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Semiclassical Landau quantization of spin-orbit coupled systems
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A semiclassical quantization condition is derived for Landau levels in general spin-orbit coupled systems.
This generalizes the Onsager quantization condition via a matrix-valued phase which describes spin dynamics
along the classical cyclotron trajectory. We discuss measurement of the matrix phase via magnetic oscillations
and electron spin resonance, which may be used to probe the spin structure of the precessing wave function. We
compare the resulting semiclassical spectrum with exact results which are obtained for a variety of spin-orbit
interactions in two-dimensional systems.
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I. INTRODUCTION

Two-dimensional (2D) semiconductor systems offer strong
and tunable intrinsic spin-orbit interactions [1,2] which
have been exploited in recently proposed spintronic devices
[3–6]. In these systems, the close relationship between charge
and spin dynamics produces strongly modified electronic
transport properties which are exhibited in a range of effects
including the anomalous Hall effect [7–9], the spin Hall
effect [10–13], and weak antilocalization [14]. Quantum
interference has been studied both theoretically and experi-
mentally in low-dimensional semiconductor systems due to
their sensitivity to quantum phases arising from coherent
spin precession accompanying ballistic transport [15–19].
In particular, the role of adiabatic and nonadiabatic phases
in magnetic oscillations [20,21] is of high interest due to
the fact that oscillatory magnetotransport experiments have
provided crucial measurements of the spin-orbit coupling in
these systems [1,2,22–31]. Furthermore, recent experimental
and theoretical studies of 2D Dirac systems such as graphene
and surface states of three-dimensional topological insulators
have highlighted the role of the geometric phase in particular
in magnetotransport [32–41].

In this work, we derive an expression for the Landau
level spectrum of a 2D system with spin-orbit interaction via
a generalization of the Onsager quantization condition [42]
to account for nontrivial spin dynamics. Spin evolution is
encoded in the SU(2) phase representing the total rotation
of an initial spin state around a period of cyclotron motion.
This SU(2) phase is necessary to describe nonadiabatic spin
dynamics which is present when the effective magnetic field
in momentum space describing the spin-orbit interaction is not
sufficiently strong to locally polarize the spin of the particle
along the orbit [19,43]. We evaluate the semiclassical spectrum
for the cases when the spin-orbit effective magnetic field is
simply rotating in momentum space with a single winding
number and compare to the exact solutions for a variety of
spin-orbit interactions in semiconductor systems, including
several cases which have not been previously mentioned in the
literature. In addition, we show that magnetic oscillations and
electron spin resonance (ESR) serve as effective probes of the
precessing spin structure of Landau level states.

This paper is organized as follows: In Sec. II, we derive the
semiclassical quantization condition and a general expression

for the Landau level spectrum of spin-orbit coupled system,
accounting for spin dynamics via a matrix valued phase.
In Sec. III, we discuss magnetic oscillations and derive the
expression for the oscillatory density of states in terms of the
matrix-valued phase. In Sec. IV, we evaluate the level spectrum
and eigenstates for a rotating spin-orbit interaction with fixed
winding number. We also calculate exact results for a variety
of interactions in p-type systems and present a comparison
of the semiclassical and exact results for these as well as
for previously discussed results in n-type systems [44–48]. In
Sec. V, we discuss ESR as a probe of the spin-orbit interaction
type and evaluate the ESR matrix elements for the cases
discussed in Sec. IV. Our summary and concluding remarks
are presented in Sec. VI.

II. SPECTRUM OF LANDAU LEVELS
WITH SPIN-ORBIT INTERACTION

We consider a 2D electron or hole gas in perpendicular
magnetic field, described by the Hamiltonian

H = π2
x + π2

y

2m
+ Hs(πx,πy), Hs = β(πx,πy) · σ, (1)

where π = (πx,πy) = p − eA are the operators of kinetic
momentum [49] (e is the charge of the electron or hole) and m

is the effective mass. For electron systems, the Pauli matrices
σ act on spin, while for hole systems, σ acts on the doublet
of heavy-hole states [50]. The spin-dependent interaction Hs ,
accounting for the spin-orbit interaction in addition to Zeeman
coupling to the external magnetic field, will be expressed in
terms of the effective magnetic field in momentum space, β =
(βx,βy,βz).

Since the kinetic momenta satisfy a commutation relation
[πx,π y] = ieBz, we may construct annihilation and creation
operators a,a† with a = πx+iηπy

|2eBz| where η is the sign of the
charge, with the corresponding number operator

N = a†a = π2
x + π2

y

|2eBz| − 1

2
. (2)

It is possible to diagonalize the Hamiltonian (1) in the number
representation, as has been done in previous approaches to
the problem [44–47]. We consider, however, the semiclassical
picture, in which the spectrum is related to the dynamics
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of wave packets moving along the cyclotron trajectory. Due
to the spin-orbit interaction, a wave packet in some initial
polarization state will precess along the orbit, and generally
undergo a rotation after a complete revolution, which is
described by an SU(2) matrix. Thus, for the purposes of
semiclassical quantization the phase is matrix valued, and
the spectrum will be determined by the eigenvalues and
eigenvectors of the matrix-valued phase. In order to rigorously
derive this result, we introduce the spinor wave function ψ(θ )
which varies along the angle θ in momentum space. Explicitly,
this is given by ψ(θ ) = 〈θ |ψ〉 where the states |θ〉 are related
to number eigenstates via [51]

|θ〉 =
∞∑

n=0

eiηnθ |n〉, η = sgn(e) (3)

where |n〉 are eigenstates of the number operator. Here,
we assume Bz > 0. The basis states |θ〉 are eigenstates of
the operators eiθ ,e−iθ which are related to the momentum
operators via

a = eiθ
√

N = πx + iηπy

|2eBz| . (4)

Note that the number operator corresponds to the classical
action coordinate, while θ is simply the angle in momentum
space (πx,πy) = (|π | cos θ,|π | sin θ ). Thus, in the semiclassi-
cal limit the wave function ψ(θ ) represents the motion of a
particle in momentum space as a function of the angle θ .

In order to obtain the Schrödinger equation for ψ(θ ) then
obtained from the Hamiltonian (1), we note that the classical
coordinates (θ,N ) are canonically conjugate, which implies
that the operator N takes the form of a derivative operator in
the θ representation. Explicitly acting on the basis (3) with N
shows that

〈θ |N|ψ〉 = iη
d

dθ
〈θ |ψ〉 = iη

dψ(θ )

dθ
. (5)

Thus, the first term in (1) may be replaced with πx
2+πy

2

2m
→

ω(iη d
dθ

+ 1
2 ) where ω = | eBz

m
| is the cyclotron frequency, and

the effective magnetic field may be regarded as a function of the
coordinates (θ,N → iη d

dθ
). Thus, the Schrödinger equation

for ψ(θ ) reads as[
iηω

d

dθ
+ β

(
θ,iη

d

dθ

)
σ − E + ω

2

]
ψ(θ ) = 0, ω = |eBz|

m
.

(6)

In the absence of spin-orbit interaction, β = 0, the wave
function satisfies the equation

iη
dψ

dθ
= νψ, ν = E

ω
− 1

2
, (7)

which yields the wave function

ψ(θ ) = e−iηνθ , (8)

corresponding to a circular orbit in momentum space, with
η = sgn(e) indicating the direction in which the circle is
traversed (clockwise for η > 0 and anticlockwise for η < 0).
(This is simply the wave function of the harmonic oscillator in
the phase representation [51].) Single valuedness of the wave
function then requires ν to be an integer, which of course yields

the usual Landau level spectrum En = (n + 1
2 )ω. However, ν

is also related to the average momentum of the orbit via

〈π2〉 = |2eBz|
(

〈N〉 + 1

2

)
= |2eBz|

(
ν + 1

2

)
. (9)

Thus, single valuedness of the wave function in the θ repre-
sentation is equivalent to Onsager’s quantization rule [42], that
the area of the momentum space orbit must be quantized:

1

|2eBz|
∫ 2π

0
π2dθ = 2π

(
n + 1

2

)
. (10)

In the presence of spin-orbit coupling the spinor ψ(θ )
generally precesses as a function of θ under the influence of the
effective magnetic β(θ,N ). In the semiclassical regime 〈N〉 �
1 the wave function takes the form of a Born-Oppenheimer
product of orbital and spin factors

ψ(θ ) = e−iηνθχ (θ ). (11)

The first factor in (11) corresponds to an orbital trajectory in
momentum space with radius |π | =

√
|2eBz|(ν + 1

2 ) (and we
assume χ †χ = 1). When χ (θ ) is slowly varying compared to
the orbital factor, we may replace the action of the derivative
with the semiclassical variable ν in β(θ,iη d

dθ
) → β(θ,ν).

This requires that the spin-orbit effective magnetic field be
much smaller than the total energy |β(ν,θ )| � E as well as
dχ

dθ
� ν. Nevertheless, this does not require |β(ν,θ )| � ω (this

inequality is violated, e.g., in the regime of double magnetic
focusing [52]). Thus, the Schrödinger equation for spin reads
as

− iηω
dχ

dθ
= [β(θ,ν)σ − ωδ]χ, (12)

where δ is a parameter defined by

E = ω
(
ν + 1

2 + δ
)
. (13)

Equation (12) is identical to the equation of motion for a
precessing wave packet moving along the classical cyclotron
orbit (ν = const, θ = −ηωt) if the left-hand side is replaced
by the time along the trajectory −iηω d

dθ
= i d

dt
. We may divide

the evolution of spin into two parts χ (θ ) = e−iηδθU (θ )χ (0)
where U (θ ) is an SU(2) matrix,

U (θ ) = Peiηω−1
∫ θ

0 [β(ν,θ)σ ]dθ , (14)

where P indicates path ordering. Over a complete orbit, the
spin wave function accumulates a complex phase factor, as
well as a rotation generated by the matrix-valued phase U (2π );
however, in a stationary state, the spin polarization must return
to its initial value after a complete orbit, implying that the
spinors χ (0) and χ (2π ) = e−2πiηδU (2π )χ (0) differ at most by
a phase. It follows that χ (0) = χ± is an eigenvector of U (2π ).
Since U (2π ) is an SU(2) matrix, its eigenvalues e+i�,e−i� are
complex conjugate, and the phase accumulated due to unitary
transformations of spin over a complete orbit for an initial
spin state χ± is equal to e±i�. The wave function ψ(θ ) must
be single valued, implying the quantization condition

2π (ν + δ) ± � = 2πn. (15)

Recalling the definition (13), this gives a relationship between
the spectrum and the eigenvalues of the matrix phase U (2π )
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in the semiclassical limit

En,± = ω

(
n + 1

2
± �

2π

)
. (16)

The matrix phase is fully determined by the path-ordered
exponential (14) which depends on the radius of the orbital
trajectory |π | =

√
|2eBz|(ν + 1

2 ). Nevertheless, the quantiza-
tion condition (15) does not fix ν and δ individually, but
only the combination ν + δ, with δ being a free parameter
corresponding to an arbitrary choice of the phase of χ . The
choice of δ is fixed by the requirement for the validity of
the Born-Oppenheimer approximation dχ

dθ
� ν. This requires

δ � ν. Since the total phase accumulated by χ in a stationary
state is 2πδ ± �, we must minimize the variation of χ along
the trajectory by choosing the phase of χ so that ν is an integer:

δ = ∓ �

2π
, ν = n. (17)

Thus, the spectrum is determined by the eigenvalues of
the matrix phase U (2π ) evaluated for orbits in momentum
space with radius |πn| =

√
|2eBz|(n + 1

2 ). Note that in the
absence of electric fields the Hamiltonian (1) commutes with
the guiding center operators X = x + πy

eBz
, Y = y − πx

eBz
, thus,

each Landau eigenstate may be chosen to be a simultaneous
eigenstate of X,Y . This leads to the usual degeneracy per unit
area |eBz|

2π
.

The quantization condition (15) may be expressed in terms
of the energy

J±(E) = 2πmE

|eBz| ∓ � = 2π

(
n±(E) + 1

2

)
. (18)

The left-hand side of (18) is equal to total phase accumulated
by the wave function ψ(θ ) in a stationary state, and is therefore
equal to the classical action integrated over a single period. At a
given energy, there exist two orbits, whose radii in momentum
space are given by [from (13)]

1

|2eBz|
∫

π2
±dθ = 2π

(
n±(E) + 1

2

)
(19)

and may be determined, e.g., from magnetic focusing [52]. The
periods of the two spin trajectories are given by the derivative
of the action with respect to the energy,

T± = 2π

ω±
= dJ±

dE
= 2πm

|eBz| ∓ d�

dE
, (20)

regarding E as a continuous variable in the semiclassical limit.
While we have performed a detailed derivation in the case of

a quadratic dispersion, it is intuitively clear that our argument
and results may be rigorously generalized to the case of
nonquadratic dispersions π2

2m
→ ε(π ). In this case, the wave

function (11) takes the form ψ(θ ) = e
− iη

|2eBz |
∫

π2dθ+ iηθ

2 χ (θ )
where χ (θ ) satisfies the same Schrödinger equation (12) with
the spin-orbit interaction β(πx,πy) evaluated for quantized or-
bits of constant energy satisfying the condition 1

|2eBz|
∫

π2
ndθ =

2π (n + 1
2 ). The spectrum (16) for nonquadratic dispersions

becomes

En,± = ε(πn) + ω

(
1

2
± �

2π

)
, (21)

where the oscillator frequency ω must be calculated from the
classical equations of motion corresponding to the general
dispersion ε(π ).

III. MAGNETIC OSCILLATIONS

According to Onsager’s principle, the oscillations in resis-
tivity of a 2D system as function of perpendicular magnetic
field directly measure the semiclassical phase (18) accumu-
lated over an orbit for a particle at the Fermi energy [42].
We will calculate the oscillating resistivity for a general
spin-orbit coupled system in a similar manner to the method of
Lifshitz and Kosevich [53]. In the Drude approximation, the
conductivity is proportional to the density of states

A(E) = −|eBz|
4π2

TrGR = −|eBz|
4π2

Im
∑

n,σ=±

1

E − Enσ + i
2τ

,

(22)

where the retarded Greens function GR is averaged over
disorder, and we have included the Landau level degeneracy
factor |eBz|

2π
. We only consider the situation where impurities

are short ranged, so that relaxation is described in first order
by a single parameter τ−1 equal to the total scattering cross
section at [54] Bz = 0. Applying the Poisson summation
formula to (22), one regards En± → E±(J ) as a function of
the continuous variable J [Eq. (18)]:

A(E) = −|eBz|
4π2

Im
∞∑

l=0,σ=±

∫
e−il(J−π)

E − Eσ (J ) + i
2τ

dJ . (23)

Performing a change of variables and a contour integration
gives the density of states at E = EF :

A(EF ) = |eBz|
2π

∞∑
l=0,σ=±

1

ωσ

e− πl
ωσ τ cos[lJσ (EF ) − lπ ]

= |eBz|
2π

∞∑
l=0,σ=±

1

ωσ

e− πl
ωσ τ

× cos l

[
2πEF

ω
− π − σ�(EF )

]
, (24)

where ωσ = ω± are the frequencies of the spin trajecto-
ries (20). The spin-dependent phase shift in magnetic os-
cillations is therefore equal to +�,−� for orbits evaluated
at the Fermi energy. In the semiclassical regime n � 1, the
difference between ω+,ω− may be neglected in the first
approximation (typically oscillations are observed up to n ≈
40 in electron systems [1] and n ≈ 20 in hole systems [2,43]).
In practice, the second and higher harmonics in (24) become
small when ωcτ � 1, and accounting for only the first
harmonic the resistivity becomes

ρxx(Bz) = ρxx(0)

(
1 + e− π

ωτ cos �(EF ) cos 2π

[
EF

ω
− 1

2

])
,

(25)
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and the oscillatory part vanishes when �(EF ) = π (n + 1
2 ).

Since the spin-orbit interaction is generally highly tunable by
experimental parameters [1,2], measurement of the envelope
cos � over a range of parameters would permit the indirect
mapping of semiclassical spin dynamics along the cyclotron
trajectory (as we shall demonstrate in Sec. IV C).

A. Berry phase

In the typical experimental situation reported in mag-
netotransport measurements in n-type narrow gap systems
[1,22–29], the spin-orbit interaction is sufficiently strong
|β(ν,θ )| � ω that spin precession is adiabatic, i.e., the spin
polarization is locally aligned with the vector β(ν,θ ) along
the cyclotron orbit. In this regime, the phase � contains
a Berry phase [55] contribution ϕB equal to − 1

2× the
solid angle enclosed by the precessing spin polarization on
the sphere. While this contribution has been experimentally
observed [33–36] and theoretically studied [38–41] in the
context of 2D Dirac materials, measurement of the Berry
phase via magnetotransport in semiconductor systems has
yet to be reported. Nevertheless, Eq. (25) demonstrates
that the Berry phase should appear as a correction to the
phase of the resistivity oscillations, typically of order π for
strong spin-orbit interaction, which may significantly alter the
amplitude of the oscillating resistivity. In the case of a strong
Rashba interaction, the Berry phase ϕB = π is a constant shift
corresponding to a phase inversion of the oscillations. The
phase may be expressed in terms of the spin-split densities
measured at zero magnetic field:

J±(EF ) → 4πρ±
|2eBz| ∓ ϕB. (26)

When the Berry phase is constant as a function of the
perpendicular field, it does not affect the spin-split densities ρ±
which are usually extracted by performing a Fourier transform
of the resistivity. In this case, the Berry phase appears only
as a constant shift of the oscillations. Explicitly, the Fourier
transform of the resistivity with respect to the inverse magnetic
field is given by

F(r) =
∫

eibrρxx(b)db, b = 8π2

|2eBz| (27)

and the maxima of the function F(r) occur at

r = r+,r−, r± = ρ

2
∓ ∂�

∂b
= ρ± ± ∂ϕB

∂b
. (28)

Note that we assume that the spin-orbit interaction is held
constant while Bz is varied. While, in general, the derivative
of the Berry phase appears as a correction to the peaks of the
Fourier transform (alongside the zero-field densities ρ±), in
the limit of strong spin-orbit interaction typically encountered
in narrow-gap semiconductors [1,22–29], the Berry phase is
a constant shift and does not contribute to the position of the
peaks: a Fourier analysis of the oscillations gives only the zero-
field densities ρ±, which correspond to the first term in (26).
Since what is reported in previous literature is simply the
position of the Fourier peaks, measurement of the Berry phase
has not, to our knowledge, been performed in such systems.

In the general situation, determination of the zero-field
densities ρ± from a Fourier analysis of the oscillations is not
straightforward due to the presence of the derivative of the
Berry phase in (28). In this case, measuring the oscillations at
sufficiently low fields for which only one species contributes
to the resistivity [22] would allow the Berry phase to be
simply extracted from the positions of the maxima of the
oscillations (as it is, e.g., in Dirac semimetals [33–36]). A
situation of particular interest occurs when spin dynamics is
in the nonadiabatic regime, in which case our theory does not
predict a simple Berry phase shift in the oscillations. In order
for this to occur, we must have ω � |β|, which requires special
tuning of parameters. A comparison of our theory to such an
experiment has recently been published [43].

IV. CASE OF ROTATING INTERACTIONS: COMPARISON
OF EXACT AND SEMICLASSICAL SOLUTIONS

In the typical experimental situation, semiconductor het-
erostructures are subject to the Rashba [56] and Dres-
selhaus [57] spin-orbit interactions, in addition to applied
magnetic fields. The competition between these interactions,
which are often of the same order [58–60] result in complex
spin trajectories which are reflected in both the spectrum and
magnetic oscillations via the spin evolution matrix U (2π ) (14).

Nevertheless, an important situation arises when a sin-
gle spin-orbit interaction is present corresponding to a
rotating field β in momentum space β = [β‖ cos(Wθ +
φ), β‖ sin(Wθ + φ), βz], where the integer W is the winding
number and φ is a constant. We consider the realization of
this situation in both electron and hole systems. In electron
systems, a pure Rashba interaction HR = α(πxσy − πyσx)
corresponds to winding number W = +1, a pure Dresselhaus
interaction in zinc-blende systems confined perpendicular
to a cubic axis, and HD = α(πxσx − πyσy) corresponds to
winding number W = −1.

In hole systems, the higher angular momentum J = 3
2 for

holes implies that interactions linear in Jx,Jy have higher
winding numbers than their counterparts in electron systems.
The Rashba and Dresselhaus interactions correspond to W =
+3 and +1, respectively, and an applied in-plane magnetic
field corresponds to W = +2. This statement may be derived
from the observation that, for hole systems confined to a
two-dimensional plane, the low-energy subspace consists of
the heavy-hole doublet with angular momentum quantized
along the perpendicular axis |+〉 = |Jz = 3

2 〉, |−〉 = |Jz =
− 3

2 〉. Interactions which are linear in Jx,Jy do not couple states
|+〉,|−〉. In order to obtain a coupling between these states, it is
necessary to account for the additional interaction ∝π2

+J 2
− +

H.c. which appears in the Luttinger Hamiltonian [61]. In
combination with interactions linear in Jx,Jy , this contributes a
factor π2

+ which, after projection onto heavy-hole states raises
the winding number by 2. In perturbation theory, one obtains,
for an in-plane magnetic field a Hamiltonian ∝B+π2

+σ− +
H.c. with W = +2; for the Rashba interaction the Hamiltonian
is ∝iπ3

+σ− with W = +3, and for the Dresselhaus interaction
the Hamiltonian is ∝{π2

+,π−}σ− + H.c. with W = +1. In this
section, we present analytical results for these situations, and
compare the semiclassical approximation to the exact spectra
obtained from brute force diagonalization.
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Let us first consider the situation for a general winding
number W . The interaction with the effective magnetic field
may be written βσ = g(β0σ )g−1 with g = e− iWσzθ

2 and β0 =
(β‖ cos φ,β‖ sin φ,βz) constant along the circular trajectory.
Performing a transformation to the corotating frame χ = gχ ′,
the Schrödinger equation for spin (12) reads as

− iηω
dχ ′

dθ
=

[
β0σ − ωδ + iηωg−1 ∂g

∂θ

]
χ ′

=
[(

β0 + ηωWẑ

2

)
σ − ωδ

]
χ ′. (29)

The effective magnetic field in the corotating frame is static,

B = β0 + ηωW

2
ẑ, (30)

and direct integration gives the evolution operator (in the
laboratory frame)

U (θ ) = e− iWσzθ

2 e
iηθ

ω
Bσ (31)

and the eigenvalues of U (2π ) are given by

e±i� = e−iπW± 2πiη|B|
ω . (32)

The phase � of the eigenvalues is unambiguously defined
only up to a multiple of 2π . In order to select the phase �, we
note that the Born-Oppenheimer approximation is valid only
when the spin state χ is slowly varying. The spin states (in the
laboratory frame) are given explicitly by

χ+(θ ) = e
iη|B|θ

ω
− i�θ

2π

(
cos

ζ

2
e− iWθ

2 |+〉 + sin
ζ

2
e

iWθ
2 +iφ|−〉

)
,

χ−(θ ) = e− i|B|θ
ω

+ i�θ
2π

(
− sin

ζ

2
e− iWθ

2 −iφ|+〉 + cos
ζ

2
e

iWθ
2 |−〉

)
,

(33)

where ζ is the angle between B and the plane

tan ζ = B‖(ν)

Bz(ν)
, (34)

|+〉,|−〉 are spin states with polarization along the z axis,
and β0 = (β‖ cos φ,β‖ sin φ,βz). The spin-up and spin-down
components of χ± accumulate different phases over the orbital
trajectory. We may define � so that the largest spin component
of χ+ is constant, with the smaller spin component acquiring a
phase of 2πW around the trajectory. This choice ensures that
as the spin-orbit interaction is reduced to zero, the energies
En± and quantum states χ± are continuously related to the
simply Zeeman-split levels in a uniform magnetic field. For
the case Bz > 0, the spin polarization is tilted above the plane
and the largest spin component is 〈+|χ+〉, while for Bz < 0
the spin polarization is tilted below the plane and the largest
component is 〈−|χ+〉, thus,

� = 2πη|B|
ω

− πW sgn

(
βz + ηωW

2

)
. (35)

Thus, the wave functions are given by

ψn+(θ ) = e−iηnθ

(
cos

ζn

2
|+〉 + sin

ζn

2
eiWθ+iφ |−〉

)
,

ψn−(θ ) = e−iηnθ

(
− sin

ζn

2
e−iWθ−iφ |+〉 + cos

ζn

2
|−〉

)
(36)

for Bz = βz + ηωW

2 > 0, and

ψn+(θ ) = e−iηnθ

(
cos

ζn

2
e−iWθ−iφ |+〉 + sin

ζn

2
|−〉

)
,

×ψn−(θ )e−iηnθ

(
− sin

ζn

2
|+〉+ cos

ζn

2
eiWθ+iφ |−〉

)
(37)

for Bz = βz + ηωW

2 < 0, and ζn correspond to angles ζ (34)
evaluated for values of ν = n. The spin polarization in the
upper spin state ψ+ is along S ‖ β + ηωWẑ

2 , which is tilted out
of the plane due to the rotation of the effective magnetic field.
This out-of-plane tilting is due to a geometric term iηg−1 ∂g

∂θ

in the equation of motion (29). In the adiabatic limit ω � |β|,
spin will align along the direction of the effective magnetic
field S ‖ β, nevertheless, the geometric contribution leads to a
correction to � which is equal to the Berry phase discussed in
Sec. III A.

It follows from (16) that the spectrum is

En,± = ω

(
n + 1

2

)
±

[
|B| − ηωW

2
sgn

(
βz + ηωW

2

)]

= ω

(
n + 1

2

)

±
[√(

βz+ηωW

2

)2

+β2
‖−

ηωW

2
sgn

(
βz+ηωW

2

)]
,

(38)

where the effective magnetic field β(ν) is taken along
momentum space orbits corresponding to integer values of
ν. We note that, while the choice of phase (35) minimizes
the error in the semiclassical solution, we may arbitrarily
redefine the phase by addition of an integer multiple of 2π .
After relabeling of Landau levels (which only affects the
ground state), addition of 2π to the phase is equivalent to
a shift of index in the spin-dependent part of the energy
En,± = ω(n + 1

2 + �n

2π
) → ω(n + 1

2 + �n+1

2π
), which leads to

an error of the same order in the semiclassical limit, although
the numerical error may be larger for alternative choices of �.
We discuss this point further in Appendix A. In the remainder
of the section we shall apply these results to specific cases and
compare them to the exact solutions.

A. Rashba interaction in n-type systems

The case of Rashba and Dresselhaus interactions in n-type
systems has been extensively discussed in previous litera-
ture [44–47]; we will review only the situation in which one
of these interactions is present. For the Rashba interaction, the
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Hamiltonian is given by

H = π2

2m
+ αR(πyσx − πxσy) − gμBBz

2
σz, (39)

where αR is the Rashba constant, and the effective magnetic field β(πx,πy) = (αRπy,−αRπx,− gμBBz

2 ) has winding number
W = +1. From (38) the semiclassical solution is given by

En,± = ω

(
n + 1

2

)
±

[√(
−ω

2
− gμBBz

2

)2

+ α2
R|2eBz|

(
n + 1

2

)
+ ω

2
sgn

(
−ω

2
− gμBBz

2

)]
. (40)

A derivation of the exact solution is presented in Appendix B. We obtain the exact spectrum

En,+ =
⎧⎨
⎩

ω
(
n + 1

2

) + [√(
ω
2 + gμBBz

2

)2 + |2eBz|α2
R(n + 1) + ω

2

]
, −ω

2 − gμBBz

2 > 0

ω
(
n + 1

2

) + [√(
ω
2 + gμBBz

2

)2 + |2eBz|α2
Rn − ω

2

]
, −ω

2 − gμBBz

2 < 0
(41)

En,− =
⎧⎨
⎩

ω
(
n + 1

2

) − [√(
ω
2 + gμBBz

2

)2 + |2eBz|α2
Rn + ω

2

]
, −ω

2 − gμBBz

2 > 0

ω
(
n + 1

2

) − [√(
ω
2 + gμBBz

2

)2 + |2eBz|α2
R(n + 1) − ω

2

]
, −ω

2 − gμBBz

2 < 0.

The exact wave functions are given by

ψn,+(θ ) = einθ

(
cos

ζn+1

2
|+〉 + i sin

ζn+1

2
eiθ |−〉

)
,

ψn,−(θ ) = einθ

(
− sin

ζn

2
e−iθ |+〉 + i cos

ζn

2
|−〉

)
(42)

0.01 0.02 0.03 0.04 0.050

50

100

0 0.50

50

100

En (meV)
EF

zB α~R

n = 40

n = 30

n = 20

n = 10

FIG. 1. Energies of Landau level states n = 10,20,30,40 in
n-type 2D system in the presence of a Rashba interaction, plotted
as a function of the dimensionless constant α̃R = αRpF

EF
where EF =

73 meV is the Fermi energy corresponding to a 2D electron gas
with typical experimental density [1] ρ = 7 × 1011cm−2 (the Fermi
energy is indicated by the dashed horizontal line) and band parameters
corresponding to InAs. The left panel shows energies as a function of
Bz at αR = 0 and the right panel shows energies as a function of α̃R at
Bz = 0.5 T. Red and blue lines indicate states of opposite spin. The
difference between the exact (41) and semiclassical (40) solutions is
not visible.

for −ω
2 − gμBBz

2 > 0, and

ψn,+(θ ) = einθ

(
cos

ζn

2
e−iθ |+〉 + i sin

ζn

2
|−〉

)
,

ψn,−(θ ) = einθ

(
− sin

ζn+1

2
|+〉 + i cos

ζn+1

2
eiθ |−〉

)
(43)

for −ω
2 − gμBBz

2 < 0. The angles ζn are defined in the same

way as in the previous section (34), tan ζn = αR

√|2eBz|n
− ω

2 − gμB Bz
2

.

The error in the semiclassical solution is ≈ sin2 ζ

8n
(En+ −

En−). The Landau level energies for levels n = 10,20,30,40 at
Bz = 0.5 T are plotted in Fig. 1 as a function of the dimension-
less parameter α̃R = αRpF

EF
where EF = 73 meV,pF are the

Fermi energy and momentum corresponding to a 2D electron
gas at experimental density [1] ρ = 0.6 × 1012 cm−2. The
band parameters are taken for InAs [50], m = 0.0229me, g =
−14.9. The semiclassical and exact results are both shown,
although in this situation they are indistinguishable. For n � 1
the wave functions (42) and (43) reduce to the semiclassical
expressions (36) and (37) with W = +1 and φ = π

2 .

FIG. 2. Spin precession of Landau eigenstates along the momen-
tum space trajectory due to the Rashba interaction in n-type InAs,
shown for the highest filled Landau level (n = 29) at experimental
density [1] ρ = 7 × 1011 cm−2. The spin polarization is indicated by
red arrows, and the effective magnetic field β is indicated by blue
arrows.
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The precessing wave function is illustrated in Fig. 2 for
the highest filled Landau level (n = 29) at the experimental
density with the same parameters used in Fig. 1. The spin
polarization ψ†(θ )σψ(θ ) is indicated by red arrows and the
effective magnetic field β(θ ) is indicated by blue arrows.
While the effective magnetic field is tilted above the plane,
the spin polarization is tilted below the plane, illustrating the
size of the geometric contribution (30) B − β0 = −ω

2 ẑ in the
experimental parameter regime.

B. Dresselhaus interaction in n-type systems

We consider only the linear Dresselhaus interaction in
(100)-oriented heterostructures, for which the Hamiltonian is

given by

H = π2

2m
+ αD(πxσx − πyσy) − gμBBz

2
σz, (44)

where αD is the Dresselhaus constant for the heterostruc-
ture. The rotating effective magnetic field β(πx,πy) =
(αDπx,−αDπy,− gμBBz

2 ) has winding number W = −1, and
the semiclassical solution is identical in form to the solution
for the Rashba case (41) with the exception that, in the
spin-dependent part ω is replaced by −ω due to the opposite
winding number:

En,± = ω

(
n + 1

2

)
±

[√(
ω

2
− gμBBz

2

)2

+ α2
D|2eBz|n − ω

2
sgn

(
ω

2
− gμBBz

2

)]
. (45)

A derivation of the exact solution is presented in Appendix B. The exact energies are given by

En,+ =
⎧⎨
⎩

ω
(
n + 1

2

) + [√(
ω
2 − gμBBz

2

)2 + |2eBz|α2
Dn − ω

2

]
, ω

2 − gμBBz

2 > 0

ω
(
n + 1

2

) + [√(
ω
2 − gμBBz

2

)2 + |2eBz|α2
D(n + 1) + ω

2

]
, ω

2 − gμBBz

2 < 0
(46)

En,− =
⎧⎨
⎩

ω
(
n + 1

2

) − [√(
ω
2 − gμBBz

2

)2 + |2eBz|α2
D(n + 1) − ω

2

]
, ω

2 − gμBBz

2 > 0

ω
(
n + 1

2

) − [√(
ω
2 − gμBBz

2

)2 + |2eBz|α2
Dn + ω

2

]
, ω

2 − gμBBz

2 < 0.

The exact wave functions are given by

ψn,+(θ ) = einθ

(
cos

ζn

2
|+〉 + sin

ζn

2
e−iθ |−〉

)
, ψn,−(θ ) = einθ

(
− sin

ζn+1

2
eiθ |+〉 + cos

ζn+1

2
|−〉

)
(47)

for ω
2 − gμBBz

2 > 0, and

ψn,+(θ ) = einθ

(
cos

ζn+1

2
eiθ |+〉 + sin

ζn+1

2
|−〉

)
, ψn,−(θ ) = einθ

(
− sin

ζn

2
|+〉 + cos

ζn

2
e−iθ |−〉

)
(48)

for ω
2 − gμBBz

2 < 0. For n � 1, the wave functions reduce to their semiclassical expressions (36) and (37) with W = −1 and
φ = 0.

C. p-type systems with in-plane magnetic field

The Hamiltonian in case when both in-plane and perpendicular components of the magnetic field are present is given by

H = π2

2m
− αH

2
(B+π2

+σ− + B−π2
−σ+) − gμBBz

2
, (49)

where αH is a constant which depends on the 2D confining potential and the bulk g factor. The rotating effective magnetic field
is β(πx,πy) = −[αH B‖π2

‖ cos(2θ + φ),αH B‖π2
‖ sin(2θ + φ), gμBBz

2 ] where B+ = B‖eiφ and has winding number W = 2. Thus,
the semiclassical spectrum (38) is given by

En,± = ω

(
n + 1

2

)
±

[√(
ω − gμBBz

2

)2

+ (2eαH B‖Bz)2

(
n + 1

2

)2

− ω sgn

(
ω − gμBBz

2

)]
. (50)

A derivation of the exact solution is presented in Appendix C. The exact energies are given by

En+ =
⎧⎨
⎩

ω
(
n + 1

2

) + [√(
ω − gμBBz

2

)2 + (2eαHBzB‖νn)2 − ω
]
, ω − gμBBz

2 > 0

ω
(
n + 1

2

) + [√(
ω − gμBBz

2

)2 + (2eαHBzB‖νn+2)2 + ω
]
, ω − gμBBz

2 < 0
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En− =
⎧⎨
⎩

ω
(
n + 1

2

) − [√(
ω − gμBBz

2

)2 + (2eαHBzB‖νn+2)2 − ω
]
, ω − gμBBz

2 > 0

ω
(
n + 1

2

) − [√(
ω − gμBBz

2

)2 + (2eαHBzB‖νn)2 + ω
]
, ω − gμBBz

2 < 0
(51)

where

νn =
√

n(n − 1). (52)

The exact wave functions are

ψn,+(θ ) = e−inθ

(
cos

ζνn

2
|+〉 + sin

ζνn

2
e2iθ |−〉

)
, ψn,−(θ ) = e−inθ

(
− sin

ζνn+2

2
e−2iθ |+〉 + cos

ζνn+2

2
|−〉

)
(53)

for ω − gμBBz

2 > 0, with B+ = B‖eiφ and

ψn,+(θ ) = e−inθ

(
cos

ζνn+2

2
e−2iθ |+〉 + sin

ζνn+2

2
|−〉

)
, ψn,−(θ ) = e−inθ

(
− sin

ζνn

2
|+〉 + cos

ζνn

2
e2iθ |−〉

)
(54)

for ω − gμBBz

2 < 0, and the angles ζνn
are given by

tan ζνn
= 2eαH BzB‖νn

ω − gμBBz

2

. (55)

For n � 1 we have νn → n and the exact wave functions
reduce to the semiclassical expressions (36) and (37) with
W = +2.

The error in the semiclassical solution is
≈ 1

2n
sin2 ζνn

(En+ − En−). The Landau level energies for
n = 4,6,8,10,12 are plotted in Fig. 3 as a function of the
dimensionless parameter y = 2mαHB‖ for a GaAs 2D hole
system, with effective mass m = 0.25me corresponding to the

0.05 0.1 0.15 0

0.5

1

1.5

0 0.20

0.5

1

1.5

En(meV)

EF

zB y

n = 12

n = 10

n = 8

n = 4

n = 6

FIG. 3. Energies of Landau level states n = 4,6,8,10,12 in a 2D
GaAs hole gas in the presence of an in-plane magnetic field B‖,
plotted as a function of the dimensionless constant y = 2mαH B‖.
The left panel shows energies as a function of Bz at y = 0
and the right panel shows energies as a function of y at Bz =
0.2 T. The exact solutions (51) are indicated in solid lines, and
the semiclassical approximation (50) is indicated in dashed lines.
Red and blue lines indicate states of opposite spin. The Fermi
energy EF = 0.89 meV corresponding to the typical experimental
density [43] ρ = 9.3 × 1010 cm−2 is indicated by the dashed hori-
zontal line. The arrows indicate possible ESR transitions (discussed
in Sec. V).

experimental situation reported in [43]. We also take a value for
the g factor in GaAs [50] g = 6κ = 7.2. The experimentally
measured value of αH in experiment corresponds to y = 0.029
at B‖ = 1 T. The exact solution (51) is shown in solid lines
and the semiclassical solution (50) is shown in dashed lines.
The horizontal dashed line indicates the Fermi energy at
experimental density [43] ρ = 9.3 × 1010 cm−2.

The oscillating resistivity Rxx (Bz)
Rxx (Bz=0) is plotted in Fig. 4 for

various values of Bx , with the ratio Bz

Bx
= tan θtilt kept fixed.

The tilt angles θtilt corresponding to the individual traces
are shown on the right side of the figure. The solid line
indicates the oscillations obtained from the exact solution (50),
while the dashed line indicates the semiclassical solution (49).
The semiclassical and exact results can only be distinguished
at the lowest angles θtilt = 3◦,4◦,5◦. The precessing wave
function is illustrated in Fig. 5 for the highest filled Landau
level (n = 9 at Bz = 0.2 T) at the experimental density with
the same band parameters used in Fig. 3. The in-plane

5 6 7 8 9 10
B   (T)z

-1

Rxx
(arb.)

3
4
5
6
8
10
45
90o

o

o

o

o

o

o

o

FIG. 4. The oscillating resistivity Rxx(Bz) (arbitrary units) as a
function of B−1

z , with the ratio Bz

Bx
= tan θtilt kept fixed. The values of

θtilt corresponding to the individual traces are shown on the right of the
figure. The solid lines indicate the oscillations obtained from the exact
solution (51) while the dashed lines indicate the semiclassical solution
(50). The semiclassical and exact results can only be distinguished
for angles θtilt = 3◦,4◦,5◦.
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FIG. 5. Spin precession of a Landau level eigenstate along the
momentum space trajectory due to an in-plane magnetic field Bx cor-
responding to y = 2mαH Bx = 0.116 in a GaAs hole gas, shown for
the highest filled Landau level (n = 9, Bz = 0.2 T) at experimental
density [43] ρ = 9.3 × 1010 cm−2. The spin polarization is indicated
by red arrows, and the effective magnetic field β is indicated by blue
arrows.

magnetic field Bx corresponds to a value y = 2mαH Bx =
0.116. The spin polarization ψ†(θ )σψ(θ ) is indicated by red
arrows and the effective magnetic field β(θ ) is indicated by
blue arrows. The difference between the spin polarization
and the effective magnetic field is given by the geometric
contribution (30) B − β0 = ωẑ corresponding to a rotating
effective magnetic field with winding number W = +2.

D. Rashba interaction in p-type systems

The Hamiltonian in this case is given by

H = π2

2m
+ iα′

R

2
(π3

+σ− − π3
−σ+), (56)

0.05 0.1 0.15 0.2 0.25 0

1
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0 0.50

1
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En (meV)
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zB α~’R

n = 16

n = 12

n = 8

n = 4

FIG. 6. Energies of Landau level states n = 4,8,12,16 in a 2D
GaAs hole gas in the presence of a Rashba interaction, plotted as a

function of the dimensionless constant α̃′
R = αRp3

F

EF
where the Fermi

energy EF = 2 meV (indicated by the dashed horizontal line) cor-
responds to the typical experimental density [2] ρ = 3 × 1011 cm−2.
The left panel shows energies as a function of Bz at α̃′

R = 0 and the
right panel shows energies as a function of α̃′

R at Bz = 0.5 T. The
exact solutions (58) are indicated in solid lines, and the semiclassical
approximation (57) is indicated in dashed lines. Red and blue lines
indicate states of opposite spin.

where α′
R is the Rashba constant for the heterostructure. The

rotating effective magnetic field β(πx,πy) = (α′
Rπ3

‖ sin 3θ, −
α′

Rπ3
‖ cos 3θ,

gμBBz

2 ) has winding number W = 3. The semi-
classical solution is given by (38):

En,± = ω

(
n + 1

2

)
±

[√(
3ω

2
− gμBBz

2

)2

+ (α′
R)2(2eBz)3

(
n + 1

2

)3

− 3ω

2
sgn

(
3ω

2
− gμBBz

2

)]
. (57)

A derivation of the exact solution is presented in Appendix C. The exact energies are given by

En,+ =
⎧⎨
⎩

ω
(
n + 1

2

) + [√(
3ω
2 − gμBBz

2

)2 + (α′
R)2(2eBzνn)3 − 3ω

2

]
, 3ω

2 − gμBBz

2 > 0

ω
(
n + 1

2

) + [√(
3ω
2 − gμBBz

2

)2 + (α′
R)2(2eBzνn+3)3 + 3ω

2

]
, 3ω

2 − gμBBz

2 < 0
(58)

En,− =
⎧⎨
⎩

ω
(
n + 1

2

) − [√(
3ω
2 − gμBBz

2

)2 + (α′
R)2(2eBzνn+3)2 − 3ω

2

]
, 3ω

2 − gμBBz

2 > 0

ω
(
n + 1

2

) − [√(
3ω
2 − gμBBz

2

)2 + (α′
R)2(2eBzνn)2 + 3ω

2

]
, 3ω

2 − gμBBz

2 < 0

where

νn = [n(n − 1)(n − 2)]
1
3 (59)

and the wave functions are given by

ψn,+(θ ) = e−inθ

(
cos

ζνn

2
|+〉 + i sin

ζνn

2
e3iθ |−〉

)
,

ψn,−(θ ) = e−inθ

(
− sin

ζνn+3

2
e−3iθ |+〉 + i cos

ζνn+3

2
|−〉

)
(60)

for 3ω
2 − gμBBz

2 > 0, and

ψn,+(θ ) = e−inθ

(
cos

ζνn+3

2
e−3iθ |+〉 + i sin

ζνn+3

2
|−〉

)
,

ψn,−(θ ) = e−inθ

(
− sin

ζνn

2
|+〉 + i cos

ζνn

2
e3iθ |−〉

)
(61)

for 3ω
2 − gμBBz

2 < 0. Here, the angles ζνn
are given by

tan ζνn
= α′

R(2eBzνn)
3
2

3ω
2 − gμBBz

2

. (62)
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FIG. 7. Spin precession of Landau eigenstates along the momen-
tum space trajectory due to the Rashba interaction shown for the
highest filled Landau level (n = 12) at the experimental density [2]
ρ = 3 × 1011 cm−2. The spin polarization is indicated by red arrows,
and the effective magnetic field β is indicated by blue arrows.

For n � 1 we have νn → n and the exact wave functions
reduce to the semiclassical expressions (36) and (37) with
W = +3, φ = π

2 .
The error in the semiclassical solution is

≈ 9
8n

sin2 ζνn
(En+ − En−). The Landau level energies at

Bz = 0.5 T are plotted in Fig. 6 for n = 4,8,12,16 as a

function of the dimensionless parameter α̃′
R = α′

Rp3
F

EF
where

the Fermi energy EF = 2 meV (indicated by the dashed
horizontal line) corresponds to the experimental density [2]

ρ = 3 × 1011 cm−2. The exact solutions (58) are shown in
solid lines, and the semiclassical solutions (57) are shown in
dashed lines.

The precessing wave functions are illustrated in Fig. 6 for
the highest filled Landau level (n = 12) at the experimental
density with the same parameters used in Fig. 7. The spin
polarization ψ†(θ )σψ(θ ) is indicated by red arrows and the
effective magnetic field β(θ ) is indicated by blue arrows.
The difference between the spin polarization and the effective
magnetic field is given by the geometric contribution (30)
B − β0 = 3ω

2 ẑ corresponding to a rotating effective magnetic
field with winding number W = +3.

E. Dresselhaus interaction in p-type systems

The Hamiltonian in the case of a pure Dresselhaus interac-
tion is given by

H = π2

2m
− gμBBz

2
σz + α′

D

4
[(π2

+π− + π−π2
+)σ−

+ (π+π2
− + π2

−π+)σ+], (63)

where α′
D is the Dresselhaus constant for the heterostruc-

ture. The rotating effective magnetic field β(πx,πy) =
(−α′

Dπ2πy,α
′
Dπ2πx,

gμBBz

2 ) has winding number W = 1. The
semiclassical solution is therefore given by (38):

En,± = ω

(
n + 1

2

)
±

⎡
⎣

√(
ω

2
− gμBBz

2

)2

+ (α′
D)2(2eBz)3

(
n + 1

2

)3

− ω

2
sgn

(
ω

2
− gμBBz

2

)⎤
⎦. (64)

A derivation of the exact solution is presented in Appendix C. The exact energies are given by

En,+ =
⎧⎨
⎩

ω
(
n + 1

2

) + [√(
ω
2 − gμBBz

2

)2 + (α′
D)2(2eBzn)3 − ω

2

]
, ω

2 − gμBBz

2 > 0

ω
(
n + 1

2

) + [√(
ω
2 − gμBBz

2

)2 + (α′
D)2[2eBz(n + 1)]3 + ω

2

]
, ω

2 − gμBBz

2 < 0
(65)

En,− =
⎧⎨
⎩

ω
(
n + 1

2

) − [√(
ω
2 − gμBBz

2

)2 + (α′
D)2(2eBz)2(n + 1)2 − ω

2

]
, ω

2 − gμBBz

2 > 0

ω
(
n + 1

2

) − [√(
ω
2 − gμBBz

2

)2 + (α′
D)2(2eBzn)2 + ω

2

]
, ω

2 − gμBBz

2 < 0

and the wave functions are given by

ψn,+(θ ) = e−inθ

(
cos

ζn

2
|+〉 + sin

ζn

2
eiθ |−〉

)
,

ψn,−(θ ) = e−inθ

(
− sin

ζn+1

2
e−iθ |+〉 + cos

ζn+1

2
|−〉

)
(66)

for ω
2 − gμBBz

2 > 0, and

ψn,+(θ ) = e−inθ

(
cos

ζn+1

2
e−iθ |+〉 + sin

ζn+1

2
|−〉

)
,

ψn,−(θ ) = e−inθ

(
− sin

ζn

2
|+〉 + cos

ζn

2
eiθ |−〉

)
(67)

for ω
2 − gμBBz

2 < 0. Here,

tan ζn = α′
D(2eBzn)

3
2

ω
2 − gμBBz

2

. (68)

For n � 1, the exact wave functions reduce to the semiclassi-
cal expressions (36) and (37) with W = +1, φ = 0.

V. ELECTRON SPIN RESONANCE

In the past, both cyclotron resonance and electron spin
resonance (ESR) have been used to study the band parameters
of 2D semiconductor systems [62–65]. In the absence of
spin-orbit interaction, ESR occurs when the frequency of
the applied in-plane magnetic field coincides with the energy
splitting between Zeeman states belonging to the orbital level,
and therefore simply measures the g factor. In the presence of
spin-orbit coupling, an oscillating in-plane magnetic field may
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TABLE I. ESR matrix elements for transitions between precessing Landau level eigenstates in a spin-orbit field which rotates about the
z axis with winding number W . The matrix element is given in terms of the angle ζ between spin polarization and the z axis, and in units
( gμB |B‖|

2 )2 for electrons and (2eαH Bz|B‖|n)2 for holes. In the case of a static in-plane magnetic field (W = 2), the ESR matrix element depends
on the angle φ − ϕ between the static and oscillating magnetic fields.

Transition |〈β|δH |α〉|2

−Wω

2 − gμBBz

2 > 0

|n,+〉 → |n,−〉 cos4 ζ

2

|n,+〉 → |n + 2W,−〉 sin4 ζ

2|n,+〉 → |n − W,+〉
|n,+〉 → |n + W,+〉 1

4 sin2 ζ

|n,−〉 → |n − W,−〉
|n,−〉 → |n + W,−〉

Electrons
−Wω

2 − gμBBz

2 < 0

|n,+〉 → |n,−〉 sin4 ζ

2

|n,+〉 → |n − 2W,−〉 cos4 ζ

2|n,+〉 → |n + W,+〉
|n,−〉 → |n − W,+〉 1

4 sin2 ζ

|n,−〉 → |n + W,−〉
|n,−〉 → |n − W,−〉

Holes

Wω

2 − gμBBz

2 > 0

|n,+〉 → |n − 2,−〉 cos4 ζ

2 (W �= 2)

|n,+〉 → |n + 2 − 2W,−〉 sin4 ζ

2 (W �= 2)

|n,+〉 → |n − 2,−〉 1 − sin2 ζ

2 [1 + cos 2(φ − ϕ)] (W = 2)
|n,+〉 → |n + 2 − W,+〉
|n,+〉 → |n + W − 2,+〉 1

4 sin2 ζ

|n,−〉 → |n + 2 − W,−〉
|n,−〉 → |n + W − 2,−〉

Wω

2 − gμBBz

2 < 0

|n,+〉 → |n + 2,−〉 sin4 ζ

2 (W �= 2)

|n,+〉 → |n + 2W − 2,−〉 cos4 ζ

2 (W �= 2)

|n,+〉 → |n − 2,−〉 1 − sin2 ζ

2 [1 + cos 2(φ − ϕ)] (W = 2)

|n,+〉 → |n + 2 − W,+〉 1
4 sin2 ζ

|n,+〉 → |n + W − 2,+〉
|n,−〉 → |n + 2 − W,−〉
|n,−〉 → |n + W − 2,−〉

result in transitions between different orbital levels, and we
expect ESR to be observed in the same range of frequencies
as cyclotron resonance.

The ESR probability depends on the angle ζ (34) which
describes mixing between |+〉 and |−〉 states in the precessing
Landau level wave functions. Thus, while magnetic oscilla-
tions offer a sensitive probe of the phase of the eigenvalues of
the matrix phase U (2π ), ESR may provide a complementary
measurement in the sense that it probes the spin structure of
the Landau level eigenstates.

Let us first consider the situation in electron systems. The
probability of transition between different levels n � 1 may be
calculated from the semiclassical wave functions (36) and (37).
An oscillating magnetic field applied in the 2D plane δH ∝
bxσx + byσy generates transitions with probability amplitude

〈n′s ′|bxσx + byσy |ns〉

=
∫

[χ †
s ′(θ )(bxσx + byσy)χs(θ )]ei(n−n′)θ dθ

2π
, (69)

where χs = χns ≈ χn′s since n,n′ are large. There are tran-
sitions within the same orbital level (ψn+ → ψn−), as well
as transitions between different spin states in different orbital
levels (ψn+ → ψn+2W,− for −Wω

2 − gμBBz

2 > 0 and ψn+ →

ψn−2W,− for −Wω
2 − gμBBz

2 < 0). In addition, there exist purely
orbital transitions (ψn+ → ψn±W,+ and ψn− → ψn±W,−). The
transition probabilities are summarized in Table I.

Let us now consider the case for hole systems. The transition
matrix element is given by

−αH 〈n′s ′|b+π2
+σ− + b−σ 2

−σ+|ns〉

= −2eαH Bzn

∫
χ
†
s ′ (θ )[b+e2iθ σ− + b−e−2iθ σ+]

×χs(θ )ei(n′−n)θ dθ

2π
. (70)

We obtain transitions within the same orbital level only in
the case W = 1 [corresponding, e.g., to the (100) Dresselhaus
interaction]. There are transitions between opposite spin states
(ψn+ → ψn−2W+2,−,ψn+ → ψn−2,− for Wω

2 − gμBBz

2 > 0 and
ψn+ → ψn+2W−2,−,ψn+ → ψn+2,− for Wω

2 − gμBBz

2 < 0), as
well as purely orbital transitions (ψn+ → ψn+2−W,+,ψn− →
ψn+W−2,−). These results are summarized in Table I. For the
case W = 2, the probability of transition between opposite
spin states exhibits a dependence on the direction of the
oscillating magnetic field. Let us consider the case when a
static magnetic field B‖ = (Bx,By) is present. The matrix
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element for the transition is

〈ψn−2, − |δH |ψn,+〉 ∝ 1 − sin2 ζ

2
[1 + cos 2(φ − ϕ)], (71)

where φ − ϕ is the angle between the static and oscillating
magnetic field. These transitions are indicated by the vertical
arrows in Fig. 3.

VI. CONCLUSION

While previous studies have explored the problem of Lan-
dau levels in systems with specific spin-orbit interactions via
exact and numerical diagonalization [44–47], our technique
allows for the general mapping between the spin dynamics
of the system and the spectrum: the Landau level problem
becomes equivalent to that of calculating the SU(2) matrix
U (θ ) associated with spin precession around a momentum
space orbit of fixed radius. We have illustrated the power
and accuracy of the semiclassical technique by comparing the
semiclassical and exact results for specific rotating spin-orbit
interactions. We have shown that the semiclassical limit of
the exact expressions admits a physical interpretation in
terms of the shape of the precessing spin trajectories. In the
semiclassical analysis, the spin-dependent correction to the
phase contains a geometric contribution associated with the
out-of-plane tilting of the precessing wave function relative to
the driving spin-orbit field β. The importance of this geometric
contribution in the experimental regime was illustrated for
both n- and p-type systems in Figs. 2, 5, and 7. We note that
our technique may become particularly useful when multiple
spin-orbit interactions are present since standard techniques
may be employed to solve (12) for the spin trajectories,
avoiding the need for the diagonalization of large matrices. We
have shown that magnetic oscillations directly probe the phase
� of the eigenvalues U (2π ), while in the rotating case ESR
measures the polarization of precessing Landau states. When
spin dynamics is controlled by variation of external parameters
such as the external magnetic field and gate voltage, this allows
mapping of spin precession along the classical orbit.

APPENDIX A: CHOICE OF LANDAU LEVEL LABELING

In this Appendix, we present a more detailed derivation
of the semiclassical solutions (36) and (37) and demonstrate
the choice for labeling Landau levels. The semiclassical
formalism for the wave function ψ(θ ) = e−iηnθχ (θ ) satisfies
Eq. (12) for χ (θ ):

− iηω
∂χ

∂θ
= [β(θ,n)σ − ωδ]χ, (A1)

where the examples in this work have the form β(θ,n) =
[β‖ cos(Wθ + φ), β‖ sin(Wθ + φ), βz], W is an integer and
β‖ is implicitly n dependent. Using the unitary transformation
g(θ ) = e− 1

2 iWθσz and χ (θ ) = e− 1
2 iφσzg(θ )χ ′(θ ) we simplify the

interaction term and the equation for χ ′(θ ) [similar to Eq. (29)]:

e
i
2 (Wθ+φ)σz [β(θ )σ ]e− i

2 (Wθ+φ)σz

= β‖σx + βzσz → −iηω
∂χ ′(θ )

∂θ

=
[
β‖σx +

(
βz + 1

2
ηωW

)
σz − ωδ

]
χ ′(θ ). (A2)

We next rotate around the y axis by the angle ζ [Eq. (34)]
where cos ζ = β‖/|B|, sin ζ = (βz + 1

2ηωW )/|B|, and

|B| =
√

β2
‖ + (βz + 1

2ηωW )2 , so that the equation for
χ ′′(θ ) = e

1
2 iζσy χ ′(θ ) becomes

− iηω
∂[χ ′′(θ )]

∂θ
= [σz − ωδ]χ ′′(θ )→χ ′′(θ ) ∼ eiη( 1

ω
|B|σz−δ)θ .

(A3)

This latter form multiplies any θ independent spinor, choosing
the states (1,0), (0,1) we find the solutions

χ+(θ ) = C+eiη( 1
ω
|B|−δ)θ

(
e− 1

2 i(Wθ+φ) cos ζ

2

e
1
2 i(Wθ+φ) sin ζ

2

)
,

χ−(θ ) = C−eiη(− 1
ω
|B|−δ)θ

(
−e− 1

2 i(Wθ+φ) sin ζ

2

e
1
2 i(Wθ+φ) cos ζ

2

)
, (A4)

where the constants C± are θ independent. Periodic boundary
conditions, i.e., uniqueness of wave function, imply integers
m±, hence two eigenvalues δ±, where

η(±|B| − ωδ±) ± 1

2
Wω = m±ω

→ ωδ± = ±
(

|B| + 1

2
ηWω

)
− m±ω (A5)

and exponents with 1
2W → − 1

2W are also integers since the
difference is an integer W . Hence,

χ+(θ ) = C+eim+θ

(
e−iWθ− iφ

2 cos 1
2ζ

e
iφ

2 sin 1
2ζ

)
,

χ−(θ ) = C−eim−θ

(
−e− iφ

2 sin 1
2ζ

eiWθ+ iφ

2 cos 1
2ζ

)
. (A6)

It is interesting to note that while the full Hamiltonian (1) is
not time-reversal invariant, the one-dimensional equation for
spin (A1) is invariant under the time-reversal operation T =
iσyK (where K is complex conjugation). Hence, the solutions
χ±(θ ) are related by this operator so that C− = C∗

+ and
m− = −m+.

The integers m± correspond to relabeling the Landau level
index n and within the semiclassical scheme any choice with
m± � n is acceptable. The energies are then given by

E±
n = ω

(
n + 1

2

)
+ ωδ±

= ω

(
n − m± + 1

2

)
±

(
|B(n)| + 1

2
ηWω

)

→ ω

(
n′ + 1

2

)
±

(
|B(n′ + m±)| + 1

2
ηWω

)
, (A7)

where the relabeling n → n′ = n + m± only affects the
lowest-lying Landau levels which are not accessible in the
semiclassical method. In the semiclassical limit, |B(n′)| ≈
|B(n)|, ζ (n′) ≈ ζ (n) for m± � n, so the energies and wave
functions are unchanged under the relabeling. For the reasons
stated in the text, we have chosen the solutions (36) corre-
sponding to m± = ±W, C± = e± iφ

2 , and (37) corresponding
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to m± = 0, C± = e∓ iφ

2 , which minimize the leading error in
the semiclassical scheme and therefore have best agreement
with the exact solutions presented in Sec. IV.

APPENDIX B: EXACT SPECTRA FOR n-TYPE SYSTEMS

The Landau level spectrum of systems with a pure Rashba
or Dresselhaus interaction may be solved by introducing
creation and annihilation operators

a = π−√|2eBz|
, a† = π+√|2eBz|

(B1)

and diagonalizing the Hamiltonian in the number basis
|n,±〉 = |n〉|±〉 where a†a|n〉 = n|n〉, σz|±〉 = ±|±〉.

1. Rashba interaction

The Hamiltonian is

H = ω

(
a†a+1

2

)
+ iαR

√|2eBz|
2

(aσ+−a†σ−) − gμBBz

2
σz.

(B2)

The Rashba interaction HR ∝ iaσ+ + H.c. couples basis states
|n,−〉 and |n − 1,+〉 for n � 1, with |0,−〉 being an eigenstate
with energy ω

2 + gμBBz

2 . The remaining spectrum may be
obtained by diagonalizing the 2 × 2 Hamiltonian

H →
(

ω
(
n + 1

2

) + gμBBz

2 −iαR

√|2eBz|n
iαR

√|2eBz|n ω
(
n − 1

2

) − gμBBz

2

)
(B3)

in the basis (|n,−〉,|n − 1,+〉) for n � 1, which gives energies

En,± = ωn ±
√(

ω

2
+ gμBBz

2

)2

+ |2eBz|α2
Rn. (B4)

When ω
2 + gμBBz

2 > 0, the energy of the eigenstate |0,−〉
coincides with E0,+; in the opposite situation it coincides with
E0,−. Therefore, the complete spectrum is given by

En,+, n = 0,1,2, . . .
(B5)

En,−, n = 1,2, . . .

for ω
2 + gμBBz

2 > 0, and

En,+, n = 1,2, . . .
(B6)

En,−, n = 0,1,2, . . .

for ω
2 + gμBBz

2 < 0. The eigenstates are given by

ψn+ = cos
ζn

2
|n − 1,+〉 + i sin

ζn

2
|n,−〉,

(B7)

ψn− = − sin
ζn

2
|n − 1,+〉 + i cos

ζn

2
|n,−〉,

where

tan ζn = αR

√|2eBz|n
−ω

2 − gμBBz

2

, (B8)

and n takes the same values as in the expressions (B5) and (B6).

The wave functions ψn,±(θ ) = 〈θ |ψn,±〉 in the θ represen-
tation may be obtained by use of Eq. (3); we obtain

ψn,+(θ ) = einθ

(
cos

ζn

2
e−iθ |+〉 + i sin

ζn

2
|−〉

)
,

ψn,−(θ ) = einθ

(
− sin

ζn

2
e−iθ |+〉 + i cos

ζn

2
|−〉

)
. (B9)

After a shift of index, En− → En+1,−, ψn− → ψn+1,− for
ω
2 + gμBBz

2 > 0 and En+ → En+1,+, ψn+ → ψn+1,+ for ω
2 +

gμBBz

2 < 0 (so that the spectra in both spin series begin
with index n = 0), we obtain the energies (41) and wave
functions (42) and (43) shown in the text.

2. Dresselhaus interaction

The Hamiltonian is

H = ω

(
a†a+1

2

)
+αD

√|2eBz|
2

(aσ− + a†σ+) − gμBBz

2
σz.

(B10)

The Dresselhaus interaction HD ∝ aσ− + H.c. couples basis
states |n,+〉 and |n − 1,−〉 with |0,+〉 being an eigenstate with
energy ω

2 − gμBBz

2 . The remaining spectrum may be obtained
by diagonalizing the 2 × 2 Hamiltonian

H →
(

ω
(
n + 1

2

) − gμBBz

2 αD

√|2eBz|n
αD

√|2eBz|n ω
(
n − 1

2

) + gμBBz

2

)
(B11)

in the basis (|n,+〉,|n − 1,−〉), which gives energies

En,± = ωn ±
√(

ω

2
− gμBBz

2

)2

+ |2eBz|α2
Dn. (B12)

When ω
2 − gμBBz

2 > 0, the energy of the eigenstate |0,+〉
coincides with E0,+; in the opposite situation it coincides with
E0,−. Therefore, the complete spectrum is given by

En,+, n = 0,1,2, . . .
(B13)

En,−, n = 1,2, . . .

for ω
2 − gμBBz

2 > 0, and

En,+, n = 1,2, . . .
(B14)

En,−, n = 0,1,2, . . .

for ω
2 − gμBBz

2 < 0. The eigenstates are given by

ψn+ = cos
ζn

2
|n,+〉 + sin

ζn

2
|n − 1,−〉,

(B15)

ψn− = − sin
ζn

2
|n,+〉 + cos

ζn

2
|n − 1,−〉,

where

tan ζn = αD

√|2eBz|n
ω
2 − gμBBz

2

, (B16)

and n takes the same values as in the expressions (B13)
and (B14). The wave functions ψn,±(θ ) = 〈θ |ψn,±〉 in the θ

235316-13



TOMMY LI, BARUCH HOROVITZ, AND OLEG P. SUSHKOV PHYSICAL REVIEW B 93, 235316 (2016)

representation may be obtained by use of Eq. (3); we obtain

ψn,+(θ ) = einθ

(
cos

ζn

2
|+〉 + sin

ζn

2
e−iθ |−〉

)
,

ψn,−(θ ) = einθ

(
− sin

ζn

2
|+〉 + cos

ζn

2
e−iθ |−〉

)
. (B17)

After a shift of index, En− → En+1,−, ψn− → ψn+1,− for
ω
2 − gμBBz

2 > 0 and En+ → En+1,+, ψn+ → ψn+1,+ for ω
2 −

gμBBz

2 < 0 (so that the spectra in both spin series begin
with index n = 0), we obtain the energies (46) and wave
functions (47) and (48) shown in the text.

APPENDIX C: EXACT SPECTRA FOR p-TYPE SYSTEMS

In the text, three situations are discussed: the case of an
in-plane magnetic field, a pure Rashba interaction, and a pure
Dresselhaus interaction. In the hole case, the creation and
annihilation operators are

a = π+√
2eBz

, a† = π+√
2eBz

(C1)

(note that they are reversed in comparison to the electron case
due to the opposite sign of the electric charge). As in the
electron case we obtain analytical solutions by diagonalizing
the Hamiltonian in the number representation.

1. In-plane magnetic field

The Hamiltonian is

H = ω

(
a†a + 1

2

)
+ eBzαHB‖[eiφ a2σ− + e−iφ(a†)2σ+]

− gμBBz

2
σz, (C2)

where the phase φ is related to the direction of the in-plane
magnetic field via B+ = B‖eiφ . The in-plane field HZ ∝
eiφ a2σ− + H.c. couples basis states |n,+〉 and |n − 2,−〉 with
|0,+〉 and |1,+〉 being eigenstates with energies ω

2 − gμBBz

2

and 3ω
2 − gμBBz

2 , respectively. The remaining spectrum may be
obtained by diagonalizing the 2 × 2 Hamiltonian

H →
(

ω
(
n + 1

2

) − gμBBz

2 2eαH BzB‖e−iφνn

2eαH BzB‖eiφνn ω
(
n − 3

2

) + gμBBz

2

)
, (C3)

where

νn =
√

n(n − 1) (C4)

in the basis (|n,+〉,|n − 2,−〉), which gives energies

En,± = ω

(
n−1

2

)
±

√(
ω−gμBBz

2

)2

+(2eαH BzB‖νn)2.

(C5)

When ω − gμBBz

2 > 0, the energy of the eigenstates |0,+〉
and |1,+〉 coincide with E0,+ and E1,+, respectively; in the
opposite situation they coincide with E0,−,E1,−. Therefore,

the complete spectrum is given by

En,+, n = 0,1,2, . . .
(C6)

En,−, n = 2,3, . . .

for ω − gμBBz

2 > 0, and

En,+, n = 2,3, . . .
(C7)

En,−, n = 0,1,2, . . .

for ω − gμBBz

2 < 0. The eigenstates are given by

ψn+ = cos
ζνn

2
|n,+〉 + sin

ζνn

2
eiφ|n − 2,−〉,

(C8)

ψn− = − sin
ζνn

2
|n,+〉 + cos

ζνn

2
eiφ|n − 2,−〉,

where

tan ζνn
= 2eαH BzB‖νn

ω − gμBBz

2

, (C9)

and n takes the same values as in the expressions (C6) and (C7).
The wave functions ψn,±(θ ) = 〈θ |ψn,±〉 in the θ representation
may be obtained by use of Eq. (3); we obtain

ψn,+(θ ) = e−inθ

(
cos

ζνn

2
|+〉 + sin

ζn

2
e2iθ |−〉

)
,

ψn,−(θ ) = e−inθ

(
− sin

ζn

2
|+〉 + cos

ζn

2
e2iθ |−〉

)
. (C10)

After a shift of index, En− → En+2,−, ψn− → ψn+2,− for
ω − gμBBz

2 > 0 and En+ → En+2,+, ψn+ → ψn+2,+ for ω −
gμBBz

2 < 0 (so that the spectra in both spin series begin
with index n = 0), we obtain the spectrum (51) and wave
functions (53) and (54) shown in the text.

2. Rashba interaction

The Hamiltonian is

H =ω

(
a†a+1

2

)
+ iα′

R(2eBz)
3
2

2
[a3σ− − (a†)3σ+] − gμBBz

2
σz.

(C11)

The Rashba interaction H ′
R ∝ a3σ− couples basis states |n,+〉

and |n − 3,−〉 for n � 3. For n = 0,1,2, the basis states
|n,+〉 are eigenstates with energy ω(n + 1

2 ) − gμBBz

2 . The
remaining spectrum may be obtained by diagonalizing the
2 × 2 Hamiltonian

H →
(

ω
(
n + 1

2

) − gμBBz

2 −iα′
R(2eBzνn)3

iα′
R(2eBzνn)3 ω

(
n − 5

2

) + gμBBz

2 )

)
, (C12)

where

νn = [n(n − 1)(n − 2)]
1
3 (C13)

in the basis (|n,+〉,|n − 3,−〉), giving energies

En,± = ω(n − 2) ±
√(

3ω

2
− gμBBz

2

)2

+ (α′
R)2(2eBzνn)3.

(C14)
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When 3ω
2 − gμBBz

2 > 0, the energies of the eigenstates |n,+〉
for n = 0,1,2 coincide with En,+; in the opposite situation
they coincide with En,−. Therefore, the complete spectrum is
given by

En,+, n = 0,1,2, . . .
(C15)

En,−, n = 3,4,5, . . .

for 3ω
2 − gμBBz

2 > 0 and

En,+, n = 3,4,5, . . .
(C16)

En,−, n = 0,1,2, . . .

for 3ω
2 − gμBBz

2 < 0. The eigenstates are given by

ψn,+ = cos
ζνn

2
|n,+〉 + i sin

ζνn

2
|n − 3,−〉,

(C17)

ψn,− = − sin
ζνn

2
|n,+〉 + i cos

ζνn

2
|n − 3,−〉,

where

tan νn = α′
R(2eBzνn)

3
2

3ω
2 − gμBBz

2

, (C18)

and n takes the same values as in the expressions (C15)
and (C16).

The wave functions in the θ representation are given by
projection of the states (C17) onto the basis (3):

ψn,+(θ ) = e−inθ

(
cos

ζνn

2
|+〉 + i sin

ζνn

2
e3iθ |−〉

)
,

ψn,−(θ ) = e−inθ

(
− sin

ζνn

2
|+〉 + i cos

ζνn

2
e3iθ |−〉

)
. (C19)

After a shift of index, En− → En+2,−, ψn− → ψn+3,− for
3ω
2 − gμBBz

2 > 0 and En,+ → En+2,+, ψn,+ → ψn+3,+ for
3ω
2 − gμBBz

2 < 0, we obtain the energies (58) and wave func-
tions (60) and (61) shown in the text.

3. Dresselhaus interaction

The Hamiltonian is

H = ω

(
a†a + 1

2

)
− gμBBz

2
σz

+ α′
D(2eBz)

3
2

4
{(a2a†+a†a2)σ− + [(a†)2a + a(a†)2]σ−},

(C20)

where α′
D is the Dresselhaus constant for the heterostructure.

The Dresselhaus interaction couples basis states |n,+〉 and

|n − 1,−〉 for n � 1. The state |0,+〉 is an eigenstate with
energy ω

2 − gμBBz

2 . The remaining spectrum is given by
diagonalization of the 2 × 2 Hamiltonian

H →
(

ω
(
n + 1

2

) − gμBBz

2 α′
D(2eBzn)

3
2

α′
D(2eBzn)

3
2 ω

(
n − 1

2

) + gμBBz

2

)
(C21)

in the basis (|n,+〉,|n − 1,−〉). The energies are given by

En+ = ωn ±
√(

ω

2
− gμBBz

2

)2

+ (α′
D)2(2eBzn)3. (C22)

When ω
2 − gμBBz

2 > 0, the energy of the state |0,+〉 coincides
with E0,+. In the opposite situation, it coincides with E0,−.
Thus, the complete energy spectrum consists of

En,+, n = 0,1,2, . . .
(C23)

En,−, n = 1,2, . . .

for ω
2 − gμBBz

2 > 0, and

En,+, n = 1,2, . . .
(C24)

En,−, n = 0,1,2, . . .

for ω
2 − gμBBz

2 < 0. The eigenstates are given by

ψn,+ = cos
ζn

2
|n,+〉 + sin

ζn

2
|n − 1,−〉,

(C25)

ψn,− = − sin
ζn

2
|n,+〉 + cos

ζn

2
|n − 1,−〉,

where

tan ζn = α′
D(2eBzn)

3
2

ω
2 − gμBBz

2

, (C26)

and n takes the same values as in the expressions (C23)
and (C24). The wave functions in the θ representation are
given by projection of the states (C25) onto the basis (3):

ψn,+(θ ) = e−inθ

(
cos

ζn

2
|+〉 + sin

ζn

θ
eiθ |−〉

)
,

ψn,−(θ ) = e−inθ

(
− sin

ζn

2
|+〉 + cos

ζn

2
eiθ |−〉

)
. (C27)

After a shift of index, En− → En+1,−, ψn,− → ψn+1,− for
ω
2 − gμBBz

2 > 0 and En,+ → En+1,+, ψn,+ → ψn+1,+ for ω
2 −

gμBBz

2 < 0, we obtain the energies (58) and wave functions (60)
and (61) shown in the text.
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