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A recent experimental breakthrough has enabled probing the electronic parametric resonance of a single
magnetic atom in a scanning tunneling microscopy setup. The results present intriguing features, such as
an asymmetric line shape and an unusually large ratio of the decoherence and decay rates, which defy
standard approaches using the conventional Bloch equations. To address these issues we employ generalized
Bloch equations, together with proper microscopic modeling of the magnetic adatom, and show how all the
experimental features can be naturally accounted for. The proposed approach may also be useful in treating any
future similar experiments, as well as next generation hybrid quantum devices.
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I. INTRODUCTION

Electron paramagnetic resonance (EPR) experiments have
been a powerful tool in studying the properties of differ-
ent paramagnetic materials by probing the spin of unpaired
electrons for several decades [1]. Recently, the possibility of
single spin resolution in EPR detection has been realized by
utilizing scanning tunneling microscopy (STM) to measure
the tunneling conductance through a magnetic impurity [2–7],
where a spin-polarized STM tip is used both as the EPR pump
and probe. A different type of EPR-STM phenomena was
realized by using a nonpolarized tip [8,9].

Focusing here on experiments with polarized tips, the
results of these experiments pose several difficulties: first, a
conspicuous asymmetry in the resonance line shape, with the
signal even dropping below its asymptotic value; this was
previously attributed to phenomenological Fano interferences
[4,10]; and second, a T1 relaxation time which is about three
orders of magnitude longer than the decoherence time T2.
As we will show, these features (and others to be detailed
below) can naturally be explained as intrinsic effects provided
we (a) go beyond the traditional Bloch equation employed in
these works, and use a modified generalized quantum master
equation; (b) account for the fact that the two-level system
addressed by the EPR excitation is a part of a more complex
energy manifold of the adatom; (c) derive relaxation rates
from the spin-electrode couplings.

The paper is organized as follows. In Sec. II we present
the theoretical model for the experimental system, as well as
its mapping to an effective open quantum two-level system
(TLS). We then show how a measurement of the tunneling
current reveals the steady-state polarization of the TLS in
Sec. III. The flaws in treating the system using traditional
approaches are pointed out in Sec. IV, leading to an intro-
duction of our generalized approach in Sec. V. After showing
that our proposed treatment can account for some of the
experimental observations, in Sec. VI we consider the higher
voltage regimes, where higher energy levels play a role, and

show that our approach captures the unique features observed
in this regime. We summarize our findings in Sec. VII.
We give additional technical details regarding the derivation
of our generalized approach in Appendix A, and expand
on the calculation of relaxation and decoherence rates in
Appendix B.

II. MODEL

To make the discussion concrete we concentrate on the
system studied in Ref. [3] (see Fig. 1). There, single iron
atoms were placed on a monolayer magnesium oxide (MgO)
film, isolating the atoms from a bulk silver substrate. A spin-
polarized STM tip was positioned above the iron adatom, with
the direction of its polarization determined by the applied
magnetic field, which is at an angle ψ to the axis perpendic-
ular to the MgO plane, whose value was close to 90◦ (field
nearly parallel to the substrate). The magnetic atom placed on
the substrate (assumed to be in the d6 electronic configuration
in the lowest Hund’s term, with L = S = 2) is well described
by the ligand-field Hamiltonian [11]

Hlf = DL2
z + EL4

z + F0(L4
+ + L4

−) + λ�L · �S
+μB(�L + 2�S) · �B, (1)

with the applied magnetic field �B and the Bohr magneton μB.
The values used for the parameters in Hlf are given in Table I.
This Hamiltonian includes all terms allowed by the fourfold
symmetry of the Fe bound to the MgO layer. A finite magnetic
field component in the direction perpendicular to the MgO
substrate acts as a Zeeman field, splitting the lowest energy
state of the atom into an effective TLS, polarized in its spin
component, and isolated from the rest of the spectrum by a
gap of roughly ∼14 meV [3]. A dc voltage Vdc = 5 mV was
set between the tip and the substrate, allowing tunneling of
electrons between the tip and the bulk substrate through the
adatom. Additionally, an rf voltage was introduced, driving
coherent transitions of the TLS.

2469-9950/2019/99(19)/195433(13) 195433-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.195433&domain=pdf&date_stamp=2019-05-17
https://doi.org/10.1103/PhysRevB.99.195433


SHAVIT, HOROVITZ, AND GOLDSTEIN PHYSICAL REVIEW B 99, 195433 (2019)

FIG. 1. Experimental setup of the EPR-STM experiment [3,4].
The iron adatom is placed on an MgO substrate below an STM
tip. Applying an appropriate magnetic field �B effectively turns the
atom into a TLS in the working dc voltage regime and polarizes
the STM tip in the field direction. An additional rf voltage is
applied between the tip and the substrate to measure the electron
paramagnetic resonance in the atom. Also shown is a schematic
depiction of the exchange interaction processes between the adatom
and the bath electrons. The strength of the exchange interaction for
electrons hopping from tip to the adatom and back (green) is Jt , for
electrons hopping from the substrate and back (red) is Js, and for
electrons tunneling from the tip to the substrate (or the other way
around) through the adatom (purple) is

√
Jt Js.

Projecting (1) into its two lowest levels and including the
periodic drive and the coupling of the atom to the tip and
substrate electrons, one finds the total Hamiltonian

H = HS + HD + HI + HB, (2)

with HS, HD, HI , and HB representing the system, periodic
driving, interaction of the TLS with the electronic bath
(phononic dissipation is neglected as a result of the low
temperature, T ≈ 0.6 K), and bath Hamiltonians respectively,
and are given by

HS = −1

2
h̄ω0σz, (3a)

HD = h̄� cos(ωdt )σx, (3b)

HI = Hss
I + Htt

I + Hts
I , (3c)

HB =
∑
k,σ,�

(εkσ�c†
kσ�

ckσ� + T0c†
kσ�

ckσ �̄), (3d)

where �σ are the Pauli matrices in the TLS subspace, h̄ω0

is the two-level energy separation, � ∝ Vrf is the driving
amplitude, ωd ≡ ω0 + δω is the driving frequency (typically

TABLE I. Approximate values for the free parameters in the
ligand-field Hamiltonian [Eq. (1)]; see Supplemental Material for
Ref. [3].

Parameter Approximate value

D −433 meV
E 0 meV
F0 2.19 meV
λ −12.6 meV

� = 1–20 MHz, ω0, ωd ∼ 25 GHz. The driving � and de-
tuning δω combine to give the generalized Rabi frequency
ω ≡ √

�2 + δω2), T0 is the tip-substrate tunneling amplitude,
and ckσ� is an electronic annihilation operator with momentum
k and spin σ in reservoir � (either the tip or the substrate, with
�̄ the reservoir opposing �). The three different components of
the interaction Hamiltonian HI describe different hopping pro-
cesses of electrons: tip-atom-tip (tt), substrate-atom-substrate
(ss), and tip-atom-substrate (ts); see Fig. 1. They are of the
form

H ��′
I =

√
J�J�′ �S · �S��′ , (4)

with �S��′ = ∑
k,k′ (c†

kσ�
�σσσ ′ck′σ ′�′ + H.c.). �S is the physical

spin operator of the magnetic atom, while σ , whenever next to
c, c† operators, operates within the spin space of the tunneling
electrons.

A. Mapping the interaction Hamiltonian into an open TLS

The Hamiltonian Eq. (1) can be diagonalized in the 5 × 5
Hilbert space spanning the different orbital momentum and
spin states. We shall henceforth focus on the two lowest
energy levels of Hlf , denoted by |0〉 and |1〉. Any operator Ô
can be projected onto the subspace spanned by the TLS,

Ô = 1

2
σx(O10 + O01) + i

2
σy(O10 − O01)

+ 1

2
σz(O00 + O11) + 1

2
(O00 + O11), (5)

with the matrix elements Oi j ≡ 〈i|Ô| j〉. In this manner, we
can map all spin operators in the two-level subspace using the
general notation⎛

⎜⎝Sx

Sy

Sz

⎞
⎟⎠ =

⎛
⎜⎝αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

⎞
⎟⎠
⎛
⎜⎝σx

σy

σz

⎞
⎟⎠. (6)

Using the parameters in Table I, we evaluate the spin projec-
tion matrix,⎛
⎜⎝αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

⎞
⎟⎠ ≈ −2 × 10−4

⎛
⎜⎝2.4 0 −1

0 2.4 0

7.1 0 104

⎞
⎟⎠. (7)

Importantly, αzz is by far the most dominant matrix element,
and we find the approximation αxx ≈ αyy ≡ α⊥ well justified.

The quantization axis of the spin in the interaction
Hamiltonian (4), the ẑ axis, is directed along the “lab” ẑ
direction, normal to the substrate (which is also the easy axis
of the adatom deposited on the MgO layer). We perform a
rotation on the electronic operators such that the new spin
axis lies in the direction of the STM tip spin polarization
(similarly to [12]),

ck↑� → cos
ψ

2
ck↑� − sin

ψ

2
ck↓�, (8a)

ck↓� → sin
ψ

2
ck↑� + cos

ψ

2
ck↓�. (8b)

After this rotation, we write the interaction Hamiltonian as

H ��′
I ≡

√
J�J�′ (σ+�̂+ + σ−�̂− + σz�̂z ), (9)
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with the electronic operators �̂i,

�̂− =
(

αzx cos ψ + α⊥
2

sin ψ

) ∑
k,k′,σ

σ (c†
kσ�

ck′σ�′ + c†
k′σ�′ckσ�)

+
(

α⊥
2

(cos ψ + 1) − αzx sin ψ

)
×

∑
k,k′

(c†
k↓�

ck′↑�′ + c†
k′↓�′ck↑�)

+
(

α⊥
2

(cos ψ − 1) − αzx sin ψ

)
×

∑
k,k′

(c†
k↑�

ck′↓�′ + c†
k′↑�′ck↓�), (10)

�̂z =
(

αzz cos ψ + 1

2
αxz sin ψ

) ∑
k,k′,σ

σc†
kσ�

ck′σ�′

+
(

1

2
αxz cos ψ − αzz sin ψ

) ∑
k,k′,σ

c†
kσ�

ck′σ̄ �′ + H.c. ,

(11)

and �̂+ = (�̂−)†.

III. RELATING THE TUNNELING CURRENT TO
THE TLS POLARIZATION

We consider the tunneling current due to interactions with
the reservoirs, following mainly the treatment in [12]. The
labels �, �′ refer here to the tip and substrate, respectively. The
current operator may be determined by examining the change
in total charge over time in one of the leads,

I (t ) = ie

⎡
⎣∑

k,σ

c†
kσ t ckσ t , H

⎤
⎦ = ie(C − C†), (12)

with

C ≡ T0

∑
k,k′,σ

c†
kσ t ck′σ se

ieV t + Jts

∑
k,k′,σ,σ ′

c†
kσ t �σσσ ′ · �Sck′σ ′se

ieV t ,

(13)

and Jts = √
Jt Js. We can expand the average of the

current operator to lowest (first) nonvanishing order in
the tunneling Hamiltonian, using the relation 〈Ô(t )〉 =
−i

∫ t
−∞ dt ′〈[Ô(t ), HT (t ′)]〉0, where the average inside the in-

tegral is taken in the zero tunneling state. We find

〈I (t )〉 = e
∫ t

−∞
dt ′〈[C(t ′),C†(t )]〉0 + c.c. (14)

The expression in Eq. (14) can be divided into three indi-
vidual contributions, proportional, respectively, to T 2

0 , J2
ts, and

T0Jts. The first contribution corresponds to the background
current, which is unaffected by the adatom spin. The second
term will be significantly weaker compared to the last one
due to the fact that typically Jts

T0
∼ 0.1 (the ratio between

the spin exchange energy and the spin-independent tunneling
amplitude [12]). Hence, we shall focus on the T0Jts term,
which we denote by IT0J . Neglecting any scattering between

the different momentum/spin channels in the 〈. . .〉0 average,
and using the Fermi-Dirac distribution f (εk ), we find

〈IT0J (t )〉 = eT0Jts

∑
k,k′σ

σ z
σσ

∫ t

−∞
dt ′ei[eV +εkσ −εk′σ ](t ′−t )

× [ f�′σ (k)[1 − f�σ (k′)]〈Sz(t ′)〉
− f�σ (k)[1 − f�′σ (k′)]〈Sz(t )〉] + c.c. (15)

We set the local densities of states ν�′σ = νt
2 (1 + σ p), ν�σ =

νs
2 , which is possible since we choose here the ẑ direction to be
the tip spin-polarization axis, denoted as p̂ in the following.
Moving to a summation over energies instead of momenta,
and taking the long-time limit such that 〈Sp̂〉 reaches its steady
state,

〈IT0J〉 = eT0Jts
νsνt

2
p〈Sp̂〉

∫ ∞

−∞
dτei(eV +ε−ε′ )τ

∫ ∞

−∞
dε′

∫ ∞

−∞
dε

×{ f (ε)[1 − f (ε′)] − f (ε′)[1 − f (ε)]} + c.c. (16)

Performing the integration over τ will result in a delta
function. Assuming eV � kBT (in the experiment eV =
5–60 meV and kBT ≈ 50 μeV), we find

〈IT0J〉 ≈ πe2V T0Jtsνsνt p〈Sp̂〉, (17)

i.e., the spin-dependent contribution to the current is propor-
tional to the steady-state spin polarization of the intermediary
adatom in the direction of the tip polarization.

The physical spin polarization can be expressed in terms of
TLS expectation values,

〈Sp̂〉 = (αxz sin ψ + αzz cos ψ )〈σz〉
+ (α⊥ sin ψ + αzx cos ψ )〈σx〉. (18)

Since αzz overwhelmingly dominates the other matrix ele-
ments, and taking into account ψ ≈ 80◦–88◦ in these experi-
ments, we conclude that

〈IT0J〉 ∝ αzz〈σz〉, (19)

so that the tunneling current is a direct measurement of
the TLS polarization. Sweeping the driving frequency and
measuring the change in current (compared to the nondriven
� = 0 case), resonant line shapes may be observed, with the
resonant frequency corresponding to the energy separation of
the TLS.

IV. FAILURE OF STANDARD BLOCH EQUATIONS

Reference [3] analyzed the TLS dynamics using the Bloch
equations [see Supplemental Material for Ref. [3], Eq. (S1)].
Writing the adatom density matrix in the form ρ ≡ 1

2 + (n −
1
2 )σz + α∗σ− + ασ+, the equations may be written in the
frame rotating with ωd as

d

dt
n = −n(�↓ + �↑) + �↑ − i�

α − α∗

2
, (20a)

d

dt
α = −α

(
�↓ + �↑

2
+ 2�z + iδω

)
− i�

(
n − 1

2

)
, (20b)

with �↓, �↑, and �z the relaxation, excitation, and pure
dephasing rates, which are given by (a = −1, 1 corresponding
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to ↓, ↑, respectively)

�a ≡ 1

2
Re

{∫ ∞

0
dτe−iaωd τ TrB

{
ρB�̂a(τ )�̂−a(0)

}}
, (21)

�z ≡ 1

2
Re

{∫ ∞

0
dτTrB

{
ρB�̂z(τ )�̂z(0)

}}
, (22)

where TrB{·} is a trace over the bath degrees of freedom
(the reservoir electrons), and ρB is the bath density matrix.
The commonly used decay times are then 1

T1
= �↓ + �↑

and 1
T2

= 1
2T1

+ 2�z ≡ �̃, where in the experiment Ref. [3]
T1 ∼ 100 μsec, T2 ∼ 100 ns. Equations (20a) and (20b) are
obtained by first deriving a master equation for the density
matrix in the absence of driving, and then adding the drive
“after the fact,” such that it does not impact the dissipative
terms. In particular, it assumes relaxation towards the labo-
ratory frame z axis, as if the drive were absent. As our more
general treatment will show, this lab frame approach, common
mainly in atomic physics [13,14] and quantum optics [15],
neglects the difference between the values of the bath spectral
functions at frequencies 0,±ωd [Eqs. (21) and (22)], and their
values at ±ω,±ωd ± ω, respectively. While one might expect
these differences to be small for ω � T,V, ωd , which is the
case here, we will show below that the importance of some of
these small differences is enhanced due to the nonequilibrium
nature of the system.

Solving (20a)–(20b) for the steady state of the system and
extracting 〈σz〉 = n − 1

2 results in

〈
σ∞

z

〉
Bloch = (�↑ − �↓)(�̃2 + δω2)

(�↓ + �↑)(�̃2 + δω2) + �̃�2
, (23)

which is even in the detuning frequency δω, and thus cannot
reproduce the distinct asymmetric shape observed in many
experiments on these systems [3–7]. The asymmetric line
shape was attributed to an extrinsic effect, namely the inter-
play between the precession of the tunnel conductance and
the rf voltage (see Supplemental Materials for Refs. [4,16]).
However, this phenomenological description does not contain
a physical reason for either the conductance oscillations or
for the asymmetric line shape. Moreover, the unusually high
value of the ratio T1/T2 found in these experiments still needs
to be accounted for. Below we show that both phenomena are
intrinsic to the system.

One common possible alternative approach, which in-
cludes modifications to the dissipator stemming from the
driving, may be obtained by diagonalizing HS + HD in a
frame rotating with the driving frequency ωd , and only then
calculating the dissipative dynamics, now with a modified
system-bath interaction due to the driving. However, in order
for the master equation to be of Lindblad form [17,18], this
rotating frame approach requires an additional “secular ap-
proximation” with regards to the generalized Rabi frequency
ω, i.e., that it is sufficiently greater than all the dissipative
rates. This approximation is inadequate in the experiments
discussed here, where ωT2 � 1.

V. GENERALIZED BLOCH EQUATIONS

We develop and solve a generalized approach by working
in the rotating frame but avoiding the customary secular

approximation [19] with regards to the low Rabi frequency,
while keeping the secular approximation only for the high
frequencies ω0, ωd . Our approach then covers the entire
crossover range between ω = 0 (lab frame approach) and
ω � 1

T1
, 1

T2
(rotating frame approach). Crucially, the general-

ized approach keeps the distinction between bath correlations
calculated at frequencies ±ω and those at 0, while neglecting
the distinction between correlations at ±ωd and ±ωd ± ω.
The latter distinction is negligible since ω � ωd , as we have
explicitly checked. The distinction between frequencies ±ω

and 0 necessitates the introduction of �z
±, which are similar to

�z [Eq. (21)] but at frequencies ±ω,

�z
± = 1

2
Re

{∫ ∞

0
dτe±iωτ TrB

{
ρB�̂z(τ )�̂z(0)

}}
. (24)

With this treatment, subtle changes in the bath spectral
density from a frequency shift of order ∼ω may be taken
into account, without any restrictions on the size of the decay
rates themselves. As we subsequently show, in the EPR-STM
experiments discussed in this work this fact is crucial to
interpreting the measured results. The absence of perturbative
assumptions regarding the Rabi frequency gives rise to an
imbalance in the excitation and relaxation rates in the rotating
frame [see Eq. (A9a)], translating to an asymmetry in the EPR
line shape, which was previously not accounted for.

The generalized approach thus results in a more compli-
cated master equation (see Appendix A for the full derivation),
where (20a) remains unchanged but (20b) is modified to

d

dt
α =

[
d

dt
α

]
Bloch

− �z
+ − �z

−
2

cos β + (�z
+ + �z

− − 2�z )

×
[(

n − 1

2

)
sin 2β

2
− α cos2 β

]
, (25)

with tan β ≡ δω
�

. It is sufficient to expand the ±ω spectral
component around the dc contribution as �z

± ≈ �z ± �
2 ω. In

equilibrium, detailed balance for �z
+/�z

− yields then �(V =
0) = �z

T � 1. As we show below, despite the smallness of
this correction, its relative importance is strongly enhanced
in the presence of a finite dc bias V , which takes the system
out of equilibrium, and may suppress the even term in the
line shape. The physical origin of � is in the interference of
the electronic continuum in the leads with the precession of
the adatom qubit at frequency ω, as is evident by the full rate
calculations in Appendix B. Plugging this expansion into the
generalized master equation, we find the modified steady-state
polarization,

〈
σ∞

z

〉 = 〈
σ∞

z

〉
Bloch + �

�2δω

(�↓ + �↑)(�̃2 + δω2) + �̃�2
, (26)

which, compared to (23), has an additional contribution, odd
in δω. Equation (26), however, does not guarantee that the line
shape becomes visibly asymmetric. Defining �σ ≡ 〈σ∞

z 〉 −
〈σ∞

z 〉�=0, it may be written in a form compliant with Ref. [4],
Eq. (S2),

�σ = �σpeak

1 + 2q∗ δω
��

1 + (
δω
��

)2 , (27)
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with �σpeak ≡ −�↑−�↓
�↓+�↑

�2

�̃(�↓+�↑ )+�2 , �2
� ≡ �̃2 + �̃

�↓+�↑
�2,

and

q∗ = �

2

�↓ + �↑
�↓ − �↑

√
1 + �2

�̃(�↓ + �↑)
. (28)

This so-called Fano parameter is a measure of the visibility
of asymmetry in the line shape. Note that q∗ grows with �,
in a manner consistent with Ref. [4], Fig. (S2). Since the
square-root term is of the order of 1, and because �z

T ≈ 10−3

in this experiment, visible asymmetry requires |�↓−�↑
�↓+�↑

| � 1,
or �↓ ≈ �↑. This is quite unusual that the excitation and
relaxation rates are almost identical, since T � ωd . This
points at the crucial role played by the dc voltage V , which
is the most dominant energy scale in the system. Such a
scenario is also consistent with the experimental observation
that the measured T1 decay time dramatically increases when
this voltage is turned off [3]. We will now show that finite V
can indeed make �↓ ≈ �↑ (and thus to make q∗ significant
although � is small), provided one also keeps in mind the
distinction between the physical spin of the adatom and the
effective TLS. The latter will also allow us to explain why
T1 � T2.

The different dissipative rates can be calculated explicitly
in terms of the properties of the electronic reservoirs and their
couplings to the TLS. The detailed calculation is straightfor-
ward yet lengthy, and is presented in Appendix B. Under the
conditions ψ ≈ π

2 , ω � T, ωd � V , and full polarization of
the tip, we obtain

�↑ = J̃s
2

4
α2

⊥T

{
(2χ2 + 1)

[
η+

(
ωd

T

)
+ r

]
+ 2sdcχr

}
,

(29a)

�↓ = J̃s
2

4
α2

⊥T

{
(2χ2 + 1)

[
η−

(
ωd

T

)
+ r

]
− 2sdcχr

}
(29b)

�z = J̃s
2

2
α2

zzT (1 + r), (29c)

�z
± = J̃s

2

2
α2

zz[T (1 + r) ± ω], (29d)

with η±(x) ≡ ± x
e±x−1 , J̃s ≡ νsJs, and sdc = ±1 corresponds

to the dc voltage sign. Note that we find � = J̃s
2
α2

zz. The
parameters χ ≡ αzx

α⊥
and r ≡ νt Jt

νsJs

|V |
T quantify, respectively, the

projection of the adatom Hamiltonian into the effective TLS
and the ratio of the atom interaction strength to the tip and
the substrate. Since αzz � α⊥, the relaxation time T1 becomes
much longer than the dephasing time T2, as found in the
experiment. This conclusion originates in the microscopic
treatment of the system, regardless of our modification of the
master equation itself. Note that although our microscopic
consideration produces a ratio αzz

α⊥
∼ 4 × 103, experimental

observation of the ratio between relaxation times suggest that
this ratio, while exceptionally large, is realistically about one
to two orders of magnitude smaller.

Note that the value of r corresponds to the relative impor-
tance of nonequilibrium (finite bias) enhanced relaxation as
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FIG. 2. Line shapes calculated using the proposed generalized
approach with r = 2.83, χ = 2.62 (blue line), r = 3.75, χ = 3.6
(red line), and r = 5.2, χ = 5.08 (in yellow). Other parameters:
� = 0.8 MHz, �z = 6 MHz, �↓ + �↑ = 10 KHz, sdc = 1, ωd =
25 GHz, and T = 12.5 GHz h̄

kB
. Inset:

�↓−�↑
�↓+�↑

as a function of r and
χ , Eq. (29a). At the dashed lines �↓ = �↑. The colored markers
correspond to the line shapes.

compared with the thermal ones. As for χ , it is quite sensitive
to the exact values of the ligand field Hamiltonian parameters
in Table I, parameters that yield χ ≈ 3. Thus, we allow
deviations from χ ≈ 3 so as to approach �↓ ≈ �↑. To explore
these relations, in the inset of Fig. 2 the r and χ dependence
of the ratio |�↓−�↑

�↓+�↑
| is plotted. It shows that small values of

this ratio are plausible in a substantial regime near the black
dashed line where �↑ = �↓. Finally, let us note that not only
is it required that �↓ ≈ �↑, but also that �↑ be slightly larger
than �↓ in order to reproduce the correct line shape, in the
same orientation of the asymmetry observed in [3].

We may now put everything together, and reproduce the
asymmetric line shapes using a sensible choice of the differ-
ent parameters, along with staying consistent with quantities
which were already measured, i.e., the rough estimates for the
decay times and driving intensity that appear in [3]. Figure 2
features some examples of line shapes that have the same form
as in [3], with r and χ taken such that the asymmetry is visible.
The parameter q∗ [Eq. (28)] assumes the values 0.2–0.4 for
these curves.

We note that by changing the parameters the line shape
can be flipped along either the horizontal or vertical axis.
Since 〈IT0J〉 ∝ V αzz〈σz〉, changing the sign of αzz due to, e.g., a
change in the direction of Bz will lead to a resonant dip instead
of a peak, as was observed in Refs. [5,6]. Moreover, different
microscopical parameters in the system would affect the rates
�↑/↓ and could change the sign of q∗; cf. Ref. [7]. A summary
of the possible line shapes is given in Fig. 3 below. Notice that
the plots in Fig. 2 correspond to the lower right quadrangle of
Fig. 3.

VI. HIGH dc VOLTAGE REGIME

A more comprehensive study of the EPR-STM properties
of the system under discussion was performed in [4]. Impor-
tantly, unlike the scenario in [3] we have discussed thus far,
the energy scale of the bias voltage used was much higher
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FIG. 3. Schematic line shapes given by our generalized master
equation. Depending on the sign of (�↑ − �↓) and that of αzz, the line
shape can take the form of a positive or negative dip in the tunneling
measurement, with an asymmetry that is “skewed” to the right or
left of the resonance peak. The direct dependence of the tunneling
current on the sign of V is neglected to conform with experimental
conventions.

than the energy separation between the bottom two levels
of the adatom and the higher energy manifold. This makes
higher adatom levels accessible, and seems to complicate
our two-level treatment. However, as we will show below,
the relaxation rate to excitation rate ratio for these levels is
large, so their average population is small. This allows us to
perturbatively eliminate them, while renormalizing the rate
constants of the TLS.

We employ a simplified scheme, where we only con-
sider the transition rates between different energy levels (see
Fig. 4), neglecting effects caused by coherences, which should
decay to zero (except for the coherence of the bottom two
levels, already taken into account). Next, by using the matrix
elements 〈i|S±| j〉 between each two levels labeled i, j, we find
the dominant transition processes. We arrive at the following
conclusions:

(i) Each of the bottom |0〉, |1〉 levels is strongly connected
to each of the upper |2〉, |3〉 levels, as seen by

S−,02 ≈ S+,13 ≈ 0.78, −S−,03 ≈ S+,12 ≈ 0.6.

FIG. 4. Left: energy-level diagram of the Fe atom, with the
different significant transition processes marked by arrows. The
horizontal “coordinate” represents the 〈Sz〉 of the appropriate level.
Right: the simplified diagram used in the effective master equation,
exploiting the spin structure of the energy-level diagram.

The magnitudes of the matrix elements with |4〉 are � 0.08,
one order of magnitude weaker, and therefore negligible.

(ii) The upper levels |2〉, |3〉, |4〉, are all interconnected,
and the transitions |2〉 ↔ |4〉 and |3〉 ↔ |4〉 are of similar
amplitude. We find the dominant matrix elements are S−,23 ≈
−0.43, Sx,24 ≈ 1.55, and iSy,34 ≈ 1.64.

In light of these observations, we simply approximate the
upper levels as a composite state M, with new transition rates,
�0/1→M = �0/1→2 + �0/1→3; see Fig. 4. The master equation
for the occupation properties of level i, Pi is written as

d

dt
P0 = D0 − P0�0→M + PM�M→0, (30a)

d

dt
P1 = D1 − P1�1→M + PM�M→1, (30b)

d

dt
PM = −PM (�M→0 + �M→1) + P0�0→M + P1�1→M,

(30c)

with D0/D1 the part coming from our generalized master
equation for the TLS, Eqs. (20a), (20b), and (25), and �i→ j

the transition rate form level i to level j. In the steady state,
d
dt PM = 0, we find the inclusion of the M composite state
results in a modification of the relaxation and excitation rates
for the TLS,

�↓ → �↓ + �1→M�M→0

�M→0 + �M→1
, (31)

�↑ → �↑ + �0→M�M→1

�M→0 + �M→1
. (32)

The transition rates can then be evaluated in a similar
manner to the scheme used in Appendix B. For each �i→ j

we calculate the ᾱ matrix that connects the physical spin
operator to a two-level representation of levels i, j, expressed
as �S = ᾱ〈i, j〉�σ . The Pauli matrices �σ represent the reduced
Hilbert space of the two levels (i, j). The energy difference
between each two relevant levels �Ei, j is taken into account,
and thermal contributions to excitation rates (i.e., ones that
do not involve the bias voltage) are neglected, since �E � T
when any of the higher energy levels are involved. With ψ ≈
81◦ and V = 60 mV, which are the parameter values in the
relevant high voltage experiment [4], we find

�M→0 ≈ 0.73�̄
(
1 + 6rts + r2

ts

)
, �0→M ≈ 1.67�̄rts,

�M→1 ≈ 0.73�̄
(
1 + 4.7rts + r2

ts

)
, �1→M ≈ 2.34�̄rts,

where rts ≡ Jt νt
Jsνs

, �̄ ≡ 2.15α2
⊥
4 J2

s ν2
s �E . We observe that the

ratio between the rate of exciting the adatom into the higher
energy manifold to the relaxation rate out of it is of the order
rts = r T

V . Since T
V ∼ 10−3, and we find that reproducing the

experimental results dictates r ∼ 10, our assumption of very
low occupation for the high energy levels is well justified.
Crucially, we find the rates �0→2 and �1→3 are of comparable
size, contradicting the existence of an appreciable spin-torque
effect, where transitions between levels lowering 〈Sz〉 are
favored compared to ones raising it, or vice versa, depending
on the sign of the dc voltage. The comparable size of theses
transition rates can be traced to the fact that whereas in
our earlier analysis for the |0〉, |1〉 levels, αzx

α⊥
≡ χ was an
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O(1) number (around 3), for the upper levels it is O(10−2).
This, in conjunction with cos ψ being close to zero, strongly
attenuates the 〈Sz〉 directionality of the interlevel transitions.

The effective TLS master equation now has, up to second-
order corrections in the small parameter rts,

�↓ → �↓ + �̄(1 + γ ), (33)

�↑ → �↑ + �̄(1 − γ ), (34)

where in our calculations γ ≈ 0.16. Thus, by accounting for
the microscopic details of the adatom spin matrix elements,
we see that both the TLS excitation and relaxation rates are
increased with comparable magnitude. We note that reversing
the bias direction will amount to taking γ → −γ in the
above modification. We finally write the high voltage regime
relaxation and excitation rates as

�↑/↓ = J̃s
2

4
α2

⊥T (2χ2 + 1)

[
η±

(
ωd

T

)
+ r(1 + ā)

]

∓ sdc
J̃s

2

4
α2

⊥T (āγ − 2χ )r, (35)

where ā is the relative amplitude of the M-assisted transitions
compared to the direct ones ā ≈ 2�̄

�ts
↓ +�ts

↑
, with �ts being the

tip-atom-substrate tunneling contribution. We note that by
taking ā = 0, one recovers the rates of the low voltage regime,
Eqs. (29a) and (29b). The critical line where �↑ = �↓ depends
on the voltage sign and is given by

r = sdc
ωd

2T

2χ2 + 1

2χ − āγ
. (36)

To estimate the size of ā, we examine for example

�̄

�ts
↓

≈ α2
⊥〈0,2〉

α2
⊥〈0,1〉

× 1

(2χ2 − 2χ + 1)2
.

The right-hand fraction has the order of 10−2, as χ ∼ 3–8 in
our analysis thus far. However the left-hand fraction seems
huge and of order 106. Actually we know that α2

⊥〈0,1〉 is much
larger than the order 10−3 evaluated, as discussed above in
Sec. V. Taking this into account, we may estimate that �̄

is of the same order as �↓ and �↑ or perhaps one order of
magnitude larger, leading to an estimate of ā ∼ 10.

The form of �↑/↓ we find in Eq. (35) allows us to reproduce
the main features of the experiment in Ref. [4]. As an ex-
ample, the observed change in the direction of the line-shape
asymmetry with reversal of the bias voltage (see Supplemental
Material for Ref. [4]) is recreated in Fig. 5, with |q∗| values
as high as ∼0.3. Changing the voltage subsequently affects
�↑/�↓, enabling a scenario where one flips the sign (�↑ −
�↓), and subsequently that of q∗, determining the asymmetry
direction. Note that the very different critical dashed lines in
the two insets of Fig. 5 are given by Eq. (36). Moreover, the
widening of the resonance with a decrease in the tip-atom
separation is also apparent. This is encoded by an increase in
r, which is proportional to the amplitude Jt . The decoherence

FIG. 5. (a) Line shapes in the high voltage regime for positive
bias voltage, with different values of r, representing different tip-
adatom separations, for χ = 15. (b)

�↓−�↑
�↓+�↑

with a positive voltage,
as a function of r and χ with colored markers corresponding to
the different line shapes in (a). Panels (c) and (d) are the same
as (a) and (b), respectively, for negative bias voltage. Other pa-
rameters (based on [4]): � = 20 MHz, �z = 25 MHz, �↓ + �↑ =
0.5 MHz, ā = 15, γ = 0.25, ω0 = 21.5 GHz, and T = 25 GHz h̄

kB
.

Case (a) corresponds to the lower right quadrangle of Fig. 3 and case
(c) to the upper right one (note the renormalization by �σpeak flips
the line-shape sign).

rate �z increases with r, naturally leading to a wider line
shape. Additionally, the reported rise in asymmetry as the
driving amplitude is increased is reproduced [Eq. (28)]. This
is evident in Fig. 6, where the line shapes are calculated
with varying driving amplitude. One should compare this with
Figs. S2 and S5B in the Supplemental Material for [4], which
clearly show similar features.

FIG. 6. Tunneling line shapes in the high-voltage regime for dif-
ferent signs dc bias voltage [(a) positive, (b) negative], with increas-
ing driving amplitude (bottom to top) = 1,2,5,10,20,40 MHz. We use
χ = 15, r = 20 in both cases. Other parameters (based on the exper-
imental results in [4]): �z = 25 MHz, �↓ + �↑ = 0.5 MHz, ā = 15,
γ = 0.25, ωd = 21.5 GHz, and T = 25 GHz h̄

kB
. Insets:

�↓−�↑
�↓+�↑

for
different signs of the voltage, as a function of r and χ with the
working point (20,15) marked by a square.
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VII. CONCLUSIONS

In conclusion, we have shown that treating the adatoms in
spin-polarized STM-EPR experiments as a driven open quan-
tum system requires special care and a modified generalized
approach. On the one hand, this approach should not treat
the driving in a perturbative manner, such that changes in
the bath spectral density as a result of small frequency shifts
are resolved by the different master equation rates. On the
other hand, it should be valid in the experimental parameter
regime, where some of the decay rates may be significantly
large compared to the driving amplitude.

We present such a treatment, which allows a clear un-
derstanding of the origin of the asymmetry in recorded line
shapes, due to the small difference in the electronic reservoir
spectral functions at 0 and ±ω. We find that even a modest
difference allows for a small odd component in the line shape
[Eq. (26)], whose relative importance is greatly enhanced by
the dc bias in the experiments considered.

As we have shown, completely accounting for the under-
lying physics of the experimental system is crucial: We find
that tuning the voltage as to make the TLS relaxation and
excitation rates close strongly suppresses the even component
of the line shape [Eq. (23)], leading to the observed asym-
metry. Moreover, projecting the physical spin onto the TLS

description allows one to understand the origin of the large
T1/T2 ratio, namely the dominance of the matrix element αzz,
relating spin projection along the laboratory ẑ direction to the
TLS polarization.

Furthermore, our approach enables recreating virtually all
other experimental trends, even in higher voltage regimes,
e.g., a change of the asymmetry sign depending on the bias
voltage or on the magnetic field orientation [4–7], and the de-
pendence of the line-shape’s asymmetry on driving amplitude.

The generalized approach developed here may be useful in
properly analyzing results from any future EPR-STM studies,
as well as for other open quantum systems which involve
nontrivial parametric regimes, e.g., hybrid quantum devices
[20–22].
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APPENDIX A: DERIVATION OF THE GENERALIZED MASTER EQUATION

We derive our generalized master equation so as to solve the nonsecular problem with respect to the frequencies 0, ω, a
situation that is essential for the experimental case with 1

T1
< � < 1

T2
. The starting Hamiltonian has the form (setting h̄ = 1)

H = −1

2
ω0σz + �

2
(eiωd tσ+ + e−iωd tσ−),−1

2
(axσx + ayσy + azσz ) ⊗ B̂ + HB (A1)

with ω0 the two-level energy separation, � the driving intensity, ωd the driving frequency (and δω ≡ ωd − ω0), and HB the bath
Hamiltonian. For simplicity we will first consider the case where all the impurity operators couple to the same bath operator B̂,
and later on extend our results to the more general case of different bath operators. The coefficients ax,y,z represent some general
form of coupling to the bath; we also define a ≡ ax + iay and a0 ≡ az. We apply a transformation to a rotating frame by defining
U ≡ e−(iωd t/2)σz ,

H → UHU † + iU̇U †. (A2)

Our transformed Hamiltonian reads

H = 1
2δωσz + 1

2�σx − 1
2 (aeiωd tσ− + a∗e−iωd tσ+ + a0σz )B̂ + HB. (A3)

We now diagonalize the system Hamiltonian using the transformation H̃ = S−1HS, using

S = 1√
2

(
cos β

2 + sin β

2 − cos β

2 + sin β

2

cos β

2 − sin β

2 cos β

2 + sin β

2

)
︸ ︷︷ ︸

system subspace

⊗1bath subspace (A4)

with the angle β defined by tan β ≡ δω
�

. Applying this transformation we get

H̃ = 1
2ωσz − (A0 + A1 + A−1)B̂ + HE , (A5)

with

A0 =
(

sin β

2
a0 + cos β

4
(a∗e−iωd t + aeiωd t )

)
σz, (A6a)

A1 =
(

sin β − 1

4
a∗e−iωd t + sin β + 1

4
aeiωd t − cos β

2
a0

)
σ−, (A6b)

A−1 = (A1)†. (A6c)
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Now that we have obtained a Hamiltonian with a diagonal system term, we move into the interaction picture, with the
additional time dependence Ak (t ) → eikωt Ak (t ), where ω = √

�2 + δω2 is the generalized Rabi frequency. We may now use the
Markovian expression for the time evolution of the reduced system density matrix,

d

dt
ρ̃(t ) =

1∑
j,k=−1

∫ ∞

0
dsTrB{ρBB̂(s)B̂(0)}[Aj (t − s)ρ̃(t )A†

k (t ) − A†
k (t )Aj (t − s)ρ̃(t )] + H.c. , (A7)

with ρ̃ ≡ d+u
2 + d−u

2 σz + xσ− + x∗σ+, the density matrix in the basis of H̃ , which is different than the original (nondiagonal)
“lab frame” basis. Equation (A7), upon neglecting terms oscillating with the high frequencies ±ωd ,±ωd ± ω,±2ωd (the usual
secular approximation while keeping frequencies 0, ω, 2ω), leads to the master equation

d

dt
ρ̃(t ) = D0 + Dω + D2ω + H.c., (A8)

with

D0 ≡ (−dσz − x∗σ+)|a|2
[(

sin β − 1

4

)2

�(ωd − ω) +
(

sin β + 1

4

)2

�(−ωd − ω)

]
+ (−dσz − x∗σ+)

(
cos β

2

)2

a2
0�(−ω)

+ (uσz − xσ−)|a|2
[(

sin β + 1

4

)2

�(ωd + ω) +
(

sin β − 1

4

)2

�(−ωd + ω)

]
+ (uσz − xσ−)

(
cos β

2

)2

a2
0�(ω)

− (xσ− + x∗σ+)

(
sin2 β

2
a2

0�(0) + |a|2 cos2 β

8
[�(ωd ) + �(−ωd )]

)
, (A9a)

Dω ≡ eiωt (−dσ−)|a|2 cos β

(
sin β − 1

8
�(ωd − ω) + sin β + 1

8
�(−ωd − ω)

)
+ eiωt (−dσ−)

cos β

2

[ − sin βa2
0�(−ω)

]
+ e−iωt uσ+|a|2 cos β

(
sin β + 1

8
�(ωd + ω) + sin β − 1

8
�(−ωd + ω)

)
+ e−iωt uσ+

cos β

2

[ − sin βa2
0�(ω)

]
+ e−iωt [−σ+ − xσz]

cos β

4

(
sin β + 1

4
|a|2�(−ωd ) + sin β − 1

4
|a|2�(ωd ) − sin βa2

0�(0)

)

+ eiωt [σ− − x∗σz]
cos β

4

(
sin β − 1

4
|a|2�(−ωd ) + sin β + 1

4
|a|2�(ωd ) − sin βa2

0�(0)

)
, (A9b)

D2ω ≡ e2iωt x∗σ−|a|2
(

sin2 β − 1

16
�(ωd − ω) + sin2 β − 1

16
�(−ωd − ω)

)
+ e2iωt x∗σ−

(
cos β

2

)2

a2
0�(−ω)

+ e−2iωt xσ+|a|2
(

sin2 β − 1

16
�(ωd + ω) + sin2 β − 1

16
�(−ωd + ω)

)
+ e−2iωt xσ+

(
cos β

2

)2

a2
0�(ω), (A9c)

and we defined the bath correlation functions

�(ν) ≡ Re

{∫ ∞

0
dτeiντ TrB{ρBB̂(τ )B̂(0)}

}
. (A10)

Let us note that for vanishing driving, � = 0, one gets ω = δω, β = π/2, hence only the spectral functions at frequencies
0 and ±(ωd + δω) = ±ω0 remain, so the dependence on ωd disappears, as it should. The conventional secular approximation
would now have allowed us to discard Dω and D2ω terms, but in this generalized treatment we keep these nonsecular terms.
In our next step, we perform a unitary transformation on the master equation (A8) with e−iH̃St (. . .)eiH̃St (where H̃S = 1

2ωσz).
This introduces the coherent time evolution term −i[H̃S, ρ̃] into the right-hand side of (A8), while allowing us to eliminate the
e±iωt/e±2iωt time dependence appearing in Dω/D2ω. The additional nonsecular terms are now more manageable, as they do not
introduce any new time dependencies into the master equation.

For the purposes of this work we may approximate �(±ωd ± ω) ≈ �(±ωd ), since ω � ωd , and hence deviations from this
assumption have only a minor effect on the results we present. We now define the relevant rates

�↓ ≡ |a|2
2

�(ωd ), (A11a)

�↑ ≡ |a|2
2

�(−ωd ), (A11b)
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�z ≡ a2
0

2
�(0), (A11c)

�z
± ≡ a2

0

2
�(±ω). (A11d)

Plugging these in, and using the inverse of (A4) to get the master equation in the original basis ρ ≡ 1
2 + (n − 1

2 )σz + α∗σ− +
ασ+, one finds that in a frame rotating with frequency ωd (where α is transformed as αe−iωd t → α), the master equation is

d

dt
n = −n

(
�↓ + �↑

) + �↑ − i�
α − α∗

2
, (A12a)

d

dt
α = −α

(
�↓ + �↑

2
+ (�z

+ + �z
−) cos2 β + 2�z sin2 β + iδω

)

− i�

(
n − 1

2

)
+

(
n − 1

2

)
sin β cos β(�z

+ + �z
− − 2�z ) − �z

+ − �z
−

2
cos β. (A12b)

By setting �z
+ = �z

− = �z the equations reduce to the standard Bloch equations (20a) and (20b).
Throughout our discussion it was assumed (for reasons of convenience) that the coupling was via the same bath operator B̂,

coupled to the system degrees of freedom via general coefficients. This need not necessarily be the case, as each σ̂ operator can
generally couple to a different bath operator. We could generalize the Hamiltonian used in Eq. (A1) to

H = −1

2
h̄ω0σz + �

2
(eiωd tσ+ + e−iωd tσ−) − 1

2
(σ+�̂+ + σ−�̂− + σz�̂z ) + HB. (A13)

Performing the prescribed diagonalization process, we get

H̃ = 1
2ωσz − (A0 + A1 + A−1) + HB, (A14)

as before, though with the newly defined

A0 =
[

sin β

2
az�̂z + cos β

4

(
�̂−e−iωd t + �̂+eiωd t

)]
σz, (A15a)

A1 =
(

sin β − 1

4
�̂−e−iωd t + sin β + 1

4
�̂+eiωd t − cos β

2
az�̂z

)
σ−, (A15b)

and A−1 = (A1)†. At first glance this seems to somewhat complicate things: whereas earlier all the correlation functions we
needed to calculate were of the form 〈B̂(τ )B̂(0)〉, it seems now that correlations such as 〈�̂±(τ )�̂z(0)〉 also need to be taken
into account. Luckily, this is not the case. Due to the laboratory frame secular approximation, where oscillations by ±ωd (or
higher frequency) in time t are neglected, we are left only with three different bath correlation functions: 〈�̂−(τ )�̂+(0)〉,
〈�̂+(τ )�̂−(0)〉, and 〈�̂z(τ )�̂z(0)〉. All other mixed products multiply terms which are negligible thanks to rapid oscillations
at higher frequencies. This in turn ensures that the structure of the generalized master equation remains unchanged, but with
more general expressions for the rates, given by

�↓ ≡ 1

2
Re

{∫ ∞

0
dτeiωd τ TrB

{
ρB�̂−(τ )�̂+(0)

}}
, (A16a)

�↑ ≡ 1

2
Re

{∫ ∞

0
dτe−iωd τ TrB

{
ρB�̂+(τ )�̂−(0)

}}
, (A16b)

�z ≡ 1

2
Re

{∫ ∞

0
dτTrB

{
ρB�̂z(τ )�̂z(0)

}}
, (A16c)

�z
± ≡ 1

2
Re

{∫ ∞

0
dτe±iωτ TrB

{
ρB�̂z(τ )�̂z(0)

}}
. (A16d)

APPENDIX B: CALCULATION OF THE DECAY RATES DUE TO TUNNELING ELECTRONS

In order to extract the rates that appear in the master equations (20a), (20b), and (25), it is necessary to calculate correlation
functions of the reservoir electronic operators, for example,

〈�̂−(τ )�̂+(0)〉 =
(
αzx cos ψ + α⊥

2
sin ψ

)2 ∑
k,q,σ

[〈c†
kσ�

(τ )ckσ�(0)〉〈cqσ�′ (τ )c†
qσ�′ (0)〉 + � ↔ �′]
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+
(α⊥

2
(cos ψ − 1) − αzx sin ψ

)2 ∑
k,q

[〈c†
k↑�

(τ )ck↑�(0)〉〈cq↓�′ (τ )c†
q↓�′ (0)〉 + � ↔ �′]

+
(α⊥

2
(cos ψ + 1) − αzx sin ψ

)2 ∑
k,q

[〈c†
k↓�

(τ )ck↓�(0)〉〈cq↑�′ (τ )c†
q↑�′ (0)〉 + � ↔ �′]. (B1)

Let us illustrate the calculation of the last product of correlation functions appearing in the above expression, defining

C(τ ) ≡
∑
k,q

〈c†
q↓�′ (τ )cq↓�′ (0)〉〈ck↑�(τ )c†

k↑�
(0)〉. (B2)

Each of these correlations can be expressed in terms of the Fermi-Dirac distribution,

〈c†
q↓�′ (τ )cq↓�′ (0)〉 = f�′,↓(εq)eiεqτ , (B3)

〈ck↑�(τ )c†
k↑�

(0)〉 = [1 − f�,↑(εk )]e−iεkτ , (B4)

with the subscripts of f indicating the lead and spin direction. Allowing an additional finite voltage V between the leads (which
may be set to zero for interlead tunneling), we find

C(τ ) =
∑
k,q

f�′,↓(εq)[1 − f�,↑(εk )]e−i(εk−εq+V )τ ≈ ν�′↓ν�↑
∫

dε′
∫

dε f (ε′)[1 − f (ε)]e−i(ε−ε′+V )τ , (B5)

where ν�′↓ represents the density of states for ↓ electrons in lead �′, and ν�↑ is the density of states for ↑ electrons in lead �. The
densities of states are approximated to be roughly constant near the Fermi energy.

Next, we Laplace transform this correlation function in order to retrieve its spectral features. Since we only use the real part
of the bath correlation functions in our analysis (as they represent the rates governing the master equation; the imaginary parts
correspond to shifts of the subsystem Hamiltonian, whose effect we have verified to be small), we exploit the relation between the
Fourier and Laplace transforms F{C} = 2Re{L{C}} [due to the property C(−τ ) = C∗(τ )] and calculate the Fourier transform
instead,

C(ω) ≡
∫ ∞

−∞
dτeiωτC(τ )

= νl↓νr↑
∫

dε f (ε)[1 − f (ε + ω − V )]. (B6)

Let us now define

I±(ω,V ) ≡
∫

dε f (ε)[1 − f (ε + ω ± V )]

= T η−(ω ± V ), (B7)

with η±(x) ≡ ± x
e±x−1 . We arrive at the full expressions for the spectral functions,

〈�̂−�̂+〉(ω) =
(
αzx cos ψ + α⊥

2
sin ψ

)2
(ν�↑ν�′↑ + ν�↓ν�′↓)[I−(ω,V ) + I+(ω,V )]

+
(α⊥

2
(cos ψ − 1) − αzx sin ψ

)2
[ν�↑ν�′↓I−(ω,V ) + ν�↓ν�′↑I+(ω,V )]

+
(α⊥

2
(cos ψ + 1) − αzx sin ψ

)2
[ν�↑ν�′↓I+(ω,V ) + ν�↓ν�′↑I−(ω,V )], (B8a)

〈�̂+�̂−〉(ω) =
(
αzx cos ψ + α⊥

2
sin ψ

)2
(ν�↑ν�′↑ + ν�↓ν�′↓)[I−(ω,V ) + I+(ω,V )]

+
(α⊥

2
(cos ψ − 1) − αzx sin ψ

)2
[ν�↑ν�′↓I+(ω,V ) + ν�↓ν�′↑I−(ω,V )]

+
(α⊥

2
(cos ψ + 1) − αzx sin ψ

)2
[ν�↑ν�′↓I−(ω,V ) + ν�↓ν�′↑I+(ω,V )], (B8b)

〈�̂z�̂z〉(ω) =
(
αzz cos ψ + αxz

2
sin ψ

)2
(ν�↑ν�′↑ + ν�↓ν�′↓)[I−(ω,V ) + I+(ω,V )]

+
(αxz

2
cos ψ − αzz sin ψ

)2
(ν�↑ν�′↓ + ν�↓ν�′↑)[I−(ω,V ) + I+(ω,V )]. (B8c)

195433-11



SHAVIT, HOROVITZ, AND GOLDSTEIN PHYSICAL REVIEW B 99, 195433 (2019)

We may now calculate the contributions of different tunneling processes to the master equation rates: tip-atom-substrate
tunneling [(�, �′) = (t, s)], tip-atom-tip tunneling [(�, �′) = (t, t )], and substrate-atom-substrate tunneling [(�, �′) = (s, s)]. This
is done by using the densities of state

νtσ = νt

2
(1 + σ p), νs↑ = νs↓ = νs

2
, (B9)

with p ∈ [0, 1] determining the level of polarization in the tip. Collecting the different terms together with the proper coupling
constants for each process, we find

�↓ = 1

2

(
J2

s ν2
s + J2

t ν2
t

) ωd

1 − e−βωd

(
α2

zx + α2
⊥
2

)
+ J2

t

ν2
t

2

ωd

1 − e−βωd
p2

[(
α2

zx − α2
xx

4

)
cos 2ψ − α2

⊥
4

+ αzxα⊥ sin 2ψ

]

+ JsJt
νsνt

2

V + ωd

1 − e−β(V +ωd )

[
α2

zx + α2
⊥
2

− pα⊥
(
αzx sin ψ − α⊥

2
cos ψ

)]
, (B10)

�↑ = 1

2

(
J2

s ν2
s + J2

t ν2
t

) ωd

eβωd − 1

(
α2

zx + α2
⊥
2

)
+ J2

t

ν2
t

2

ωd

eβωd − 1
p2

[(
α2

zx − α2
xx

4

)
cos 2ψ − α2

⊥
4

+ αzxα⊥ sin 2ψ

]

+ JsJt
νsνt

2

V − ωd

1 − e−β(V −ωd )

[
α2

zx + α2
⊥
2

+ pα⊥
(
αzx sin ψ − α⊥

2
cos ψ

)]
, (B11)

�z = J2
s

ν2
s

2
T

(
α2

zz + α2
xz

4

)
+ J2

t

ν2
t

2
T

[
α2

zz(1 + p2 cos 2ψ ) + α2
xz

4
(1 − p2 cos 2ψ ) + p2αzzαxz sin 2ψ

]

+ JsJtV
νsνt

2

(
α2

zz + α2
xz

4

)
, (B12)

�z
± = J2

s

ν2
s

2
T
(

1 ± ω

T

)(
α2

zz + α2
xz

4

)
+ J2

t

ν2
t

2
T
(

1 ± ω

T

)[
α2

zz(1 + p2 cos 2ψ ) + α2
xz

4
(1 − p2 cos 2ψ ) + p2αzzαxz sin 2ψ

]

+ JsJtV
νsνt

2

(
α2

zz + α2
xz

4

)
, (B13)

where we used the fact that V � T, ωd , ω and ω � T , to make some simplifications. We now employ some additional
approximations, compliant with the experimental setup:

(1) αzz � αxz, since according to Eq. (7) there is a four-orders-of-magnitude difference between them;
(2) p ≈ 1—taking the polarization level to be maximal allows us to simplify the above expressions greatly, without modifying

the underlying physics in any meaningful way, as we have explicitly checked;
(3) ψ ≈ π

2 —in accordance with the experiments [3,4].
After defining J̃s ≡ Jsνs, J̃t ≡ Jtνt , J̃t ≡ rJ̃s

T
V , and αzx ≡ χα⊥, we may finally write

�↓ ≈ J̃s
2

4
α2

⊥(2χ2 + 1 + r2 T 2

V 2
)

ωd

1 − e−βωd
+ J̃s

2

4
α2

⊥(2χ2 − 2χ + 1)
rT

(
1 + ωd

V

)
1 − e−β(V +ωd )

, (B14)

�↑ ≈ J̃s
2

4
α2

⊥(2χ2 + 1 + r2 T 2

V 2
)

ωd

eβωd − 1
+ J̃s

2

4
α2

⊥(2χ2 + 2χ + 1)
rT

(
1 − ωd

V

)
1 − e−β(V −ωd )

, (B15)

�z ≈ J̃s
2
T

2
(1 + r)α2

zz, (B16)

�z
± ≈ �z ± J̃s

2

2
α2

zzω. (B17)

Neglecting terms such as ωd
V ≈ 0.02 and T

V ≈ 0.01 due to the overwhelming size of the voltage energy scale yields the
expressions that we use in the main text, Eqs. (29a)–(29c). Note that we assume that r is an order O(1) parameter, implying
J̃s � J̃t , which is physically sensible since the adatom is much closer to the substrate than to the tip.
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