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Spin-polarized dynamic transport in tubular two-dimensional electron gases
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The ac conductance of a finite tubular two-dimensional electron gas is studied in the presence of the Rashba
spin-orbit interaction. When the tube is coupled to two reservoirs, that interaction splits the steps in the dc
current, introducing energy ranges with spin-polarized currents. For this setup, we calculate the current-current
correlations (the noise spectrum) and show that the existence of these dc spin-polarized currents can be deduced
from the shot noise. We also find that the Wigner-Smith time delay is almost unaffected by the spin-orbit
interaction. When the tube is coupled to a single reservoir, we calculate the quantum capacitance and the
charge-relaxation resistance, and find that they exhibit singularities near the openings of new channels.
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I. INTRODUCTION

Quite generally, the wavy nature of electrons together with
the ensuing interference effects determine a large variety of
quantum-coherence phenomena in quantum wires and dots.
The electronic spin, being weakly coupled to other degrees
of freedom in bulk materials, becomes an active player in
these small systems [1]. This is due to the enhanced spin-
orbit interaction induced by the Rashba effect [2] that can
be also modified experimentally [3,4]. In multiply-connected
mesoscopic systems, the effect of the spin-orbit interaction
resembles that of an orbital magnetic field [5], paving the
way to possible intriguing interference-induced outcomes [6].
Indeed, there is an on-going vast experimental effort to study
spin-orbit coupling effects in tubular systems, notably carbon
nanotubes [7,8] but also DNA and other long chiral molecules
[9]. However, the spin-orbit interaction in carbon nanotubes
may not be predominantly of the Rashba type [10]. It appears
that core-shell semiconducting devices are more suitable to
explore interference effects resulting from the Rashba spin-
orbit coupling.

Core-shell nanowires comprise a thin layer (shell) sur-
rounding a core in a tubular geometry [11]. While the charge
carriers in these devices can be confined either to the core [12]
or to the shell [13], it is clear that interference effects are more
pronounced in the second case [14]. Here we focus on this
configuration, disregarding the core altogether. The electrical
conductance of a finite-length tubular two-dimensional elec-
tron gas (2DEG) subject to the Rashba spin-orbit interaction
has been analyzed exploiting scattering theory in the context
of the Landauer formula [15,16]. In this paper, we study the
frequency-dependent conductance of such a system, when it is
connected to a tubular lead (or leads) where the electrons move
ballistically. Measurements and calculations of the dynamic
conductance supplement those of dc transport properties:
while the latter yield the transmission of the mesoscopic
system, the former contain in addition information related to
the phases of the scattering matrix. The reason being that the
ac quantities are given in terms of elements of the scattering
matrix, and not only by their absolute values.

*oraentin@bgu.ac.il

In the first part of the paper, Sec. II, we derive the dynamic
conductance G(ω) of a gated tubular 2DEG connected to
a single electronic reservoir by a tubular lead (see Fig. 1)
and study its low-frequency properties. This quantity, often
referred to as admittance, is customarily presented in the form
[17]

G(ω) � −iωC + ω2C2R, (1)

where ω is the frequency of the driving field. The expansion
(1) introduces the “quantum capacitance” C and the charge-
relaxation resistance R, both being topics of active research
(see Sec. II). We present a detailed calculation of those for
a tubular 2DEG, and in particular relate the capacitance to
the Friedel phase and the charge accumulated in the tube. In
the second part of the paper, Sec. III, the tubular 2DEG is
connected to two reservoirs by two ballistic tubular leads, see
Fig. 3. We calculate the various current-correlation functions,
the shot noise and the Wigner-Smith time-delay matrix. In
both Secs. II and III, we first present the analytic expressions
and then exemplify the results by several plots. The paper
is supplemented by three appendices: the first details the
derivation of the reflection matrix for the setup depicted in
Fig. 1, the second discusses the limit where the scattering
system is large enough for the frequency to exceed the level
spacing, and the third gives the details of the calculation of the
scattering matrix for the configuration shown in Fig. 3.

Our calculations are based on the scattering-matrix ap-
proach [18] for noninteracting electrons. Electron-electron
interactions are not taken into account; however, much of
the physics in the Coulomb-blockade regime is believed to
be captured by such models, with an effective Hartree-like
energy [19] (which can be incorporated into the our calculation
quite easily). This simplification allows us to carry out the
analysis analytically. Another major simplification stems from
the geometry of the core-shell systems: in a perfect tube, the
linear Rashba spin-orbit interaction does not mix the transverse
channels. For this reason, the effective magnetic field due to the
spin-orbit coupling is in a sense analogous to that of an orbital
magnetic field, similarly leading to interference phenomena.

Our research was motivated by the quest to detect hallmarks
of the spin-orbit coupling in the ac properties of a mesoscopic
conductor. The results in Sec. II show that the spin cannot

1098-0121/2014/90(24)/245425(13) 245425-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.245425


ROTHSTEIN, HOROVITZ, ENTIN-WOHLMAN, AND AHARONY PHYSICAL REVIEW B 90, 245425 (2014)

gate

reservoir x
0d

y

FIG. 1. (Color online) Tubular mesoscopic RC circuit. An ac
source excites a periodic accumulation of charges on the gate, and the
latter affects the charges on the mesoscopic cylinder (the dark region
confined by the vertical thick lines) and thus creates an ac current
flowing in the cylindrical lead (the light region of the tube) connecting
the conductor to an electronic reservoir. A spin-orbit interaction of
the Rashba type is operative in the mesoscopic cylinder, in the region
−d � x � 0.

be considered as another transport channel since the spin-
orbit interaction mingles the two spin directions and causes
a dependence of the quantization direction on the scattering
energy. We also find there that the universal value of the charge-
relaxation resistance predicted in Ref. [17] arises only when the
transport occurs via the lowest-energy channel and is lost when
higher-energy channels are included; this property, however,
does not necessitate the spin-orbit coupling (though the latter
does modify the results, see the discussion in Sec. II). In a way,
the conclusions drawn in Sec. III are much more rewarding;
in particular they indicate possibilities to induce and detect
spin-polarized currents. The reason is related to the effect of
the Rashba spin-orbit interaction on the transmission. As a
function of the energy of the scattered electron, one of the spin
channels may be blocked, and then the transmitted current is
polarized [15]. This is reflected in the dc conductance, and
also in the shot noise (see Sec. III). We also find that this
polarization can be manipulated by, e.g., a gate voltage. Thus
tubular core-shell systems appear to be interesting candidates
for spintronic devices.

II. QUANTUM CAPACITANCE AND
CHARGE-RELAXATION RESISTANCE

Ever since the experimental verification [20] of the predic-
tion made in Ref. [17] (see also Refs. [21] and [22]) concerning
the universal value of the charge-relaxation resistance, there
has been considerable interest in the low-frequency electrical
properties of mesoscopic conductors. Here we examine those
for a tubular mesoscopic conductor, in which spin-orbit
interaction of the Rashba type is effective.

The system we study is depicted in Fig. 1: a mesoscopic
cylinder, placed along the x̂ direction in the region −d � x �
0, is separated by a delta-function potential from the region x �
−d where the spin-orbit interaction vanishes and the electrons
move ballistically. This potential is characterized by a single
parameter ζ (measured in momentum units; units in which � =
1 are used). When ζ is very large, the interface approaches the
tunnel-junction limit. We assume that on the right (at x � 0)

the cylinder is totally pinched off. Thus the system is described
by the Hamiltonian

H = 1

2m

(
p2

x + p2
y

) + ζ

m
δ(x + d)

+
[
�(−x)�(x + d)

α

2m
(pyσx − pxσy) + H.c.

]
, (2)

where p = (px,py) is the two-dimensional momentum opera-
tor, α is the strength of the spin-orbit interaction (in momentum
units) and σx,y are the Pauli matrices. The coordinate system
is specified in Fig. 1; x is the coordinate along the tube axis,
and y runs along the circumference. Note that the Hermitian
conjugation in the last term of Eq. (2) yields a delta-function
term, −(α/2m)σyδ(x + d). This term is crucial for ensuring
current continuity across the interface at x = −d.

The macroscopic gate in Fig. 1, placed near the conducting
tube, induces an ac potential on the scatterer, U (ω), and
consequently a current I (ω) is flowing between it and the
reservoir, I (ω) = G(ω)U (ω), where G(ω) is the frequency-
dependent conductance of the device. Note that in this
formalism the current is created by the effective potential on the
tube that includes screening effects [23]. The ac conductance
of noninteracting electrons moving through a mesoscopic
conductor can be presented in terms of the scattering matrix
of the latter [17,22]. For the setup displayed in Fig. 1, there is
only a reflection matrix; its derivation is given in Appendix A.
In this geometry, the wave vector along ŷ, denoted q, is fixed
by the periodic boundary condition of this direction,

q = 2πn

L
, with n = 0,±1,±2, . . . , (3)

where L is the circumference of the tube. The wave vector
along the propagation direction x̂ is fixed by the energy E of
the scattered electron. In the ballistic region, it is

k =
√

2mE − q2. (4)

In the mesoscopic conductor where the spin-orbit interaction
is effective, it is expedient to measure the energy from α2/(2m)
(by adding this constant to the Hamiltonian of the scatterer).
One finds that the longitudinal wave vector takes two values:

ku,d =
√

(
√

2mE ± α)2 − q2. (5)

[The + (−) sign belongs to ku (kd).] Note that while ku is always
real (since q2 � 2mE), kd may be purely imaginary and then
one of the waves in the region −d � x � 0 is evanescent
[15,24].

In our tubular geometry, the transverse channels are not
coupled, and the scattering matrix splits into blocks each
describing the scattering matrix for a certain value of q, i.e., for
a certain n. Due to the presence of the spin-orbit coupling spin
is not conserved and therefore those blocks are 4×4 matrices.
The reflection R is hence a 2×2 matrix. We show in Appendix
A that

R(q) = [−1 + F−1(q)], (6)

where the matrix F is too cumbersome to be reproduced here.
It is shown in Appendix A that F can be decomposed into

F(q) = F1(q) + σxFx(q) + σzFz(q), (7)

245425-2



SPIN-POLARIZED DYNAMIC TRANSPORT IN TUBULAR . . . PHYSICAL REVIEW B 90, 245425 (2014)

where the explicit expressions for the components are given in
Eqs. (A9) and (A10). In particular, for q = 0, Fx and Fz vanish,
and Rq=0 is proportional to the unit matrix, i.e., the spin effects
disappear. Indeed, when the energy of the scattered electron
is too low to support a nonzero transverse mode, the motion
becomes effectively one-dimensional and then the spin-orbit
interaction can be eliminated by a gauge transformation [15],
UHU†, with U = exp[−iασyx]. This cancels the α term in
the Hamiltonian; the second boundary condition in Eq. (A6)
acquires then the term ∂xU , which cancels the iασy term there.

The ac conductance in the linear-response regime, G(ω), is
given by

G(ω) = e2

2π

∫ ∞

−∞
dE

f (E) − f (E + ω)

ω

×
∑

q

Tr[(1 − R†
q(E)Rq(E + ω)], (8)

where the trace is carried out in spin space. (It is written
here in terms of the reflection alone; the more general form is
given in Sec. III C.) The Fermi function, f (E) = {exp[(E −
μ)/(kBT )] + 1}−1, describes the distribution of the electrons in
the reservoir, with μ being the chemical potential there; below
we confine our discussion to zero temperature and therefore μ

is equal to the Fermi energy, μ = EF . The universal value
of the charge-relaxation resistance discovered in Ref. [17]
emerges upon comparing the low-frequency expansion of
Eq. (8) [given in Eq. (1)] with the ac conductance,

Ga(ω) = −iωC + ω2C2R + O(ω3), (9)

of a conventional capacitor whose capacitance is equal to
C and which is connected in series to a resistor whose dc
resistance is R. For a single-channel scatterer, the reflection
is just a phase factor, R(E) = exp[iφ(E)]. One then finds
for R the value π/(2e2), half of the quantum unit of the
resistance; it is independent of the scattering properties of
the conductor. The capacitance, on the other hand, is given by
C = (e2/2π )φ′(EF ), where φ′ is the energy derivative of the
reflection phase at the Fermi energy.

The case of the tubular conductor is different from the
one treated in Ref. [17]: first, there are numerous transverse
channels, and second there are the spin effects, rendering
R(q) a unitary matrix (instead of being just a phase factor).
Nonetheless, the capacitance can still be expressed in terms
of phases. Indeed, the eigenvalues of R(q) are exp[iφ1,2]
(for brevity we omit in some of the expressions the explicit
dependence on q),

eiφ1,2 = −
(

1 − 1

λ1,2

)
, (10)

where λ1,2 are the eigenvalues of F, Eq. (7),

λ1.2 = F1 ±
√

F 2
1 − det(F). (11)

In particular, we note that for the lowest transverse channel q =
0, the two eigenvalues are identical, φ1(q = 0) = φ2(q = 0)
(see the discussion in Appendix A). The quantum capacitance

of the tubular 2DEG is given by

C = e2

2π

∑
q

(
∂φ1(E,q)

∂E
+ ∂φ2(E,q)

∂E

) ∣∣∣∣
E=EF

. (12)

On the other hand, the charge-relaxation resistance,

R = e2

4πC2

∑
q

Tr

(
dR†

dE

dR
dE

)
, (13)

involves also the energy-derivatives of the quantization axis,
denoted n̂ in the representation of the reflection matrix in the
form

R = eiφe−iθ n̂·σ , (14)

where σ is the vector of the Pauli matrices and the angles φ1,2,
Eq. (10), are given by φ ± θ . We show in Appendix A [see
Eq. (A12)] that

exp(iφ) =
√

det(F∗)

det(F)
, (15)

the unit vector n̂ (that depends on the energy and consequently
has to be differentiated as well), around which the spin rotates
in spin space because of the spin-orbit coupling is the direction
of the vector (Fx,0,Fz), and

cos θ = |F1|2 + F 2
x + F 2

z√(|F1|2 + F 2
x + F 2

z

)2 − F 2
x − F 2

z

. (16)

Exploiting the form (14) of the reflection matrix, one finds that

Tr

(
dR†

dE

dR
dE

)
=

(
∂φ1

∂E

)2

+
(

∂φ2

∂E

)2

+ 2
∂n̂
∂E

· ∂n̂
∂E

sin2 φ1 − φ2

2

∣∣∣∣
E=EF

. (17)

The appearance of the last term in Eq. (17) is a direct result
of the interference of the two spin directions, corresponding
to the two eigenvalues λ1,2 [see Eqs. (10) and (11)]. Obvi-
ously, the universal value of the charge-relaxation resistance
that is independent of the details of the scatterer is obtained
when the Fermi energy is so low that only the lowest transverse
channel is excited. Then there remains only the q = 0 term in
the sum, for which φ1 = φ2.

The capacitance C may be related to the number, ND, of
displaced electrons around the scatterer (at energy E) [17].
According to the relation derived by Langer and Ambegaokar,
[25] the Friedel sum rule

ND(E) = 1

2iπ
Tr ln[R(E)], (18)

gives ND in terms of the full reflection (see also Ref. [26]).
By exploiting the identity ln det(M) = Tr ln M, where M is an
arbitrary matrix, we find

ND(E) = 1

2iπ
ln

∏
q

ei[φ1(E,q)+φ2(E,q)]

= 1

2π

∑
q

[φ1(E,q) + φ2(E,q)]. (19)
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FIG. 2. (Color online) (Top) Quantum capacitance, Eq. (12).
(Bottom) Charge-relaxation resistance, Eq. (13), as a function of the
Fermi energy (normalized by m, in units of L−2) and ζ = 0.6 (in units
of L−1). The solid (black) curve is for α = 0.1, the smaller-dashed
(red) one is for α = 0.2, and the large-dashed (green) curve is for
α = 0.3 (in units of L−1). In all our figures, d = L.

Comparing Eq. (19) with Eq. (12) shows that

C = e2 dND

dE
, (20)

in agreement with Ref. [17] (see the discussion at the end
of Appendix A). However, ND(E), as well as its energy
derivative, are meaningful only when the scattering phases
are measured outside the system, typically asymptotically
[25,26], whereas we measure our phases relative to x = −d;
this definition may cause the capacitance to attain negative
values (see Appendix A).

The quantum capacitance and the charge-relaxation resis-
tance are plotted in Fig. 2 as a function of the Fermi energy. The
striking aspect of these figures are the sharp extrema in both
the quantum capacitance and the charge-relaxation resistance,
albeit the rather low barrier between the scatterer and the lead
(ζ = 0.6 in the figure). The ones in the capacitance (see the
upper panel in Fig. 2) correspond to the standing waves in the
tube (when detached). An intriguing point is the negativeness
of C near the second step for α = 0.2 (in units of L−1) [27].
The appearance of negative values depends on the choice of
parameters and also on the point along the x̂ axis relative to
which the phase is measured. The latter feature implies that
some charge has been displaced to the range x < −d. Also

note that the vanishing of C leads to formally a diverging
R, yet the measurable quantity [as well as the expansion
parameter in Eq. (1)] is C2R, which is finite when C = 0.
The charge-relaxation resistance itself is a useful object when
it is quantized (below the first step) or nearly quantized (not
too close to other steps).

The resistance for n = 0 (i.e., for q = 0) is constant,
reflecting the universal value of the charge-relaxation resis-
tance discussed above. For finite values of q [i.e., n �= 0,
Eq. (3)], the “base line” of the charge-relaxation resistance
is approximately at R = π/[2(2n + 1)e2], as if comprising
2n + 1 resistors in parallel, of magnitude π/(2e2) each, in
agreement with Büttiker et al. [21] (recall the degeneracy of
q). The spin-orbit coupling removes the degeneracy of the
longitudinal wave function, and causes (when strong enough,
see the large-dashed curve in Fig. 2) the splitting of the second
peak of R.

We note in passing that the measured capacitance is
different from C as defined in Eq. (12) [17,28]. There the
capacitance is deduced from the current response dI at
the lead (at −∞) to the voltage dV relative to the potential
on the probed region dU , i.e., dI = G(ω)(dV − dU ) =
−iωC(dV − dU ) + O(ω2). On the other hand, the measured
capacitance Cm is defined by dI = −iωCm(dV − dV ′) where
dV ′ is the potential change on a gate near the probed region.
The potential change dV ′ generates locally a change in the
charge such that dI = −iωCe(dU − dV ′), where Ce is known
as the geometric capacitance. Eliminating dU one finds that
1/Cm = 1/Ce + 1/C [17,28].

The low-frequency expansion leading to Eq. (12) for the
capacitance and Eq. (13) for the charge-relaxation resistance
has to be handled cautiously when the scattering tube is
long enough for the frequency to exceed the level spacing,
md2 � ω−1. The reason is that then the reflection matrix
elements [as a function of E, E + ω, see Eq. (8)] are wildly
oscillating. We examine this case in Appendix B (ignoring the
spin-orbit interaction for simplicity); in particular we show
that the charge-relaxation resistance of the lowest transverse
mode is 2π/(2e2), in agreement with Refs. [29].

III. THE NOISE SPECTRUM

A. General expressions

Here we study the current-correlation functions, i.e., the
noise spectrum of a tubular 2DEG subject to the Rashba
interaction, see Fig. 3. The tube is placed along the x̂ direction
and we include in the analysis the orbital effect of a magnetic
field along x̂, which might add versatility to the device. The
magnetic field is specified by a flux 
 penetrating the cylinder.
The Rashba-affected tubular 2DEG, confined to the region
|x| � d, is separated from the cylindrical leads by two tunnel
junctions characterized by ζL and ζR for the left and the right
barrier, respectively (in units of momentum). These leads are
coupled each to an electronic reservoir, where the electronic
distribution is

fγ (E) = [eβ(E−μγ ) + 1]−1, γ = L or R, (21)

with μγ being the chemical potential in reservoir γ . We assume
that the reservoirs are not spin polarized, and therefore the
Fermi functions do not depend on the spin index.

245425-4



SPIN-POLARIZED DYNAMIC TRANSPORT IN TUBULAR . . . PHYSICAL REVIEW B 90, 245425 (2014)

y x

dd
reservoir reservoir
left right

FIG. 3. (Color online) A tubular mesoscopic conductor [the dark
(green) part of the cylinder] is connected to two reservoirs via leads
(the light parts of the tube) where the electrons move ballistically. The
region where spin-orbit interaction is active (|x| < d) is separated
from the leads by two potential barriers (thick vertical lines). A
magnetic field along x̂ adds to the versatility of the device.

The Hamiltonian describing this setup is

H = 1

2m

(
p2

x + p2
y

) + ζL

m
δ(x + d) + ζR

m
δ(x − d)

+ α

2m
[�(d − |x|)(pyσx − pxσy) + H.c.]. (22)

Once again we measure the energy E in the region |x| � d

with respect to α2/(2m) [see comment after Eq. (4)]. The
presence of a magnetic field along x̂ modifies the y component
of the momentum, py → py − Ay , where Ay = e
/(cL) is
the vector potential in units of inverse length. As a result, the
wave vector q along ŷ given in Eq. (3) is modified as well,
q → q − ϕ, where ϕ ≡ Ay . Below, we keep the notation q for
the transversal momentum, bearing in mind the shift caused by
the magnetic flux. The current-current correlations (i.e., the
noise spectrum) are expressed in terms of the scattering matrix
of the scatterer, i.e., the |x| � d region [18]. This matrix,
pertaining to the Hamiltonian (22), is derived in Appendix
C.

Within the scattering formalism, the time-dependent op-
erator of the current leaving lead χ , Îχ (t) is [18] (χ = L

or R)

Îχ (t) = e

2π

∑
σ̃

∫ ∞

−∞
dE

∫ ∞

−∞
dE′ei(E−E′)t

×
∑
γ,γ ′

∑
σ,σ ′

∑
q

[Aγσ ;γ ′σ ′(χσ̃ ,E,E′)â†
γ,σ (E)âγ ′σ ′(E′)].

(23)

The summation over the spin index σ̃ indicates that Eq. (23)
pertains to the total electric current (as opposed to the spin-
resolved one [15]). The indices γ,σ (γ ′,σ ′) and the argument
E (E′) specify a scattering state of energy E (E′) excited by an
electron of spin polarization σ (σ ′) incoming from lead γ (γ ′)
with γ,γ ′ = L or R [15]. The fermionic operators â†

γ,σ (E) and
âγ,σ (E) create and annihilate an electron in the corresponding
scattering state. These operators are normalized such that

〈â†
γ σ (E)âγ ′σ ′(E′)〉 = δγ γ ′δσσ ′δ(E − E′)fγ (E). (24)

The matrix A is given in terms of the scattering matrix S [18].
In the tubular geometry considered here, the transverse modes
are not coupled, and therefore the scattering matrix splits
into blocks of 4×4 matrices for each value of the transverse
momentum q [see Eq. (C6); we omit the argument q from A
for brevity]. For each value of q, the elements of the (4×4)

matrix A are given by

Aγσ ;γ ′σ ′(χσ̃ ,E,E′)

= δγ γ ′δσσ ′δχγ δσ σ̃ − S∗
χσ̃ ;γ σ (E)Sχσ̃ ;γ ′σ ′(E′), (25)

where S is derived in Appendix C [see in particular Eq. (C6)].
The dc current through the scatterer is readily obtained by

averaging Eq. (23) using Eq. (24). This leads to the celebrated
Landauer formula [30] for the net current in terms of the
transmission:

I ≡ 〈ÎL〉 = −〈ÎR〉

= e

2π

∫ ∞

−∞
dE[fL(E) − fR(E)]T (E), (26)

where the transmission T is

T (E) =
∑

q

Tq(E) =
∑

q

Tr[T†
LR,q(E)TLR,q(E)]. (27)

Here the trace is carried out in spin space; the (2×2) matrix
TLR (as well as the other matrices comprising the q-dependent
scattering matrix) is given in Eq. (C7).

As usual, we present the current correlations in the
frequency domain, by defining [30]

Kχχ ′ (ω) =
∫ ∞

−∞
dteiωt 〈δÎχ (t)δÎχ ′(0)〉, (28)

with δÎχ (t) = Îχ (t) − 〈Îχ 〉.
Upon exploiting the relations (23) and (24), we find [18]

Kχχ ′(ω) = e2

2π

∫ ∞

−∞
dE

∑
γ γ ′

fγ (E)[1 − fγ ′(E + ω)]

×
∑

q

∑
σσ ′σ̃

Aγσ ;γ ′σ ′(χσ̃ ,E,E + ω)

× Aγ ′σ ′;γ σ (χ ′σ̃ ,E + ω,E). (29)

Inspecting Eq. (29), one can distinguish between two types of
correlations, the auto-correlations, for which χ = χ ′, and the
cross correlations, where χ �= χ ′. For instance, when the setup
is not biased, i.e., μL = μR , the auto-correlation spectrum is
given by

KRR(ω) = e2

2π

∫ ∞

−∞
dEf (E)[1 − f (E + ω)]

×
∑

q

Tr[2 − R†
RR(E)RRR(E + ω)

− R†
RR(E + ω)RRR(E)], (30)

where the trace is carried out in spin space, and the (2×2)
matrix R is given in Eq. (C7). Likewise, the cross-correlation
function for μL = μR is

KLR(ω) = e2

2π

∫ ∞

−∞
dEf (E)[1 − f (E + ω)]

×
∑

q

Tr[T†
LR(E)TLR(E + ω)

+ T†
LR(E + ω)TLR(E)]. (31)
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When the junction is symmetric, i.e., the two tunnel junctions
on both its sides are of identical strength ζL = ζR then
KLL(ω) = KRR(ω) and KLR(ω) = KRL(ω). Otherwise, the
expressions for KLL and KRL are obtained from Eqs. (30)
and (31) upon interchanging L with R.

The correlations of the physical quantities are combina-
tions of the auto- and cross-correlations. For instance, since
the operator of the net current through the scatterer, Î ,
reads

Î (t) = [ÎL(t) − ÎR(t)]/2, (32)

it is evident from Eq. (29) that the correlation of the net
current is given by [KLL + KRR − KLR − KRL]/4. Like-
wise, the charge correlation is [31] [KLL + KRR + KLR +
KRL]/4. In particular, in the zero-frequency limit, the net-
current correlation is the shot noise, which is given by [see
Eq. (29)]

Ks = e2

2π

∫ ∞

−∞
dE

∑
γ=L,R

(fγ (E)[1 − fγ (E)]Tr[T (E)2]

+ fγ (E)[1 − fγ (E)]Tr{T (E)[1 − T (E)]}), (33)

where γ is the lead opposite to the γ lead. This result extends
the celebrated expression first derived in Ref. [32] to include
the effects of spin-orbit interaction.

B. Results

In the absence of the spin-orbit interaction, the magnetic
field, and the potential barriers at x = ±d (see Fig. 3), the
transmission (27) of the tubular 2DEG exhibits the well-known
phenomenon of perfect conductance quantization, whose
hallmark is the staircase structure of the conductance (or
the transmission) as a function of the Fermi energy (i.e., the
gate voltage). Indeed, in this quintessential configuration, the
transmission amplitude matrices TLR and TRL [see Eq. (C7)]
are both given by a unit matrix times exp(2id

√
2mE − q2),

opening a new transverse channel whenever E is large enough
for an additional q to yield a real k [see Eq. (4)]. Note
though, that as opposed to a flat two-dimensional wire, here
the quantization steps appear for n = 2, 6, 10, etc. [15]
[see Eq. (3)] reflecting the helical degeneracy of the q

values for the cylinder. Since the conductor is perfectly
transmitting, the shot noise Eq. (33) vanishes; the auto- and
cross-correlations do not. For instance, at zero temperature and
for an unbiased system, μL = μR = EF , Eqs. (30) and (31)
yield

π

2e2
KRR(ω) = ω, per channel,

π

2e2
KLR(ω) =

∫ EF

EF −ω

dE
∑

q

cos[2d(
√

2mE − q2

−
√

2m(E + ω) − q2)]. (34)

The fact that the current correlations do not vanish for an
unbiased conductor at zero temperature reflects the relation
between the noise spectrum and the absorption/emission
capacity of the scattering system [33,34]. These results are
exemplified in Fig. 4 by the solid (blue) curves.
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FIG. 4. (Color online) (Top) Transmission as a function of the
Fermi energy. (Middle) Shot noise (33) as a function of the bias
voltage eV = μL − μR . (Bottom) Auto-correlation (30) as a function
of the external frequency (both the energy and the frequency are
normalized by the mass m and are measured in units of L−2). The thin
solid (blue) line in the top panel corresponds to the perfect conductor,
in the absence of the spin-orbit coupling, the dotted (black) curve
is for the case α = 0.9π and no potential barriers at the two ends,
ζL = ζR = 0, and the dashed (red) curve is for ζL = ζR = 1.2 and
α = 0, in units of L−1. In the bottom panel EF = 80 in units of
mL−2; the solid (blue) and the dotted (black) curves there overlap.

The spin-orbit interaction lifts partially the helical degen-
eracy. As mentioned, one of the longitudinal wave vectors, kd,
can become imaginary. This happens when 2mE < (q + α)2;
in that case the corresponding wave is evanescent and does not
contribute to the transmission [recall that energy is measured
from α2/(2m)]. As a result, the conductance steps are split [15]
(save the first one, which, as explained above, is insensitive to
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FIG. 5. (Color online) The shot noise as a function of bias
voltage, for a completely open cylinder, ζL = ζR = 0. The solid
(blue) curve is for α = 0.2π , the dotted (black) one is for 0.4π ,
the small-dashed (red) line is for 0.6π , and the large-dashed (brown)
line is for 0.8π ; all in units of L−1.

the spin-orbit interaction). Moreover, since the transmission is
not perfect anymore, the shot noise (as a function of the bias) is
finite. As can be seen in the mid panel of Fig. 4, the shot noise
begins at small bias voltages V with a nearly horizontal slope,
corresponding to a fully transmitting channel. It then develops
a steeper slope, reflecting the partially transmitting channel
(cf. the top panel). The fact that each stair (save the very first
one) is split into two means that in the low-energy part of the
stair only one of the spinors is propagating (the other belongs
to the evanescent wave); in other words, the electric current is
spin polarized [15].

The effect of the spin-orbit coupling on the shot noise is
better appreciated from Fig. 5, where it is plotted (as a function
of the bias voltage) for various values of the coupling strength
α (in units of inverse length). Grossly speaking, the staircase
structure is gradually lost as the spin-orbit coupling increases.
Perhaps the main feature of the shot noise brought about by the
spin-orbit interaction is the division between regions in which
it is roughly horizontal and where it is approximately linearly
increasing. The first pertains to the case in which both spinors
are transmitted, while the second describes the situation where
one of the spinors is blocked. In this way, the shot noise may
serve as an indicator for a spin-polarized current.

It is also of interest to explore the effect of a gate voltage
applied uniformly on the scatterer. To this end we add to the
Hamiltonian (22) the term U�(d − |x|). The gate potential
U , which acts as a potential well/wall modifies the width of
the conductance stairs. As mentioned above, the spin-orbit
interaction splits each conductance/transmission stair into
two; the width (in energy) of the split step is q2 − 2α|q| �
2m(EF − U ) � q2 + 2α|q|, for 2mU � 2α|q|. This behavior
is depicted in Fig. 6. The width may then be controlled by the
gate voltage; in view of the comments above (in conjunction
with Fig. 4), we conclude that by varying the gate voltage one
may manipulate the spin polarization of the electric current.

Another tool to lift the helical degeneracy is to apply a
magnetic flux along the tube axis. In the absence of the flux,
the scattering states for n and for −n are degenerate [n is the
quantum number of the transverse modes, see Eq. (3)]. The
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FIG. 6. (Color online) The transmission as a function of the
Fermi energy. The various curves are for different values of the
gate voltage U (see text). In increasing order of the thickness,
the thinnest (blue) curve is for U = 0, then, mU = −(0.7π )2/2
(black), (0.7π )2/2 (red), −(0.7π )2 (green), and the thickest mU =
(0.7π )2 (brown), in units of L−2. Here, α = 0.7π , and ζL = ζR = 0.

magnetic flux removes this degeneracy, as illustrated in Fig. 7,
turning the fourfold degeneracy into a twofold one. The reason
being the modification of the transverse wave vector q by the
relative flux ϕ, q → q − ϕ, as discussed after Eq. (22). Thus,
for example, the threshold for the opening of a new step in the
transmission is 2mEF > min(q − ϕ)2, where “min” stands for
the minimal value of (q − ϕ)2 for all q values. Under the action
of both a magnetic field and the spin-orbit coupling, the entire
fourfold degeneracy is removed, as shown by the thick, very
wavy (brown) curve in Fig. 7. It follows that manipulating
the gate voltage and the magnetic field in a Rashba scatterer
enables a good control on both the helicity and the spin degrees
of freedom of the transmitted electrons.

We now turn to discuss the current-correlation functions
[see, e.g., Eqs. (30) and (31)]. These are known to be rather
sensitive to asymmetries of the setup, in our case, to a possible
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FIG. 7. (Color online) The transmission as a function of the
Fermi energy. The largest-dashed and the dotted curves (blue and
black) are the same as in Fig. 4 and are reproduced here as a reference.
The solid and small-dashed lines (brown and purple) exhibit the effect
of a magnetic flux (we use ϕ = 0.2π ). The staircase one (purple) is
for α = 0, the wavy one (brown) is for α = 0.9π in units of L−1.
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FIG. 8. (Color online) The autocorrelation noise KRR(ω) as a
function of frequency (normalized by the mass m and measured in
units of L−2), for α = 3.1π (in units of L−1). The solid (black)
reference curve corresponds to ζL = ζR = 0, the dotted (green) line
is for ζL = 1.2 and ζR = 19.2, while the dashed (red) line is for
ζL = 19.2 and ζR = 1.2, all in units of L−1.

difference between ζL and ζR [31,35]. Figure 8 displays the
autocorrelation KRR , in the absence of the spin-orbit coupling
and a bias voltage. There is a distinct disparity between KRR

pertaining to the case where the left tunnel junction is almost
pinched off (the wavy line) and when it is almost open (the
lower thick line; the thin line is for ζL = ζR = 0, and serves
as a reference) where the noise is considerably lower. The
autocorrelation decreases as ζR increases and vanishes when
this tunnel junction is pinched off.

C. The Wigner-Smith time-delay matrix

We conclude this section with a discussion of the Wigner-
Smith time-delay matrix of our core-shell structure. Smith [36]
introduced the time-delay Hermitian matrix

τγ γ ′(EF ) =
∑

q

Tr

(
1

2πi
S†

γ γ ′(E)
dSγ γ ′ (E)

dE

) ∣∣∣∣
EF

, (35)

whose diagonal matrix elements measure the average lifetime
of a scattering event (the collision lifetime in the terminology
of Ref. [36]). Here, γ,γ ′ = L,R, and S is the scattering
matrix pertaining to a certain value of q (see Appendix C).
Explicitly, τγ γ ′ (EF ) is the time delay experienced by an
electron at the Fermi energy incident from the γ lead into
the γ ′ one (including in our case all transverse channels
and the spin polarizations) because of the scatterer. This
quantity is intimately related to the quantum capacitance

studied in the previous section. Indeed, by expanding the
dynamic conductance [17] Gγ γ ′ (ω),

Gγ γ ′ (ω) = e2

2π

∫
dE

ω
[f (E) − f (E + ω)]

×
∑

q

Tr[δγ γ ′ − S†
γ γ ′(E)Sγ γ ′ (E + ω)], (36)

to first order in the external frequency ω, one finds that at zero
temperature,

Gγ γ ′ (ω) � Gγ γ ′(0) − ie2ωτγγ ′ . (37)

For γ �= γ ′, e.g., γ = L and γ ′ = R, the first term on the
right-hand side of Eq. (37) is the transmission given in Eq. (27)
times the quantum unit of the conductance [e2/(2π ) for a single
spin, with � = 1], i.e., the Landauer conductance. The simple
separation of the ac conductance into real and imaginary parts
which appears in Eq. (37) led to the identification of the quality
factor of the mesoscopic conductor as roughly the absolute
value of the ratio ImG/ReG [37]. (Reference [37] replaces the
denominator by the number of channels up to the Fermi energy.
This replacement is apparently valid when the transmission is
close to resonance.) The quality factor measures the capability
of a circuit to store energy; its enhanced value in carbon nan-
otubes is a subject of current interest [38]. Our analysis below
is carried out for an “average delay time”, τWS, defined by

τWS = 2π

T
∑
γ,γ ′

τγ γ ′ . (38)

Note that τWS is measured in units of �.
As explained by Smith [36], close to resonance, the delay

time is related to the (inverse of the) resonance width. In
fact, when the scattering matrix can be described by a simple
Breit-Wigner resonance of width �, τWS as defined in Eq. (38)
equals �−1. In an attempt to investigate this feature in a
core-shell system, we confine ourselves in this subsection
to high tunnel barriers such that the transmission consists
of narrow peaks. (For simplicity, a symmetric setup where
ζL = ζR ≡ ζ is considered.) Figures 9 and 10 display (in the
upper panels) the transmission as a function of the Fermi
energy around one of the (relatively) sharp peaks (the higher
is ζ , the sharper are the transmission peaks), and in the lower
panels the corresponding Wigner-Smith time, Eq. (38). As
can be expected, the average delay time does vary with the
Fermi energy, though the transmission is close to resonance.
An example is shown in Fig. 9. The full (black) curves in
the two panels there are the transmission and τWS in the absence
of the spin-orbit coupling. It is rather straightforward to find
that for α = 0,

T =
∑

q

{
1 + 4

ζ 2

k2
[k cos(2kd) + ζ sin(2kd)]2

}−1

, (39)

where q and k are given by Eqs. (3) and (4), respectively, and

τWS = 1

T
∑

q

8d

v(EF )

1 + ζ

k2d
+ 2ζ 2

k2 + 2ζ 2

k4d
sin(2kd)[ζ sin(2kd) + k cos(2kd)]

1 + 4 ζ 2

k2 [k cos(2kd) + ζ sin(2kd)]2
, (40)
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FIG. 9. (Color online) The upper panel displays the transmission
as a function of the Fermi energy (in unites of L−2) and the lower
panel shows the Wigner-Smith time (in units of �), again as a function
of the Fermi energy. Here, d = 1 (in units of L), φ = 0, and ζ = 30
(in units of L−1). The solid (black) curve is for α = 0, the dotted
one (blue) is for α = 0.2π , and the dashed line (red) curve is for
α = 0.1π .

where v(EF ) ≡ k/m is the velocity of the electron at the Fermi
energy. For instance, when ζ = 0, Eq. (40) gives for τWS the
value 4 × 2d/v(EF ), which is the time required for an electron
to traverse ballistically a tube of length 2d, times the spin and
helical degeneracies.

Figure 9 displays the Wigner-Smith time for a rather sharp
transmission peak. The curves are for different values of the
spin-orbit coupling; it is seen that while this coupling has a
substantial effect on the transmission by removing the spin
degeneracy (splitting the peak into two), it hardly changes
τWS. The same feature can be observed in Fig. 10; there we
have added the effect of the magnetic flux, which lifts the
helical degeneracy. Nonetheless, the Wigner-Smith time is
almost unchanged. Comparing the two Figures, 9 and 10, it is
observed that (not surprisingly) τWS increases significantly as
the transmission peak becomes narrower.

IV. CONCLUSIONS

We have investigated several frequency-dependent proper-
ties of a tubular two-dimensional electron gas, subject to the
Rashba spin-orbit interaction. In this quintessential geometry,
the spin-orbit coupling does not mix the transverse channels,
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FIG. 10. (Color online) The upper panel is the transmission and
the lower panel is τWS, both as a function of the Fermi energy.
Here, d = 1 (in units of L) and ζ = 9.7 (in units of L−1. The solid
(black) curve is for α = φ = 0, the small-dashed (purple) curve is
for α = 0.1π and φ = 0, the large-dashed curve (red) is for α = 0
and φ = 0.05π , and the dotted (green) one is for α = 0.1π and
φ = 0.05π .

and therefore the effect of the interaction can be related to
interference.

We have found that when the tubular two-dimensional
electron gas is coupled to a single reservoir the quantum
capacitance C and the charge-relaxation resistance R are
sensitive probes of the charging state of the scatterer. In
particular, peaks in C correspond to resonance states (standing
waves of the isolated segment), while peaks in R correspond
to minima of C [as expected from Eqs. (12) and (13)] in
between the peaks of C or at zeros of C (see Figs. 2); an
exception is the q = 0 case whereR attains the universal value
π/(2e2).

For the tubular system with two reservoirs, we find that the
interference related to the spin-orbit coupling is in particular
manifested in the upper panel of Fig. 10, where we see
the similar manner by which both an orbital magnetic field
(directed along the axis of the tube) and the spin-orbit coupling
(that can also be assigned an effective magnetic field; the
interference effect of the spin-orbit interaction is mainly due
to the effective field associated with the transverse direction,
i.e., along the x̂ direction) affect the transmission. The other
remarkable effect of the spin-orbit coupling is its capability to
block one of the propagating spinors in each transverse channel
[15,24]. In the case of the transmission, this is translated into
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splitting of the stairs (as a function of the Fermi energy, and for
not too strong α). In the case of the shot noise, this blocking
modifies the shot noise as a function of the bias voltage. Since
when one of the propagating spinors is blocked the current
is spin-polarized, measurements of the conductance and the
shot noise can indicate the range of Fermi energies where this
polarization takes place.
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APPENDIX A: THE REFLECTION MATRIX (FIG. 1)

The scattering matrix for the geometry of Fig. 1 is reduced to
a reflection matrix; for instance, in the absence of the spin-orbit
interaction and the delta-function potential at the interface
x = −d it is proportional to the unit matrix (suitably choosing
the origin). In order to derive it, we write for the wave function
the ansatz

ϕb(x,y) =
∑

q

eiqy(eikx |cin〉 + e−ikx |cout〉), (A1)

in the ballistic region x � −d, and

ϕt (x,y) =
∑

q

eiqy(vue
ikuxσz |cu〉 + vde

ikdxσz |cd〉), (A2)

in the mesoscopic conductor, in the region −d � x � 0. Here,
σz is the third Pauli matrix. Equation (A2) is valid for positive
values of q, Eq. (3); a similar calculation holds for the negative
values. The matrices vu and vd are

vu =
[

vu −v−1
u

−v−1
u vu

]
, vd =

[
vd v−1

d
v−1

d vd

]
, (A3)

with

vu,d =
(

q + iku,d

q − iku,d

) 1
4

. (A4)

The various coefficients in Eqs. (A1) and (A2) are obtained by
imposing boundary conditions. Explicitly,

vu|cu〉 + vd|cd〉 = 0, (A5)

to ensure the vanishing of ϕt at x = 0, and

ϕb(−d,y) = ϕt (−d,y),(
∂ϕb(x,y)

∂x
− ∂ϕt (x,y)

∂x

) ∣∣∣
x=−d

= 2ζϕb(−d,y) + iασyϕb(−d,y), (A6)

for continuity at x = −d. Using Eqs. (A5) and (A6) to
eliminate the vectors |cu,d〉 results in the relation

e−ikd |cin〉 = F(e−ikd |cin〉 + eikd |cout〉), (A7)

F = F1 + σxFx + σzFz, (A8)

with

F1 = 1

2
+ iζ

k
+ i

�
{kd cos(dkd) sin(dku)[2α

√
2mE + 4mE]

+ ku sin(dkd) cos(dku)[4mE − 2α
√

2mE]},

Fx = 2iq
√

2mE

�
(kd cos(dkd) sin(dku)

− ku sin(dkd) cos(dku)),

Fz = iq

�
{2[k2 + α2] sin(dkd) sin(dku)

+ 2kdku[cos(dkd) cos(dku) − 1]}. (A9)

Here we have defined

� = 4k{[2mE + q2 − α2] sin (dku) sin (dkd)

+ kdku[1 − cos(dkd) cos(dku)]}. (A10)

Finally, we note that in the first transverse channel, i.e., for
q = 0, Fx and Fz vanish, while

F1 = 1

2
+ iζ

k
+ i (ku + kd) cot

[
1
2 (ku + kd) d

]
4k

. (A11)

Note that in order to obtain Eq. (6) from Eq. (A7), we have
shifted the origin by −d, i.e., exp(ikd)|cout〉 → |cout〉 and
exp(−ikd)|cin〉 → |cin〉.

As mentioned in the text, kd can be either real or imaginary.
However, in both cases Fx and Fz are purely imaginary,
and F1 + F ∗

1 = 1. These properties ensure that the reflection
matrix R(q) [see Eq. (6)] is unitary. [The condition F + F† = 1
(for each value of q) is dictated by the optical theorem.] A
straightforward algebra gives that for each value of q the
reflection matrix is given by

R =
√

[F ∗
1 ]2 − F 2

x − F 2
z

F 2
1 − F 2

x − F 2
z

|F1|2 + F 2
x + F 2

z − σ · (Fx,0,Fz)√(|F1|2 + F 2
x + F 2

z

)2 − F 2
x − F 2

z

,

(A12)

which leads to the form (14) used in Sec. II.
We have chosen R to define the reflection at x = −d. This

choice, which is not so benign, reflects our expectation that
the displacement of the electrons [see Eq. (18)] is confined
to the range −d < x < 0 so that the quantum capacitance,
Eq. (20), will be positive. We have seen, however, that very
close to the singular steps this may not be the case. Negative
capacitance has been given various interpretations [39], while
here it reflects the spatial range of charge response. Ideally,
one could measure the whole wire and then the capacitance
would be always positive and Eq. (20) would become
exact.

We end this appendix by listing the explicit analytical
expressions for the scattering phases for the case where the
spin-orbit coupling vanishes. Then the eigenvalues of the
matrix F, Eq. (11), and the corresponding phases Eq. (10),
are

λ1 = λ2 = 1

2
+ i

ζ

k
+ i

2
cot k, (A13)
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and

eiφ1 = eiφ2 = e2ikd ζ (1 − e−2idk) + ik

ζ (1 − e2idk) − ik
, (A14)

with

∂φ1

∂E
= m

k

{
2d + −4ζ sin(kd)[(2dζ − 1) sin(kd) + 2kd cos(kd)]

4ζ 2 sin(2kd) + 2ζk sin(2kd) + k2

}
. (A15)

These expressions are useful for examining various limits of the more general result. For instance, for q = 0, they yield
R = π/e2, in agreement with the result of Büttiker [21].

APPENDIX B: LONG CYLINDERS

When the cylinder is long such that the frequency exceeds the level spacing, md2 � ω−1, a straightforward expansion of the
ac conductance is not possible since the integrand in Eq. (8) is rapidly oscillating. For simplicity, we consider the case where the
spin-orbit interact vanishes. Then the ac conductance, at zero temperature, is

G(ω) = e2

πω

∫ EF

EF −ω

dE
∑

q

[
1 − ζ (1 − e2idk) − ik

ζ (1 − e−2idk) + ik

ζ (1 − e−2idkω ) + ikω

ζ (1 − e2idkω ) − ikω

]
, (B1)

with kω ≡
√

2m(E + ω) − q2. The averaging over the rapid oscillations is carried out by integrating in the complex plane over
the contour of the unit circle,

πω

e2
G(ω) =

∮
dz1

∮
dz2

∫ EF

EF −ω

dE
∑

q

[
1 − ζ (1 − ez1 ) − ik

ζ (1 − e−z1 ) + ik

ζ (1 − e−z2 ) + ikω

ζ (1 − ez2 ) − ikω

]

=
∫ EF

EF −ω

dE
∑

q

[
1 − (ζ − ik)

(ζ + ik)

(ζ + ikω)

(ζ − ikω)

]
. (B2)

The low-frequency expansion of the ac conductance now
yields

C = e2

2π

∑
q

4mζ

kμ

(
k2
μ + ζ 2

) (B3)

and

R = π

e2

∑
q

[ 4mζ

kμ(k2
μ+ζ 2)

]2

[ ∑
q

4mζ

kμ(k2
μ+ζ 2)

]2 , (B4)

where kμ =
√

2mEF − q2 (recall that at zero temperature μ =
EF ). For the lowest transverse mode q = 0, we findR = π/e2,
in agreement with the result of Ref. [29]. As noted after Eq. (7),
the effect of the spin-orbit interaction can be gauged out for
a single-channel scatterer and therefore the result R = π/e2

holds also when the scattered electrons undergo a spin-orbit
interaction.

APPENDIX C: THE SCATTERING MATRIX OF A TUBE

In order to derive the scattering matrix for the geometry
depicted in Fig. 3, we need to consider the wave functions in
the scattering region |x| < d and in the two leads, the regions
x � d and x � −d. In the region |x| < d, we choose the same
one as in Appendix A, Eqs. (A2)–(A4). For the wave functions

in the leads, we write the ansatz

ϕL(x,y) =
∑

q

eiqy[eik(x+d)|cL,in〉 + e−ik(x+d)|cL,out〉],

x < −d,

ϕR(x,y) =
∑

q

eiqy[e−ik(x−d)|cR,in〉 + eik(x−d)|cR,out〉],

x > d, (C1)

where |cγ,in〉 (|cγ,out〉) is the incoming (outgoing) spinor in lead
γ . Note that the direction of the incoming spinors is toward
the central region, i.e., the scatterer.

As before, the transverse channels are not coupled and
therefore we may solve the scattering matrix for a certain q.
We use the boundary conditions to eliminate the spinors in the
scattering region |x| � d. The first set of boundary conditions
follows from the continuity of the wave functions at x = d,

vue
ikudσz |cu〉 + vde

ikddσz |cd〉 = |cR,in〉 + |cR,out〉, (C2)

and the continuity of the wave functions at x = −d,

vue
−ikudσz |cu〉 + vde

−ikddσz |cd〉 = |cL,in〉 + |cL,out〉, (C3)

where ku,d is given in Eq. (5). The second set of boundary
conditions comes from the continuity of the current, at x = d,

ik(|cL,in〉 − |cL,out〉) + (2ζ + iασy)(|cL,in〉 + |cL,out〉)
= ikuvuσze

−ikudσz |cu〉 + ikdvdσze
−ikddσz |cd〉, (C4)
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and at x = −d,

ik(|cR,in〉 − |cR,out〉) + (2ζ − iασy)(|cR,in〉 + |cR,out〉)
= −ikuvuσze

ikudσz |cu〉 − ikdvdσze
ikddσz |cd〉. (C5)

Once the spinors |cu〉 and |cd〉 are eliminated, we find[|cL,out〉
|cR,out〉

]
= S

[|cL,in〉
|cR,in〉

]
, S =

[
RLL TRL

TLR RRR

]
, (C6)

where

RLL = −1 + 2ik(G̃ − F̃G−1F)−1F̃G−1,

TRL = 2ik(G̃ − F̃G−1F)−1,

RRR = −1 + 2ik(G − FG̃−1F̃)−1FG̃−1,

TLR = 2ik(G − FG̃−1F̃)−1. (C7)

Here we have introduced the definitions

F = 2ζL + iασy − ik − ikuvuσze
−ikuσzdB−1

u

− ikdvdσze
−ikdσzdB−1

d ,

F̃ = 2ζR − iασy − ik − ikuvuσze
ikuσzdB−1

u Ad

− ikdvdσze
ikdσzdB−1

d Au,

G = −ikuvuσze
−ikuσzdB−1

u Ad − ikdvdσze
−ikdσzdB−1

d Au,

G̃ = −ikuvuσze
ikuσzdB−1

u − ikdvdσze
ikdσzdB−1

d , (C8)

with

Al = vle
−2iklσzdv−1

l , Bl = vle
−iklσzd − Al′vle

iklσzd , (C9)

where l = u or d, and l �= l’.
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and D. C. Glattli, Science 313, 499 (2006).
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