fourier transform. The frequency param-
eters ν1,2 in Eq. (5) depend on m, m′ of the two nuclear
spins, i.e., they are either of ν, ν ± a. Note that interchanging
ν1, ν2 yields distinct results, e.g., if �1 �= �2. For all nuclear
configurations of a dimer, the nondegenerate (six pairs) and
degenerate (three pairs) contributions are

Cnondeg(ω) =
∑
±

[C2(ν ± a, ν, ω) + C2(ν ± a, ν ∓ a, ω)

+ C2(ν, ν ± a, ω)],

Cdeg(ω) =
∑

m=0,±1

C2(ν + ma, ν + ma, ω). (6)

The total observable is Cnondeg(ω) + Cdeg(ω).
We evaluate the spin-spin correlations via the master equa-

tion for both the degenerate and nondegenerate cases, as

summarized in the Appendix, and fit parameters to the ex-
perimental data. We consider first the general features of the
theoretical results, an example is in Fig. 5(left). The dominant
terms are the six nondegenerate terms (higher red lines) that
are split by ±2Jex. Between these six peaks are strong dips at
the bare (noninteracting) hyperfine transitions ν, ν ± a, thus
readily determining these parameters. The degenerate terms
(lower black lines) split from the bare transitions by both a
strong and a weak splitting ±2(J ± Jex) (see Table I). The
weak splitting 2(J − Jex) > 0 arises from JDM; if the latter
vanishes, some lines do not split and there would be a (small)
peak in the bare locations. Since this was not seen in any of
our data we conclude that JDM is significant, i.e., at least of
order Jex. The weak splittings produce side shoulders on the
main peaks, seen in some of our data. The strong splitting
is larger than that of the nondegenerate terms (2(J + Jex) >

2Jex), hence, although the overall intensity of the degenerate
terms is weaker, the peaks at the edges of the spectrum be-
come distinct and dominant, leading in general to an apparent
eight-peak structure.

IV. ANALYSIS AND DISCUSSION

Before fitting our data, we note that macroscopic ESR for
dimers with exchange is totally different from that above. In
the macroscopic case a homogeneous rf field is applied so that
the measured correlations are symmetric in both spins, 〈(τ− ⊗
τz + τz ⊗ τ−)t (τ+ ⊗ τz + τz ⊗ τ+)0〉ω. The permutation sym-
metry forbids in particular S → T transitions for m = m′
and JDM = 0. Furthermore, in the STM case the exchange is
generated via the electrodes and is different for degenerate
and nondegenerate pairs [compare Eqs. (3) and (4)], while in
the macroscopic case, there is a direct exchange that applies

FIG. 5. (Left) Theoretical spectra of nondegenerate spin pairs (upper red line) and of degenerate ones (lower black line) vs f = ω/2π .
(Right) Experimental (magenta) and theory (black) spectra, the latter being the sum of the spectra on the left. Fitting parameters in MHz:
ν : 665, a : 50, 55, Jex : 8, JDM : 9; hyperfine a is somewhat different between left and right.
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FIG. 6. Experimental ESR-STM spectra (jagged magenta lines) and fitted theoretical curves using the following parameters (in MHz):
(a) ν : 666, a : 71, 69, Jex : 7, JDM : 12. (b) ν : 683, a : 67, Jex : 7, JDM : 12. (c) ν : 663, a : 60, 59, Jex : 7, JDM : 10. (d) ν : 677, a : 80, 73,
Jex : 1, JDM : 8. The small differences in a correspond to different nuclear m levels and may arise from second-order shifts due to subleading
hyperfine couplings. The data corresponds to total current of 0.1 nA and tip-substrate voltage of 1 V (positive substrate).

equally to all m, m′. Finally, the spin-orbit interaction respon-
sible for the coupling JDM is most likely generated by the
heavy metal atoms in the tip, hence absent in a macroscopic
setup.

The experimental spectra are restricted by the detection
sensitivity of the impedance matching circuits to the fre-
quencies 580–780 MHz, and some knowledge on the ESR
parameters, e.g., Larmor frequencies and hyperfine couplings
is needed to choose the proper spectral window. The fit to
theory is best when the spectrum covers a wide range, i.e.,
probing all possible eigenfrequencies. We have included in
our analysis only data that have at least seven peaks [except
for Fig. 6(d)]; we have found 15 such spectra. We have ex-
cluded other spectra with four to six lines, as some peaks
are likely to be outside the measured range, due to stronger
interactions. We note that monomer molecules require an ad-
ditional spin species, possibly at a remote Larmor frequency,
to generate an interference (Fig. 1 and Ref. [24]); this situation
is likely to have an exchange term as in Eq. (4), leading to six
lines in our spectral range. The latter case may also correspond
to a dimer situation, hence we have excluded this case. We
did not see spectra with only three lines; note, however, the
peculiar data in Fig. 6(d), which we attribute to a dimer (see
below). Figure 5 (right) shows the theory spectrum (black
smooth line), the sum of the two curves in Fig. 5 (left),
compared to experimental data, the magenta jagged curve.
The parameters of the fit are given in the caption, in addi-
tion we use the linewidths �1, �2 ≈ 4 MHz. (Note that in the
absence of splitting due to Jex and JDM, the linewidth becomes
�1 + �2.) These linewidths also determine the tunneling cur-
rent via both spin sites [24] 3

8 e(�1 + �2) ≈ 0.5 pA. We expect
then that most of the total current (0.1 nA) tunnels directly
from tip to substrate, indeed dominant as it is not Coulomb
blockaded.

Figures 6(a)–6(c) show additional fitting curves with
fairly similar parameters, obtained for different spots on the

sample. In all cases, reasonable agreement is found with re-
alistic fit parameters; note in particular that the couplings Jex,
JDM are comparable in magnitude, which points, on the basis
of the model, towards a sizable rotation angle tan φ ∼ 1 in the
spin-orbit interaction. The fitted values of a are in between
the hyperfine eigenvalues for the z and x, y axes [29]. This
suggests some tilt or rotational averaging of the molecular z
axis relative to the magnetic field (normal to the surface). We
have assumed that the molecules of a given dimer have the
same a parameter, as justified by the fits; this implies that they
are similarly tilted.

An exception is Fig. 6(d) that appears to have only three
peaks, as if Jex = JDM = 0. Fitting the data this way would
yield linewidths �1, �2 much larger than in all other cases,
however. We believe that it is more likely that a weak, but
finite exchange applies in this case [caption of Fig. 6(d)], caus-
ing shoulders and an apparent increase in width of these lines.

In conclusion, we have found a large set of ESR-STM spec-
tra that fit well to a theory of two spins located on a molecular
dimer and coupled via electrons that tunnel between tip and
substrate. The fitting parameters give effective exchange and
Dzyaloshinskii-Moriya couplings that are of the same order
and fairly strong (even comparable to the hyperfine splitting,
using the conventional definitions 4Jex, 4JDM of Ref. [32]).
Our analysis of these dimers opens a route for studying hyper-
fine interactions and g factors in molecules and determining
their parameters. It also paves the road to measure spin-orbit
coupling for tunneling electrons.
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APPENDIX: MASTER EQUATIONS

We present in this Appendix the full Hamiltonian and the
master equations that are used to find the spin correlations.
We consider two isolated spins (quantum dots or impurities)
described by Pauli matrices τ ⊗ 1 and 1 ⊗ τ (tensor products
display operators acting on the first spin and those acting
on the second spin) coupled by tunneling in parallel to two
environments L, R (tip and substrate for the STM setup). The
latter have spin-independent energies εkL, εkR whose chem-
ical potentials differ by a bias V , and Hamiltonian HL =∑

k εkLc†
kLckL, with electron creation and annihilation oper-

ators c†
kL, ckL , being two-component spinors for each mode

kL; similarly with L → R. The Hamiltonian has two forms,
depending on the two Larmor frequencies being either degen-
erate ν or nondegenerate ν1 �= ν2 such that |ν1 − ν2| � �1,2,
where �1,2 are linewidths (to be identified below). The iso-
lated spin Hamiltonian is then of either form (using h̄ = 1):

H0 = 1
2ν(τz ⊗ 1 + 1 ⊗ τz ) degenerate case;

H0 = 1
2ν1 τz ⊗ 1 + 1

2ν2 1 ⊗ τz nondegenerate case. (A1)

The full Hamiltonian is

H = H0 + HL + HR + (
J1c†

RσcL

·τ ⊗ 1 + J2c†
RσûcL · 1 ⊗ τ + H.c.

)
, (A2)

where cL = ∑
k ckL is the local operator that couples to the

spins (same with L → R). The hopping terms J1,2 in Eq. (A1)
are derived from tunneling via a localized state that has strong

on-site Coulomb repulsion, which eliminates doubly occupied
or zero occupied electron states, a procedure known as the
Schrieffer-Wolff transformation [24,31]. For spin 2, we use
the unitary matrix û = eiσzφeiσyθ/2 to model spin-orbit inter-
actions; this is important for the coupling of an STM current
to the spins [24]. There are additional terms that tunnel elec-
trons from one lead and back to the same lead, however, the
terms in (A1) dominate at large voltage, i.e., eV � ν, kBT or
eV � ν1, ν2, kBT (T is temperature), the typical case in STM
experiments.

The density matrix is a 4 × 4 matrix and is expanded as
ρ(t ) = ∑

α,β ρα,β (t )τα ⊗ τβ , with α, β = 0, z,+,− so that
τα = 1, τz, τ+, τ− and ρ00 = 1

4 . The time evolution of the
density matrix, i.e., the master equation, is derived by the
Lindblad method and is detailed in Ref. [25]. It is based
on integrating out the fermionic degrees of freedom of the
environment, keeping only secular terms arising from the
interaction (they produce transition rates between states of the
two-spin system). Depending on the degeneracy, the number
of secular terms differs. The tunneling terms J1,2 generate a
spin-spin interaction Hint, so that the master equation has in
general the form,

dρ

dt
= −i[Hint, ρ] + Rρ ⇒ d ρ̂

dt
= (Ĥ ′ + R̂′)ρ̂, (A3)

where R corresponds to both H0 and the dissipative part due
to tunneling. The elements ραβ can be written as a 16-entry
vector ρ̂, ordered as in the left-hand side of Eq. (A4) below.
The commutator with Hint and the dissipative part R can be
rewritten as a 16 × 16 supermatrix Ĥ ′ + R̂′, and the elements
of R̂′ can be read off from the equations given below [25].

We present first the simpler nondegenerate case where
the resonant terms involve only the τz tunneling terms. The
method produces the spin-spin interaction Hint = −Jexτz ⊗
τz with Jex defined in Eq. (2). Using the notation λ1 =
16πN2(0)J2

1 , λ2 = 16πN2(0)J2
2 , ν̄1 = ν1

eV , ν̄2 = ν2
eV and time

in units of 1/eV , the following master equation is found:

dρ00

dt
= 0,

dρ0z

dt
= −λ2(ρ0z + ν̄2ρ00),

dρ0+
dt

= −(λ2 + iν̄2)ρ0+,

dρ0−
dt

= −(λ2 − iν̄2)ρ0−,

dρz0

dt
= −λ1(ρz0 + ν̄1ρ00),

dρzz

dt
= −(λ1 + λ2)ρzz − λ1ν̄1ρ0z − λ2ν̄2ρz0,

dρz+
dt

= −(λ1 + λ2 + iν̄2)ρz+ − λ1ν̄1ρ0+,

dρz−
dt

= −(λ1 + λ2 − iν̄2)ρz− − λ1ν̄1ρ0−,

dρ+0

dt
= −(λ1 + iν̄1)ρ+0,
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dρ+z

dt
= −(λ1 + λ2 + iν̄1)ρ+z − λ2ν̄2ρ+0,

dρ++
dt

= −[λ1 + λ2 +
√

λ1λ2 cos 1
2θ cos φ + i(ν̄1 + ν̄2)]ρ++,

dρ+−
dt

= −[λ1 + λ2 −
√

λ1λ2 cos 1
2θ cos φ + i(ν̄1 − ν̄2)]ρ+−,

dρ−0

dt
= −(λ1 − iν̄1)ρ−0,

dρ−z

dt
= −(λ1 + λ2 − iν̄1)ρ−z − λ2ν̄2ρ−0,

dρ−+
dt

= −[λ1 + λ2 −
√

λ1λ2 cos 1
2θ cos φ − i(ν̄1 − ν̄2)]ρ−+,

dρ−−
dt

= −[λ1 + λ2 +
√

λ1λ2 cos 1
2θ cos φ − i(ν̄1 + ν̄2)]ρ−−. (A4)

Identifying the various ν + am, ν + am′ in Eq. (4) as ν1, ν2 determines the master equation for each pair of frequencies. The
individual linewidths are identified as the decay rates of ρ+0, ρ0+, i.e., �1 = λ1eV , �2 = λ2eV .

The degenerate case has more secular terms. These couple also transverse spin components and generate a spin-spin
interaction Hint = −Jexτ ⊗ τ + JDM[τx ⊗ τy − τy ⊗ τx]. The R̂′ matrix in Eq. (A3) can be identified in the following master
equation,

dρ00

dt
= 0,

dρ0z

dt
= −λ2(ρ0z + ν̄ρ00) − 1

4 ν̄
√

λ1λ2 cos 1
2θ (eiφρ+− + e−iφρ−+),

dρ0+
dt

= −(λ2 + iν̄)ρ0+ + 1
2 ν̄

√
λ1λ2 cos 1

2θ eiφρ+z,

dρ0−
dt

= −(λ2 − iν̄)ρ0− + 1
2 ν̄

√
λ1λ2 cos 1

2θ e−iφρ−z,

dρz0

dt
= −λ1(ρz0 + ν̄ρ00) − 1

4 ν̄
√

λ1λ2 cos 1
2θ (eiφρ+− + e−iφρ−+),

dρzz

dt
= −(λ1 + λ2)ρzz − λ1ν̄ρ0z − λ2ν̄ρz0 + 1

2

√
λ1λ2 cos 1

2θ (eiφρ+− + e−iφρ−+),

dρz+
dt

= −(λ1 + λ2 + iν̄)ρz+ − λ1ν̄ρ0+ −
√

λ1λ2 cos 1
2θ eiφ (ρ+z + 1

2 ν̄ρ+0),

dρz−
dt

= −(λ1 + λ2 − iν̄)ρz− − λ1ν̄1ρ0− −
√

λ1λ2 cos 1
2θ e−iφ (ρ−z + 1

2 ν̄ρ−0),

dρ+0

dt
= −(λ1 + iν̄)ρ+0 + 1

2 ν̄
√

λ1λ2 cos 1
2θ e−iφρz+,

dρ+z

dt
= −(λ1 + λ2 + iν̄)ρ+z − λ2ν̄ρ+0 −

√
λ1λ2 cos 1

2θ e−iφ (ρz+ + 1
2 ν̄ρ0+),

dρ++
dt

= −[λ1 + λ2 +
√

λ1λ2 cos 1
2θ cos φ + 2iν̄]ρ++,

dρ+−
dt

= −[λ1 + λ2 −
√

λ1λ2 cos 1
2θ cos φ]ρ+− +

√
λ1λ2 cos 1

2θ e−iφ (2ρzz + ν̄ρ0z + ν̄ρz0),

dρ−0

dt
= −(λ1 − iν̄)ρ−0 + 1

2 ν̄
√

λ1λ2 cos 1
2θ eiφρz−,

dρ−z

dt
= −(λ1 + λ2 − iν̄)ρ−z − λ2ν̄ρ−0 −

√
λ1λ2 cos 1

2θ eiφ (ρz− + 1
2 ν̄ρ0−),

dρ−+
dt

= −[λ1 + λ2 −
√

λ1λ2 cos 1
2θ cos φ]ρ−+ +

√
λ1λ2 cos 1

2θ eiφ (2ρzz + ν̄ρ0z + ν̄ρz0),

dρ−−
dt

= −[λ1 + λ2 +
√

λ1λ2 cos 1
2θ cos φ − 2iν̄]ρ−−. (A5)
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Finally, the various correlation functions in Eqs. (5) and (6) of operators A, B are derived using the regression formula,

〈A(t )B(0)〉ω = −2 Re Tr
(

A
1

Ĥ ′ + R̂′ + iω
Bρ∞

)
, (A6)

where ρ∞ is the steady-state density matrix which for the nondegenerate case is

ρ∞ : ρ00 = 1
4 , ρ0z = − 1

4 ν̄2, ρz0 = − 1
4 ν̄1, ρzz = − 1

4 ν̄1ν̄2, (A7)

all other terms of ραβ being zero. For the degenerate case ρ∞ is the same with the replacement ν̄1, ν̄2 �→ ν̄. (At the symmetric
point λ1 = λ2 there is an additional solution for ρ∞ involving a dark state [25]; we do not consider here this special situation
that needs fine tuning.)
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