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Laboratoire de Physique Théorique de l’Ecole Normale Supérieure, PSL University CNRS, Sorbonne Universités,

24 rue Lhomond, 75231 Paris Cedex 05, France

(Received 6 May 2018; published 17 October 2018)

We study a dynamic boundary, e.g., a mobile impurity, coupled to N independent Tomonaga-Luttinger
liquids (TLLs) each with interaction parameter K. We demonstrate that for N ≥ 2 there is a quantum phase
transition at K ≥ 1=2, where the TLL phases lock together at the particle position, resulting in a nonzero
transconductance equal to e2=Nh. The transition line terminates for strong coupling at K ¼ 1 − ð1=NÞ,
consistent with results at large N. Another type of a dynamic boundary is a superconducting (or a Bose-
Einstein condensate) grain coupled to N ≥ 2 TLLs; here the transition signals also the onset of a relevant
Josephson coupling.

DOI: 10.1103/PhysRevLett.121.166803

There is considerable interest in systems of N indepen-
dent one-dimensional Tomonaga-Luttinger liquids (TLLs)
coupled via a dynamic boundary, e.g., a mobile impurity.
This case has been realized in cold atom experiments
employing a variety of impurity atoms, in either boson or
fermion systems [1–11]. These studies range from polar-
onic effects in bulk baths [1–3], the approach to equilibrium
[4–7] and more recently to one-dimensional cold atom
gases [8–11]. Quantum impurities in TLL have been
extensively studied [12–20], focusing on the particle
dynamics and response to an external force.
A second type of dynamic boundary is realized by a

superconducting grain, or a Bose-Einstein condensate
(BEC), illustrated in the left panel of Fig. 1. This can be
realized with wires formed on LaAlO3=SrTiO3 nanostruc-
tures [21] or with carbon nanotubes. The latter system [22]
has in fact shown surprisingly large values of supercurrents.
Of further interest are topological superconductors with
Majorana islands coupled to TLLs via multiterminals.
Theoretical studies [23–25] show the phenomena of inter-
terminal conductance, with possible realizations in various
experimental setups [26,27]. In dynamically coupled TLLs,
as we show here, an analogous phenomenon, transconduct-
ance (see below), can occur even without Majorana states.
The case of an infinite number of TLLs was previously

examined [28] and showed a phase transition in which the
impurity can localize for a repulsive TLL. Understanding
the finite N case is thus important in view of the
experimental realizations [22,26,27] and the theoretical

studies [23–25]. Studies of drag conductance in crossed
carbon nanotubes [29–34] provide further motivation for
studying N > 1.
In this Letter, using the renormalization group (RG) and

duality methods akin to the study of quantum Brownian
motion in a periodic lattice [35,36] we solve the problem of
an impurity coupled to N TLLs. We demonstrate that there
is a quantum phase transition for any N ≥ 2 and show that
the order parameter of this transition is provided by the
transconductance, i.e., driving a current in one chain by
applying a voltage on another chain. The transconductance
vanishes in one phase and is e2=Nh in the strong coupled
phase. We show that the phase boundary interpolates
between K ¼ 1=2 at weak particle-TLL coupling and
K ¼ 1 − ð1=NÞ at strong coupling and discuss the exper-
imental consequences.
We start with the dynamic impurity problem, and

eventually consider the equivalent superconducting grain
system. We focus on equilibrium dynamics with imaginary
time τ. The particle position is denoted by Xτ and its motion
is described by the action

Simp ¼
Z

dτ1=2M0
_X2
τ − g0

XN
i¼1

ρiðXτ; τÞ; ð1Þ

which includes the kinetic energy and identical instanta-
neous contact interactions with the densities ρiðx; τÞ,
i ¼ 1;…; N of the TLLs. The density of each TLL entering
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in the coupling (1), is related to its standard phase field [37]
ϕiðx; τÞ as

ρiðx; τÞ ¼ ρ0 þ α1ρ0 cos½2πρ0x − 2ϕiðx; τÞ�; ð2Þ

where ρ0 is the average density of each TLL and α1 is
nonuniversal. Inserted in (1) it leads to a direct coupling
of the particle position to the oscillating part of the TLL
density, which is the important effect here. We have
neglected in (2) higher harmonics of the density, as well
as the slowly varying part −∂xϕiðx; τÞ=π of the density,
which leads to subdominant corrections to the particle
motion at low frequencies. The total action of the system is
S ¼ STLL þ Simp, where STLL is the standard action for N
independent TLLs with common Luttinger parameter K

STLL ¼
XN
i¼1

Z
dxdτ

1

2πK
½ð∂τϕiÞ2 þ ð∂xϕiÞ2� ð3Þ

and we work in units such that the phonon velocity u ¼ 1.
Let us express the position Xτ in units of ð2πρ0Þ−1. The
action of the particle becomes

Simp ¼ 1=2M
Z
ω
ω2jXωj2 − g

Z
τ

XN
i¼1

cos½Xτ − 2ϕiðXτ; τÞ�;

ð4Þ

where M ¼ M0ð2πρ0Þ−2, g ¼ α1ρ0g0, and here and belowR
ωfðωÞ≡ð1=βÞPωn

fðωnÞ⃗β→∞
R ðdω=2πÞwith Rτ ¼ R β

0 dτ.
We focus on the zero temperature T ¼ 1=β → 0 limit
unless stated otherwise.
The theory defined by (3) and (4) is still highly nonlinear

in the particle position Xτ and difficult to treat exactly.
However, we claim that an equivalent long time theory is
obtained by

cos½Xτ − 2ϕiðXτ; τÞ� → cos½Xτ − 2ϕið0; τÞ�: ð5Þ

This amounts to assuming that the TLL correlations are
dominated by time differences jτ − τ0j ≫ jXτ − Xτ0 j, which
is satisfied by the Xτ correlations that we find below. Since
only the term ϕið0; τÞ appears in the coupling, we can
integrate the Bose fields at all other points ϕiðx ≠ 0; τÞ,
leading to the well studied ∼jωj term [37]; hence the total
action becomes

S ¼ 1

2

Z
ω

�
Mω2jXωj2 þ

XN
i¼1

2jωj
πK

jϕi
ωj2

�

− g
Z
τ

XN
i¼1

cosðXτ − 2ϕi
τÞ; ð6Þ

where ϕið0; τÞ ¼ ϕi
τ and its Fourier transform is ϕi

ω. We
now denote Bi

τ ¼ 2ϕi
τ − Xτ as the fields entering in the

nonlinear term and define X̃ω in Fourier via

Xω ¼ X̃ω −
1

Nω

XN
i¼1

Bi
ω; Nω ¼ N þ 2πMKjωj; ð7Þ

where Nω can be thought as an effective number of degrees
of freedom. It is then easy to see that the action (6) can be
rewritten as a sum over two independent sectors, the field X̃
on one hand, and the Bi’s on the other, as

S ¼ 1

2

Z
ω

� jωj
2πK

NωjX̃ωj2 þD−1
i;j B

i
ωB

j�
ω

�

− g
XN
i¼1

Z
τ
cosBi

τ;

D−1
i;j ¼ jωj

2πK

�
δi;j −

1

Nω

�
;

Di;j ¼
1

Mω2
þ 2πK

jωj δi;j: ð8Þ

Hence, one can first study the problem defined by the Bi
fields, and in a second stage obtain the position of the

FIG. 1. Setup and phase diagrams. The left frame shows a setup with a superconducting grain Josephson coupled to N ¼ 3 TLLs
showing transconductance measurement in the coupled phase. The phase diagrams show g2 or Δ (lnΔ ∼ − ffiffiffiffiffi

g2
p

for large g2) versus the
TLL interaction parameter K for N ¼ 2; 3;≥ 4, respectively, in a mobile impurity system; for a superconducting grain, replace K by
1=ð2KρÞ where Kρ is the TLL parameter in the charge sector; K;Kρ < 1ð> 1Þ correspond to repulsive (attractive) TLL interactions.
Dashed lines are phase transition lines (lines of RG fixed points) separating a decoupled phase where g2 → 0 is irrelevant and a coupled
phase with strong transconductance where g2 → ∞ (equivalently Δ → 0); RG flow directions are indicated by thick purple arrows (they
are vertical since K does not flow). The conductance matrices in the two phases are shown (add prefactor 2 for the spinfull
superconducting grain). The conductance matrix varies continuously along the phase transition lines. The dot on the N ¼ 3 case
corresponds to a self-dual point at K ¼ 1=

ffiffiffi
3

p
, see Eq. (24).
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particle Xτ from (7) as the sum of two independent
terms. This decomposition immediately leads to two exact
bounds, first [38]

hjXωj2i ≥ hjX̃ωj2i ¼
2πK
ωNω

; ð9Þ

where h…i denotes the average over the action S.
Furthermore

hcosXτi ≲ hcos X̃τi ∼
�
4π2KM
Nβ

�
K=N

→
β→∞

0: ð10Þ

Hence, the finite N behavior of hcosXτi differs from the
N → ∞ case [28] where it can be finite and then serve as an
order parameter.
To 0th order in g, with h…i0 denoting an average with

respect to Sg¼0,

hcosBi
τi0 ¼ e−1=2

R
ω
fð2πK=jωjÞþð1=Mω2Þg ¼ 0; ð11Þ

which is strongly irrelevant and cannot lead to an ordering
of each individual Bi

τ. Naively, one could conclude from
power counting that the coupling g is washed away by
fluctuations, leading effectively to the g ¼ 0 theory.
However, this is not the case, as we have found: although

strongly irrelevant, the terms g cosBi
τ generate an effective

coupling g2 cosðBi
τ − Bj

τÞ between pairs of distinct fields.
Indeed, the effective action evaluated to second order in
perturbation theory in g contains a term cosðBi

τ − Bj
τ0 Þ

multiplied by

g2heiBi
τ−iB

j

τ0 ii≠j0 ¼ g2e−ð1=2MÞjτ−τ0j−
R
ω
ð2πK=jωjÞ

→ δðτ − τ0ÞMg2e−
R
ω
ð2πK=jωjÞ ð12Þ

and integrated over times. We note that the finite mass is
crucial to provide a short time cutoff ∼M. The action
involving the Bi

ω fields (denoted as Bω) can thus be
replaced by the effective action

S1 ¼
1

2

Z
ω
D−1

i;j B
i
ωB

j�
ω − g2Λ

X
V

Z
τ
eiV·Bτ ; ð13Þ

where g2Λ ∼Mg2, g2 is a running dimensionless coupling,
and Λ a high frequency cutoff with initial value ∼M. The
vectors V are N dimensional, have one entry of þ1, one of
−1, and all other entries are 0, i.e., V ·Bτ ¼ Bi

τ − Bj
τ with

i ≠ j. Hence, V form the primitive unit cell of an N − 1
dimensional lattice that is perpendicular to the vector
(1,1,...,1) on a simple cubic N dimensional lattice. This
type of model appears in various contexts, e.g., the
quantum Brownian motion in a periodic potential
[35,36]. To second order the RG flow equation is (see [39])

Λ∂Λg2 ¼ ð1 − 2KÞg2 þ αðN − 2Þg22 þOðg32Þ; ð14Þ

where α ¼ Oð1Þ > 0 is nonuniversal, and depends on a
smooth cutoff procedure. Note that the TLL parameter K is
not renormalized and does not flow. From (14) there is
clearly a critical line for K > 1=2 and N > 2

gc2 ¼
2½K − ð1=2Þ�
αðN − 2Þ ð15Þ

such that for g2 < gc2 the RG flow is towards the Gaussian
g2 ¼ 0 theory, while for g2 > gc2, g2 flows to strong
coupling, signaling a phase where the relative fields Bi

τ

lock together, in a way that we study below.
The N ¼ 2 case has a single nonlinear term

∼ cosðB1
τ − B2

τÞ, equivalent to the static impurity problem
[40,41] and has a vertical phase boundary at K ¼ 1=2
(Fig. 1). Going back to general N, we now study the Bi

τ

correlations by adding a source term −
R
ω jωjBω ·A−ω

to the action (13) so that hBi
ωB

j
−ωi ¼ ð1=Z1ω

2Þ
ðδ2Z1=δAi

−ωδA
j
ωÞjA¼0, where [38] Z1 ¼

R
DBe−S1 is the

partition sum in presence of the source. Before studying
the general correlations, we note [39] an exact sum rule
of the effective model (13)

P
ihBi

ωB
j
−ωi ¼ Nω=ðMω2Þ

for each j.
We proceed to study the strong coupling fixed point by a

duality transformation. The process is well known for the
N ¼ 2 case [37,40], results are also stated for the quantum
Brownian motion [35,36], yet the extension to N > 2 of
our case involves some subtleties. We perform first a
change of variables so that the Gaussian part of S1,
Eq. (13), becomes diagonal,

Ci
ω ¼ Bi

ω − αωB̄ω; αω ¼ 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − N=Nω

p
; ð16Þ

where B̄ω ¼ P
iB

i
ω=N and C̄ω ¼ P

iC
i
ω=N ¼ ð1 − αωÞB̄ω.

The action becomes

S1 ¼ 1=2
Z
ω

jωj
2πK

Cω ·C−ω − g2Λ
X
V

Z
τ
eiV·Cτ

−
Z
ω
jωj

�
Cω ·A−ω þ αω

1 − αω
C̄ω

X
i

Ai
−ω

�
: ð17Þ

We consider next large g2 where the trajectories of Cτ

are dominated by instantons, i.e., a sequence of n sharp
jumps at consecutive times τ1; τ2;…; τα;…; τn. The instan-
tons shift Cτ between neighboring equivalent minima of
the g2 term by vectors chosen from a set Ri such that
Ri · Vj ¼ δi;j. Hence, Ri form the reciprocal lattice to Vj,
each vector has one entry of −1þ 1=N and all the rest are
1=N, with norm jRij2 ¼ 1 − 1=N. The vectors Ri are also
orthogonal to (1,1,1,...), however, they do not form a
primitive unit cell forN > 3 and then their lattice symmetry
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differs from that of the Vi. For example, for N ¼ 3 both Vi,
Rj form a 2D triangular lattice; however, for N ¼ 4

there are 12 vectors Vi forming an fcc lattice while there
are 8 vectors Ri that form a bcc lattice.
Since Rα are perpendicular to (1,1,1,...) instanton

trajectories do not describe the center of mass C̄ω.
Decoupling this center of mass is achieved by the shift
C̃i
ω ¼ Ci

ω − C̄ω; hence the Gaussian part in Eq. (17)
decouples into Cω ·C−ω ¼ C̃ω · C̃−ω þ NjC̄ωj2. The C̃τ

trajectory is described by C̃ðτÞ ¼ 2π
P

αRαθðτ − ταÞ. The
coupling with the source can be written as

R
ω jωjC̃i

ω ·
Ai

−ω ¼ i2πRα · aðταÞ where aω ¼ −signωAω. The weight
of each instanton is defined as ΛΔ ∼ e−Sins where [37,40]
Sins ∼

ffiffiffiffiffi
g2

p
. In the strong coupling limit Δ ¼ 0, instantons

are absent and the correlations become

hBi
ωB

j
−ωi ¼ 1

ð1 − αωÞ2
hjC̄ωj2i ¼

Nω

NMω2
ð18Þ

so that all TLLs becomes equally coupled to each other.
If Δ > 0 the term 1=2

R
ω ðjωj=2πKÞC̃ω · C̃−ω produces,

after integration on ω, logarithmic interactions between
instantons [39] which correspond to the dual action,

S2 ¼ 1=2
Z
ω

Kjωj
2π

jθðωÞj2 − ΛΔ
X
R

Z
τ
eiR·½θðτÞþ2πaðτÞ�:

ð19Þ

By shifting θ → θðτÞ − 2πaðτÞ and taking a second
derivative in Aτ we obtain a relation between the Bω

and θω correlations

hBi
ωB

j
−ωi ¼ Nω

NMω2
þ 2πK

jωj δi;j − K2hθiωθj−ωi: ð20Þ

The dual form allows for deriving the RG equation, using
jRj2 ¼ 1 − 1=N, to first order,

Λ∂ΛΔ ¼ 1 −
1

K

�
1 −

1

N

�
Δ: ð21Þ

Hence, the phase transition at strong coupling terminates at
Kc ¼ 1 − ð1=NÞ. The next order in RG for N ¼ 3 is ∼Δ2

[similarly to Eq. (14) in the dual coupling g2], while for
N ≥ 4 there are no Δ2 terms since R�R0 are all longer
than R and are therefore irrelevant at the transition. The
next order is then OðΔ3Þ; hence, the critical line at strong
coupling is Δc ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kc − K

p
with an infinite slope at Kc,

for N ≥ 4. This is similar to the N → ∞ case [28], where
Kc ¼ 1 and g2c ∼ 1=ð1 − KÞ. The various phase boundaries
are illustrated in Fig. 1.
The N ¼ 3 case is self-dual; i.e., we find a relation [39]

between hBi
ωB

j
−ωiK;g2 and hBi

ωB
j
−ωiK→K=3;g2→Δ. In

particular, at the self-dual point K ¼ 1=
ffiffiffi
3

p
; g2 ¼ Δ on

the critical line hBi
ωB

j
−ωi is exactly given by the average of

its values for g2 ¼ 0 and for Δ ¼ 0 (Fig. 1).
We proceed now to identify the order parameter of our

phase transition, i.e., the transconductance. The phenome-
non of current in chain i induced by a voltage on chain j
has been studied in the context of crossed nanotubes
[29–34]. In our case transconductance is a spontaneous
order parameter and not a mechanical junction as for the
nanotubes. The usual experiment is a two-probe type that
for a single clean TLL yields [42,43] a conductance ðe2=hÞ
determined by the normal leads [44–46]. For our system of
N TLLs in the decoupled phase obviously Gij ¼ ðe2=hÞδij
while in the coupled phase the strong generated coupling
cos½ϕið0; τÞ − ϕjð0; τÞ� forces the currents Ii ¼ _ϕið0; τÞ to
be equal, Ii ¼ I with total dissipation NI2ðh=e2Þ. We
propose then that, with normal leads on each TLL, the
resistance measured by a voltage in one wire is the sum of
all individual resistances, hence

Gi;j ¼
(

e2
h δi;j g2 ¼ 0

e2
h

1
N Δ ¼ 0:

ð22Þ

This implies that the transconductance exhibits a jump at
the phase transition between these two values (Fig. 1).
To substantiate this rationale, we consider first a “local

conductance” for the response to a field applied on a length
L of a pure TLL [37]. The response function away from the
impurity involves [39] e�jωnjx=u, a constant in the dc limit.
Hence, L → 0 can be taken, yielding

Glocal
ij ðωÞ ¼ −e2

π2ℏ
iðωþ iδÞhϕiðωnÞϕjð−ωnÞijiωn→ωþiδ:

In terms of the fields Bi
ω; X̃ω this becomes

Glocal
i;j ðωÞ ¼ e2

2πh
ω

�
hBi

ωB
j
−ωi − 1

Mω2

�
: ð23Þ

From the sum rule on the Bi
ω correlations we obtain the

exact sum rule
P

iG
local
i;j ¼ ðe2=hKÞ. Using our results for

the correlations, we obtain the dc local conductance at the
fixed points and at the self-dual point

Glocal
i;j ¼

8>>><
>>>:

e2
h Kδi;j g2 ¼ 0

e2
h
K
N Δ ¼ 0

1
2
e2
h K

h
δi;j þ 1

N

i
self − dual ðN ¼ 2; 3Þ:

ð24Þ

Along the transition line the conductance varies continu-
ously: the correction to Glocal

i;j is proportional to 1 − Nδi;j
with a positive prefactor ∼ðK − 1=2Þ2 near g2 ¼ 0 and a
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negative one ∼ − ð2=3 − KÞ2 for N ¼ 3 and ∼ − ½1 −
ð1=NÞ − K� for N ≥ 4 near Δ ¼ 0 [[39] Eq. (49)]. The
extension to the inhomogeneous case with normal leads is
shown in [39]; following ideas of the N ¼ 1 case [44–46]
results in replacing K → 1, yielding Eq. (22).
We have also considered an N ¼ 2 case with two

coupled LLs, one with normal leads and the other a
homogenous periodic TLL. We find [39] the conductance
matrix Gij ¼ e2=h, which also follows from our rationale
since the TLL loop by itself has vanishing resistance. A
similar problem was considered in [47] (see comparison
in [39]).
We consider next the realization of our model by

a superconducting (or BEC) grain. The Josephson
coupling to s wave pairs in each TLL involves [37]
1=2geiXτ−i

ffiffi
2

p
θρ;ið0;τÞ, where Xτ is now the superconducting

phase of the grain and θρ;i is the dual phase to ϕρ;i in the
charge sector of chain i. The action in terms of θρ;i has the
same form as in Eqs. (3) and (4) with K → 1=ð2KρÞ [37]
and 1=2M being the charging energy Ec of the grain; hence
the phase diagram is also given by Fig. 1 with the axis
being 1=ð2KρÞ. Thus, for N ¼ 2 the phase boundary is at
Kρ ¼ 1 and the strong coupled phase appears even for
weakly attractive coupling Kρ > 1. We note that the data
[22] on a single wall carbon nanotube, expected to have
N ¼ 2, shows with superconducting leads a surprisingly
high supercurrent. If one of the leads contains a grain with
not too small charging energy then our strong coupling
phase, implying a strong Josephson coupling, would
account for the data. For N > 2, possible for nanotube
ropes [22], the phase boundary interpolates between
Kρ ¼ 1 and Kρ ¼ ½N=2ðN − 1Þ�, allowing for a relevant
Josephson coupling even in a range of repulsive inter-
actions. The transconductance of this case needs a separate
derivation [39], yet the result is the same as Eq. (24) except
K → 2Kρ and a prefactor 2 for this spinfull case.
Finally, from the decomposition (7) and the sum rule for

the Bi
ω correlations within the effective model Eq. (13),

we obtain the fluctuations of Xτ as hjXωj2i ¼ 1=Mω2; i.e.,
they are not affected by the phase transition. Therefore,
hðXτ − Xτ0 Þ2i ∼ jτ − τ0j justifies our assumption in deriving
the action (6), i.e., that jXτ − Xτ0 j ≪ jτ − τ0j.
We note that a finite impurity mass is essential for the

derivation of our effective action (8), although it does not
appear explicitly in the phase diagram. As seen from
Eqs. (11) and (12), 1=M provides an upper limit on
frequencies which implies an upper bound on temperature
in a possible experiment, T� ≈ ð1=MÞ ¼ ð2πρ0Þ2=M0. For
Cs atoms [11] and TLL density πρ0 ¼ 4.5 μm−1 we find
T� ¼ 10−7 K; increasing the TLL density or reducing M0

increase the range of T < T�. For the realization with a
superconducting grain T� ≈ Ec where Ec ≈ 1–10 K [26] is
achievable in such devices. For M → ∞ the problem
reduces to a static impurity [40] with a phase transition

at K ¼ 1 that separates a conducting phase from an
insulating phase and no transconductance.
To realize a cold-atom experiment, one could consider an

optical trap array of parallel tubes for the TLLs (as in
Ref. [[11]]) and impurity atoms residing at the centers of
the array’s unit cells. The latter is possible by choosing the
trapping frequency to be simultaneously red detuned for the
TLL atoms and blue detuned for the impurity atoms, or vise
versa, producing opposite sign couplings to the laser
intensity; this arrangement was actually utilized [48] for
Rb-Cs mixtures. To produce a reasonable impurity-TLL
coupling we propose two routes. First, use atoms with a
dipole moment (e.g., as in Er or Dy [49]). The long range
dipole-dipole interaction provides the impurity-TLL inter-
action. A second route, with short range interactions, is to
produce a cage type trap for the impurities that is shallow
inside and allows a reasonable overlap with the TLL atoms,
yet has barriers to keep the impurity in a given unit cell. The
impurity-TLL interaction could then be enhanced by a
Feshbach resonance as for the K-Rb case [9].
In conclusion, we have found that a dynamic boundary,

such as a mobile impurity or a superconducting (or BEC)
grain, coupled to N identical Luttinger liquids induces a
phase transition for all N ≥ 2. The order parameter is the
conductance matrix, in particular a large transconductance
appears in the strong coupling phase. In the superconduct-
ing grain case the strong coupling phase is also identified
by a strong Josephson coupling, relevant to a number of
active experimental setups [22,26,27].
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