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Nanoscopic interferometer model for spin resonance in current noise
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We study a model for the observed phenomenon of electron spin resonance (ESR) at the Zeeman frequency as
seen by a scanning tunneling microscope (STM) via its current noise. The model for this ESR-STM phenomenon
allows the STM current to flow in two arms of a nanoscopic interferometer, one arm has direct tunneling from
the tip to the substrate while the second arm has tunneling through two spin states. We evaluate analytically the
noise spectrum for nonpolarized leads, as relevant to the experimental setup. We show that spin-orbit interactions
allow for an interference of two tunneling paths resulting in a resonance effect.
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I. INTRODUCTION

The control and detection of single spins is of considerable
recent interest. A particularly interesting method of detecting
a single spin on a surface is possible by a scanning tunneling
microscope (STM).1 The technique has been initiated and
developed by Manassen and various collaborators.1–4 It is
based on monitoring the noise, i.e., the STM current-current
correlations, and observing a signal at the expected Larmor
frequency, a signal that is sharp even at room temperature. The
Larmor frequency is also seen in an electron spin resonance
(ESR) experiment with many spins; in contrast, the ESR-STM
method observes a single spin and furthermore, the system is
static, no oscillating field is applied as in ESR. The observed
frequency is found to vary linearly with the applied magnetic
field, confirming that the STM has detected an isolated spin
on the surface. This phenomenon was first demonstrated on
oxidized Si(111) surface2,3 and then on Fe atoms4 on Si(111)
as well as on a variety of organic molecules on a graphite
surface5 and on Au(111) surfaces.6–8 Recent extensions have
resolved two resonance peaks on an oxidized Si(111) 7 × 7
surface corresponding to site specific g factors9,10 as well as
to observation of hyperfine coupling.1 We further note that
the spatial dependence of the signal shows a nonmonotonic
contour plot, i.e., the signal is elongated and is maximal at
∼1 nm on either side of a minimum point.2,3

The theoretical understanding of the ESR-STM effect is
not settled.1 The emergence of a finite frequency in a steady
state stationary situation is a nontrivial phenomenon. An
obvious mechanism for coupling the charge current to the
spin precession is spin-orbit coupling.11 It was shown that an
ESR signal is present in the noise with spin-orbit coupling
when the leads are polarized, either for a strong Coulomb
interaction12–14 or for the noninteracting case,13 and even in
linear response.15 However, the experimental data1 involves a
small field of ∼200 G corresponding to a Larmor frequency
of ∼500 MHz, i.e., ∼10−7 relative to a lead’s bandwidth.
It was found in these spin-orbit models12–14 that the signal
vanishes when the lead polarization vanishes, or when the lead
and dot polarization are parallel, as for a uniform magnetic
field. It was argued that an effective spin polarization is
realized as a fluctuation effect either for a small number
of electrons that pass the localized spin in one cycle16 or
due to 1/f magnetic noise of the tunneling current.17 It was
further shown that spin-orbit coupling in an asymmetric dot

can yield an oscillating electric dipole, possibly affecting the
STM current.18

In the present paper we follow a recently proposed model
that allows for an ESR-STM phenomena with nonpolarized
leads.19 The model assumes an additional direct tunneling
between the tip and the substrate in parallel to tunneling
via the dot’s states, i.e., a nanoscopic interferometer. The
numerical study19 shows that the interference of the direct
current and that via the spin has an ESR signal in the noise,
a signal that increases with the direct tunneling. This model
is motivated by studies of quantum dots with spin orbit20 and
by STM studies of a two-impurity Kondo system that shows
a significant direct coupling between the tip and substrate
states.21 Similar models including an Aharonov-Bohm phase
have been studied.22–25 The nanoscopic interferometer model
is consistent with the unusual nonmonotonic contour plot,2,3

i.e., the signal is maximized when the STM tip is not directly on
the spin center but slightly away, so as to maximize an overlap
with a surface state of the substrate. In the present work we
consider nonpolarized leads, as relevant to the experimental
setup, and evaluate the noise analytically in the stationary
system, in accordance with the numerical results for this
case. The analytic results clarify the physical processes of the
resonance phenomenon and allow us to discuss the ESR-STM
effect for a broad range of parameters. As detailed in the
conclusion section, the present work allows for a full analysis
of the parameters of the experiment and for predictions on the
signal intensity as a function of various parameters.

The paper is organized as follows. In Sec. II we introduce
the Hamiltonian of the system and present the results for direct
tunneling: effective action, the current, and the current noise
power spectrum. Section III contains the effective action of
the dot and the expression for the current flow through the dot.
Section IV reflects our principal result: the resonance part of
the current spectral density. The results are illustrated by Figs. 1
and 2. Finally our conclusions are contained in Sec. V. The
Appendices A, B, and C give various details of the calculations.

II. HAMILTONIAN

The Hamiltonian of the system describes direct tunneling
through the dot between left (L) and right (R) leads as well as
L-R tunneling via the dot states,

H = HL + HR + HD + HW + HT , (1)
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where the lead Hamiltonians are Hl = ∑
l,k,σ εl,kc

†
l,k,σ cl,k,σ ,

l = L,R, σ = ± is the spin, and k are the continuum states.
The dot Hamiltonian is HD = ∑

σ εσ d†
σ dσ with εσ = ε0 +

σH , ε0 is the mean position of the dot levels, and H is
the applied magnetic field that includes the g factor and the
Bohr magneton. We assume that the dispersions εl,k of the
lead electrons are spin independent, justified by the small
ratio ∼10−7 of the Larmor frequency and a typical electron
bandwidth.

A general spin-orbit coupling involves unitary matrices that
can be parameterized19 by two angles φ,θ . The angle φ appears
in the Hamiltonian for the direct tunneling

HW = W
∑
k,σ

eiσφc
†
L,k,σ cR,k,σ + H.c. (2)

The spin dependent form in eiσφ is required by time reversal.
The angle θ appears in the tunneling via the dot as a spin
rotation in the R lead, while the L lead is diagonal in spin

HT = t
∑
k,σ

[c†L,k,σ dσ + c
†
R,k,σ Uσ,σ ′dσ ′] + H.c., (3)

where

U =
(

cos(θ/2) sin(θ/2)

sin(−θ/2) cos(θ/2)

)
. (4)

We note that special cases of this parametrization have been
used in related models.13,22,23

To calculate the current and the noise, we use the Keldysh
formalism26,27 and include in the action a quantum source field
α̂ that couples to the total current. The source term has the form
α̂ = 1

2ασx where σx is a Pauli matrix in the rotated Keldysh
space. The total action is Stot = ST + SD + SW , where ST

corresponds to HT , i.e., tunneling via the dot

ST = −t

∫
dt{c†L,σ (0)(1 − α̂/2)dσ

+ c
†
R,σ (0)(1 + α̂/2)Uσ,σ ′dσ ′ + H.c.} (5)

and SD is the action of the dot

SD =
∫

dtd†G−1
0 d . (6)

G0 is the Green’s function (GF) of the noninteracting dot in
the rotated Keldysh representation that has the form

G0 =
(

GR
0 GK

0

0 GA
0

)
, (7)

with retarded (R), advanced (A), and Keldysh (K) indices as
superscripts. The current via the dot δST /δα is chosen as a
symmetric combination of the current from the left lead to
the dot JL→d and that from the dot to the right lead Jd→R .
In general a linear combination of these currents is needed,
depending on various capacitances.28 We expect that the
resonance effect is dominated by single occupancy of the dot
and the latter two currents are equal. Indeed we check below
that our results for the resonance term do not depend on which
linear combination is used. Furthermore, the numerical study19

used JL→d for the noise evaluation with results consistent with
our analytic ones.

Here and below the dot electron operator d becomes a
vector in spin space (and Keldysh space). The GF G

R,A,K
0 are

diagonal in spin space and in terms of a Fourier energy variable
ε are given by

GR
0,σ (ε) = 1

ε − ε0 − σH + iδ

GA
0,σ (ε) = 1

ε − ε0 − σH − iδ
(8)

GK
0,σ (ε) = −2πi tanh

(
ε

2T

)
δ(ε − ε0 − σH )

with the limit δ = +0.
The part of the action SW which contains the leads and the

direct LR tunneling is

SW =
∫

dt
∑
k,k′

c
†
kσ g−1

kk′σ ck′σ

g−1
kk′σ = g−1

kσ δkk′ − W [eiφσ Akk′ρ+(1 + α̂) (9)

+ e−iφσ Akk′ρ−(1 − α̂)] .

Here ckσ , ρ± = (ρx ± iρy)/2 are vectors and Pauli matrices,
respectively, in LR (left-right) space, the GFs of the leads g−1

kσ

are diagonal in LR space, and Akk′ = 1 present a constant
matrix in momentum k,k′ space. Fermion operators and
GF as well the quantum source field α̂ = ασx acts in the
rotated Keldysh space. The voltage V between the leads is
assumed small relative to the bandwidths, hence the density
of states NR,NL are taken as constants. The GF gkσ has
the structure of Eq. (7) and its momentum integrated forms
ḡ

R,A,K
l = ∑

k g
R,A,K
l,k /(2πNl) are

ḡR = 1

2πNl

∑
k

1

ε − εl,k + iδ
= −1

2
i

ḡA = 1

2πNl

∑
k

1

ε − εl,k − iδ
= +1

2
i (10)

ḡK
R,L(ε) = −ifR,L(ε),

where V is the voltage difference between the LR leads and
fR,L(ε) = tanh ε∓V/2

2T
.

To cope with scattering of electrons due to the tunneling
we shift the operators ckσ so as to cancel the linear coupling
to dσ in Eq. (5). This adds a term of the form d†Q(α)d to
the dot action and then the effective action separates into
two independent parts Stot = SW + Sdot. The total generating
functional Ztot(α), as a function of the source field, is therefore
factorized into Ztot = ZWZdot.

We consider now the SW part of the effective action.
Inverting g−1 by using blockwise matrix inversion we obtain

gLLkk′ = gLkδkk′ + gLkxLD−1
L gLk′

(11)
gRRkk′ = gRkδkk′ + gRkxRD−1

R gRk′ .

Here DL,R = 1 − 4xḡL,R(1 ± α̂)ḡR,L(1 ∓ α̂), xL,R =
2πNR,LW 2(1 ± α̂)ḡR,L(1 ∓ α̂), and the coupling parameter

x = π2NLNRW 2. (12)

The electron transport and noise calculations involve only the
integrated GF of Eq. (10).
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Direct integration over electron operators cl,k,σ yields
ZW = det[g−1] = exp[Tr ln g−1]. The direct current JW and
related noise power are defined as derivatives with respect to
the source field (taking α = 0 after derivatives is implied)

JW (t) = δ ln ZW

δα(t)
= δTr ln(g−1)

δα(t)
(13)

SW = δ2 ln ZW

δα(t)δα(t ′)
. (14)

We obtain the textbook results28 for noise and transport
current through a contact with transmission probability22 TB =
4x/(1 + x)2 and reflection coefficient RB = 1 − TB (details in
Appendix A); the conductance is then 2e2

h
TB .

III. EFFECTIVE ACTION

The effective action of the dot includes the Q(α) term
from the integration over the lead fermions. It is expressed
(in Keldysh space) in terms of various GFs ḡll′ as listed
in Eq. (A1) and in terms of the noninteracting dot GF
Eq. (7) as

Sdot =
∫

dtd†G−1d (15)

G−1 = G−1
0 − Q(α)

Q(α) = 
L

(
1 − α̂

2

)
ĝLL

(
1 + α̂

2

)

+
R

(
1 + α̂

2

)
ĝRR

(
1 − α̂

2

)

+ 2
√

x
L
R

[(
1 + α̂

2

)
M†ĝRL

(
1 + α̂

2

)

+
(

1 − α̂

2

)
ĝLRM

(
1 − α̂

2

)]
. (16)

The matrix M is M = eiφτzU = Iν + i�n�τ where ν =
cos θ cos φ, �n = (sin φ sin θ/2, cos φ sin θ/2, sin φ cos θ/2)
and τi are Pauli matrices in spin space. Here we introduce
the tunneling widths: 
L,R = 2πNL,Rt2. Taking α = 0 and
inverting G−1 we find the GFs of the dot interacting with the
leads (see Appendix A). As we find below, the resonance con-
tribution to the noise is related to terms that involve the
matrices M,M† [or C(ε,ε′) in Eq. (C6)]. We find that the
result for the resonance term does not depend on which
combination of currents JL→d and Jd→R [determining the
source terms α in Eq. (16)] are used. We checked this
statement by using different definitions for the total current,
i.e., taking α = 0 in various terms of Eq. (16).

Integrating out the dot fermions d with the action (15)
we arrive at the generating functional Zdot(α) = det G−1 =
exp[Tr ln G−1] which depends on the vertex function Q(α).
Similar to Eq. (13) the current through the dot is

Jd (t) = δ ln Zd

δα(t)
= −Tr

[
G

δQ(α)

δα(t)

]
. (17)

Performing calculations for the case of equal tunneling widths

L = 
R (see Appendix B) we obtain the current: Jdot =

e(Jd1 + Jd2 + Jd3) where

Jd1 = 
̄(1 − 2TB)
∑

σ

∫
dε

2π
ImGR

σ (ε)(−)
ε (18)

Jd2 = −2ν
̄
√

RBTB

∑
σ

∫
dε

2π
ReGR

σ (ε)(−)
ε (19)

Jd3 = TB
̄2
∫

dε

2π
Tr [GR(ε)(�n�τ )GA(ε)(�n�τ )](−)

ε . (20)

Here 
̄ = (
L + 
R)/(2(1 + x)) and (∓)
ε = fL(ε) ∓ fR(ε).

The trace in the last equation (20) is

Tr [· · ·] =
∑

σ

[
− sin2 φ cos2 θ/2


̄
ImGR

σ (ε)

+ sin2(θ/2)GR
σ GA

−σ

]
, (21)

which presents two different scattering processes. The first
term with sin2 φ appears also for an Aharonov-Bohm phase
and for θ = 0 the corresponding current coincides with that
in Ref. 22; this term does not depend on the sign of phase
φ maintaining the relation G(φ) = G(−φ) for conductance in
closed system (two-terminal setup).

We note that for θ = 0 the two spin states decouple and a
resonance phenomena at the Larmor frequency is not possible.
There are still interference effects due to the phase φ, though
these are unrelated to the resonance. The second term of
Eq. (21) describes the spin orbit effect and reflects tunneling
transitions accompanied by spin flips. The phase θ is therefore
controlling the ESR effect.

IV. CURRENT SPECTRAL DENSITY

The current noise power Sd is given by formula (14) in
which ZW is replaced by Zdot. The total noise function can be
written as a sum of two terms Sd (t,t ′) = Sd1(t,t ′) + Sd2(t,t ′)

Sd1(t,t ′) = −Tr

[
G

δ2Q

δα(t)δα(t ′)

]
(22)

Sd2(t,t ′) = −Tr

[
G

δQ

δα(t)
G

δQ

δα(t ′)

]
. (23)

We calculate the current spectral density to lowest order in W

for these terms that contain a resonance contribution at Larmor
frequency. Details of the derivation are given in Appendix C.
We write the frequency dependent noise Sd1(ω) and Sd2(ω) as
an expansion in W ∼ √

x:

Sd1(ω) = S0(ω) + √
xS1(ω) + xS(2)(ω)

(24)
Sd2(ω) = S0(ω) + √

xS1(ω) + xS2(ω).

The spin flip transport which is responsible for the resonance
occurs due to the spin-orbit interacting vertices. This effect
takes place at least in the terms linear in x (S(2),S2) which
are presented below (all other contributions to the noise power
are given explicitly in Appendix C). The first term depends
weakly on frequency

S(2)(ω) = 3e2
̄2

4(1 + x)2

∫
dε

2π
Tr (GR(ε)�n�τGA(ε)�n�τ )

× [(−)
ε−ω + 

(−)
ε+ω](−)

ε . (25)
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The second term S2 contains three contributions

S2(ω) = SRR+AA
2 + SRA

2 + SK
2 , (26)

where

SRR+AA
2 = e2
̄2

4(1 + x)2

∫
dε

2π
(n̂RR + n̂AA)(+)

ε−ω/2
(+)
ε+ω/2

SRA
2 = e2
̄2

∫
dε

2π
(n̂RA + n̂AR)

×
[

1 − fL(ε − ω/2)fR(ε + ω/2) + (ω → −ω)

1 + x

]

SK
2 = e2
̄2

√
RB

∫
dε

2π
Tr {m̂

(+)
ε−ω/2

(+)
ε+ω/2

+ 
̄

1 + x
[ImGR(ε − ω/2)�n�τGR(ε + ω/2)�n�τ

×GA(ε + ω/2)(−)
ε−ω/2

(−)
ε+ω/2 + (ω → −ω)]}

here

n̂MN = Tr [GM (ε − ω/2)�n�τGN (ε + ω/2)�n�τ ]

m̂ = ImGR(ε − ω/2)�n�τ ImGR(ε + ω/2)�n�τ ,

where M,N = R(A).
The resonance behavior at ω = 2H that we find is related

to S2(ω). We note first, as is easy to check, that the total
noise power (at ω → 0) Sd → 0 in each order in W if T > V

and T → 0. This observation serves as additional test for our
calculations.

Separating the resonance contributions in the expression for
S2(ω) yields at the principal result of our work: Ssing

2 = Sr
2 + Ss

2
where

Sr
2 = 2e2
̄2 sin2 θ/2

∑
σ

∫
dε

2π
ImGR

σ (ε − ω/2)

× ImGR
−σ (ε + ω/2)F (ε,ω); (27)

F (ε,ω) = 1 − 1

4
[3(fL(ε − ω/2)fR(ε + ω/2) + (ω → −ω))

− (fR(ε − ω/2)fR(ε + ω/2) + (R → L))] (28)

Ss
2 = e2
̄3 sin2 θ/2

∑
σ

∫
dε

2π

[
ImGR

σ (ε − ω/2)

× ImGR
−σ (ε + ω/2)ImGR

σ (ε + ω/2)

×
(−)
ε−ω/2

(−)
ε+ω/2 + (ω → −ω)

]
(29)

There is a potentially singular contribution that also in S(2)

S(2)sing = 3e2
̄2

4
sin2 θ/2

∑
σ

∫
dε

2π
ImGR

σ (ε)ImGR
−σ (ε)

× [(−)
ε−ω + 

(−)
ε+ω](−)

ε . (30)

However, it can be seen that this term depends weakly on
frequency and therefore it does not have a resonance at the
Larmor frequency.

In the experiments1 the parameters satisfy V � T � 2H .
Therefore, if the mean level position ε0 is in between the
two chemical potentials − 1

2V < ε0 < 1
2V and is not too close

to ± 1
2V , i.e., |ε0 ± 1

2V | � H , then we have F (ε,ω) 	 3 and

1 0.5 0.5 1
Ε0
V

1

2

3
F

FIG. 1. (Color online) Dependence of the noise on the mean level
position ε0, the function F (ε0) in Eq. (28) neglecting ω,H terms
(i.e., valid for |ε0 ± 1

2 V | � H ). The voltage and temperature ratio is
V

T
= 40.

ε±ω/2 	 2. We show in particular the function F (ε0) of
Eq. (28), neglecting ω and H terms, in Fig. 1.

Taking F (ε,ω) 	 3 and −
ε±ω/2 	 2 and using Eq. (A12)

the integrals are simply evaluated:

Sr
2 	 3πe2 sin2 1

2θ

2π

∑
σ


̄3

(ω/2 + σH )2 + 
̄2
(31)

Ss
2 	 πe2
̄5 sin2 1

2θ

2π (H 2 + 
̄2)

∑
σ

[(
1
2ω + σH

)2 + 3
̄2 − 1
2σωH

]
[(

1
2ω + σH

)2 + 
̄2
]
(
̄2 + ω2)

.

(32)

In standard units the 2π in the denominators are replaced by
h. Thus the last equations (31) and (32) show the resonance
behavior of the noise power at ω = ±2H .

In Fig. 2 we plot the noise power S3(ω) = Sr
2 + Ss

2, Eqs. (31)
and (32), normalized by Sb = π

2h
e2H sin2 1

2θ as a function of
frequency. For a sharp resonance, as seen experimentally1 
̄ 

2H since 
̄ determines the resonance width. Therefore the
ratio Ss

2/S
r
2 ≈ 
̄2/H 2 
 1 is small and Sr

2 with the Lorenzian
shape dominates. In the wide range where F = 3 (Fig. 1) we

1.5 2. 2.5
Ω

H

0.05

0.1

S3
Sb

FIG. 2. (Color online) The current spectral power S3(ω) which is a
sum of two resonance contributions (31) and (32) showing resonance
peaks at ω = ±2H . The width parameter is 
̄/H = 0.02.
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have therefore for the signal amplitude at resonance

Ssignal = e2

h
3π
̄x sin2 1

2
θ. (33)

We note also that at x � 1 where 
̄x → 
 another term causes
a cancellation of this one (Appendix C) and the signal vanishes
at large x. We expect then that the signal is maximal at x ≈ 1,
in accordance with numerical data.19

V. CONCLUSION

We have considered a general spin-orbit scattering mecha-
nism in a setup of a nanoscopic interferometer and have shown
that the interference of the two transmission paths leads to
a resonance contribution to the current correlation spectral
density at the Larmor frequency. In particular we find that
the effect takes place in the absence of lead polarizations,
consistent with ESR-STM experiments. Our model also
accounts for several unusual features of the data: (i) A sharp
resonance even at high temperatures T � H , (ii) insensitivity
to the details of the spin defect, i.e., to the positions of its
levels between the tip and substrate chemical potentials, (iii)
contour plots2,3 showing that the signal is maximal at ∼1 nm
from a center, hence a significant direct coupling W bypassing
the spin can be achieved.

Here we have neglected the Coulomb interaction U between
charges on the dot. However, for the experimentally interesting
case of a large applied voltage V , the Coulomb repulsion
is expected to satisfy U � eV. The levels therefore remain
between the two chemical potentials and we expect that the
resonance part of the noise is weakly affected by U . A
similar conclusion was reached for the case with polarized
leads.13

The limit U → ∞ for a temperature or voltage higher than
the Kondo temperature can be estimated by replacing the dot
GF by29 GR

0,σ (ε) → (1 − 〈n−σ 〉)GR
0,σ (ε) where the average

occupancy 〈nσ 〉 is determined self-consistently by multiplying
the right hand side of Eq. (A16) by (1 − 〈n−σ 〉), hence
〈nσ 〉 = − 1

2 (1 − 〈n−σ 〉)[ 1
2fL(ε0) + 1

2fR(ε0) − 1]. We find that
for equal occupancies of the two spin states 〈nσ 〉 interpolates
between 1

2 at ε0 
 1
2V to zero at ε0 � 1

2V , as expected. In
the important range of |ε0| < 1

2V − T (see Fig. 1) we obtain
〈nσ 〉 = 
R

2
R+
L
, i.e., 〈nσ 〉 = 1

3 in the symmetric case. With
this estimate, the resonance term involving a product of two
dot GFs has a factor ( 
R+
L

2
R+
L
)2. We expect therefore that

Coulomb interactions on the dot reduce the resonance term
by up to a factor between 1 and 1

4 , e.g., 4
9 in the symmetric

case.
We proceed to estimate the spin-orbit coupling. We consider

first doped Si, the substrate with which most of the ESR-STM
data were taken. A Rashba spin-orbit coupling was measured30

as ᾱ = 0.55 · 10−12 eV cm. This coupling is proportional to the
external electric field that is estimated31 as 3 × 106 V/m. In the
STM experiment the tip voltage of 1–2 V at a distance of ∼1 nm
from the substrate produces a field of ≈109 V/m. Therefore
the spin-orbit coupling is enhanced to ᾱ ∼ 10−9 eV cm. We
consider next the STM Tungsten (W) tip, that turns out to have
a stronger ᾱ. Data32 on clean W(110) and on one monolayer H
on W(110) show a spin-orbit splitting of 0.5 eV at wave vector

k ≈ 0.3 Å
−1

. Further data33 on W(110) shows a spin-orbit
splitting of ∼0.2 eV, increasing to 0.5 eV at 0.5 monolayers of
Li, reflecting an enhancement of the W spin orbit by the electric
field induced by the Li coverage.33 We infer that ᾱ ≈ 10−8

eV cm on the Tungsten tip, a value that is likely to be enhanced
by the strong tip-substrate electric field.

We next estimate the spin-flip angle θ by extending
Bardeen’s formula34,35 for the spin-diagonal tunneling t sin 1

2θ

to include spin-orbit coupling. The spin-orbit term reduces to
a similar surface overlap, except for the absence of a gradient
term. The ratio of the two couplings is then tan 1

2θ = 2m

h̄2 ᾱξ

where m is the electron mass and ξ is the scale for wavefunction
variation parallel to the substrate,35 i.e., of the order of the tip
size ∼1 nm. Hence tan 1

2θ ≈ 1, and possibly larger due to the
tip-substrate electric field. We expect that lowering the voltage,
or replacing the tip by a metal with weaker spin-orbit coupling
will reduce the resonance intensity.

Our key result Eq. (33) shows that the signal amplitude
is Ssignal ∼ t2W 2. The signal should vanish at W = 0 on
general grounds,19 yet the W 2 form is unexpected. Some of
our other results can be obtained for small t,W by simple
estimates: The resonance linewidth follows from a golden rule

 = 2πt2N (0); the DC current via the dot Jd = 2e
/h̄ for
eV � 2H,T [Eq. (18) is the dominant term] corresponds to
a transition rate 
/h̄ from either reservoir to the dot, hence
Jd = 2e
/h̄ given the dot’s two states. The direct transport of
L → R is also a golden rule 
W = 2πW 2NL(0) times the final
number of states NR(0) eV, hence JW = 2e2

h
4xV (for x 
 1)

while the corresponding background noise is a classical shot
noise SW = 2eJW , Eq. (A9). The noise of the dot current
is, however, much reduced from that of a shot noise since
S0 ≈ 1

4eJd , Eq. (C4).
To analyze the experimental data we first estimate the

relevant parameters. The resonance linewidth is ∼1 MHz =

/2π = t2N (0)/h̄ (for x 
 1). Assuming a metallic N (0) ∼
1/(5 eV) yields tN (0) ≈ 10−5. Considering next the DC
current 0.1–1 nA at ∼1 V: The dot current for x 
 1
Jd = 2e
/h̄ ≈ 10−12A is too small, hence the DC current
is dominated by the direct coupling W with JW = 2e2

h
4xV ,

hence WN (0) ≈ 10−3 and W � t . The background noise
due to the dot current is S0 ≈ e2
/h̄ while that from W is
SW = 2e2

h
8x eV, hence S0

SW
≈ t2

W 2 /[8N (0) eV] 
 1, i.e., the
background noise is dominated by SW .

We note that the background noise is not measured in
the experiment since the modulation technique1 measures
the derivative of the noise spectra. Furthermore, the signal
intensity is under study36 as is highly sensitive to uncertainties
in the feedback and impedance matching circuits. We find that
the signal to background intensity for x 
 1 is Ssignal/SW =
3π
16 sin2 1

2θ 

eV , i.e., of the order of 10−9–10−8. In conclusion,

our model presents an analytic solution to a long standing
puzzle, paving the way for more controlled single spin
detection via ESR-STM.
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APPENDIX A: DIRECT CURRENT AND NOISE.
GREEN’S FUNCTIONS

The GFs integrated over momentum are obtained by
inverting the inverse Green function in Eq. (9), as shown for
the diagonal terms in Eq. (11). Here we write the whole list of
these functions:

ḡLL = 2πNLD−1
L ḡL = 2πNLĝLL

ḡRR = 2πNRD−1
R ḡR = 2πNRĝRR

ḡRL = 2πNRWḡR(1 − α̂)e−φσ ḡLL
(A1)= (2π )2NRNLWe−φσ ĝRL

ḡLR = 2πNRWḡLL(1 + α̂)eφσ ḡR

= (2π )2NRNLWĝLReφσ .

Explicitly for α = 0 we can write

ḡ
R,A
LL (ε) = 2πNL

∓i

2(1 + x)
(A2)

ḡK
LL(ε) = −2πNLi

(1 + x)2
(fL(ε) + xfR(ε)). (A3)

Changing R to L yields ḡRR . The off-diagonal functions
acquire a form

ĝ
R,A
RL = − 1

4(1 + x)
, ĝK

RL = −1

2(1 + x)2
(−)

ε (A4)

ĝ
R,A
LR = − 1

4(1 + x)
, ĝK

LR = 1

2(1 + x)2
(−)

ε (A5)

(±)
ε = tanh

ε + V/2

2T
± tanh

ε − V/2

2T
. (A6)

With the help of these functions we find the direct tunneling
current and the corresponding noise power which acquire
standard forms (below σi are Pauli matrices that act in Keldysh
space)

JW (t) = Tr

[
gLR

δg−1
LR

δα(t)
+ gRL

δg−1
RL

δα(t)

]
(A7)

JW = 2eTB

∫
dε

2π
(−)

ε (A8)

and

SW = Tr

[(
δgLR(t̄ t ′)

δα(t)
− δgRL(t̄ t ′)

δα(t)

)
σx

]

SW (0) = 4e2

2π

[
eV TB(1 − TB) coth

V

2T
+ 2T 2

BT

]
. (A9)

The noise SW (ω) is well known28 and coincides with Eq. (A9)
for small ω, ω 
 eV. The effective action of the dot is
given by Eq. (15). In the limit of vanishing source terms the
corresponding GFs are obtained by inverting G−1 (α = 0)

GR
σ (ε) = 1

ε − εσ + r + i(
L+
R )
2(1+x)

(A10)

r = ν
√

x
L
R

1 + x

GR
σ (ε)GA

σ (ε) = − 2(1 + x)


L + 
R

ImGR
σ (ε) (A11)

ImGR
σ (ε) = −
̄

(ε − εσ + r)2 + 
̄2
, (A12)

GK (ε) = 2iImGR(ε)

(1 + x)(
L + 
R)

× [fL(ε)(
L + x
R) + fR(ε)(x
L + 
R)]

+ 2i

√
x
L
R

(1 + x)2
(−)

ε GR(ε)�n�τGA(ε). (A13)

We note also the relation

−iG12
σ (ε) = − 1

2 i
[
GK

σ (ε) − 2iImGR
σ (ε)

]
. (A14)

For the effect of Coulomb interactions, as discussed in the
conclusions, we need the average occupation on the dot for
x = 0,

〈nσ 〉 =
∫

dε

2π
ImGR

σ (ε)

[

LfL(ε) + 
RfR(ε)


L + 
R

− 1

]
. (A15)

For small widths 
L,
R 
 T and assuming H 
 T this
yields

〈nσ 〉 = −1

2

[

LfL(ε0) + 
RfR(ε0)


L + 
R

− 1

]
, (A16)

which shows that 〈nσ 〉 interpolates between 1 at ε0 
 − 1
2V

to zero at ε0 � 1
2V . In the important range of |ε0| < 1

2V − T

(see Fig. 1) 〈nσ 〉 = 
R


L+
R
, i.e., 〈nσ 〉 = 1

2 in the symmetric
case.
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APPENDIX B: CURRENT THROUGH THE DOT

Next we calculate the transmission through the dot which is presented by Eq. (17). The superscripts in the following correspond
to matrix elements in Keldysh space,

Jd (t) = Tr

[
GR

(
δQ(α)

δα(t)

)11

+ GK

(
δQ(α)

δα(t)

)21

+ GA

(
δQ(α)

δα(t)

)22]
δQ(α)

δα(t)
= 1

4

[
−
L

(
σxĝLL(t t̄)

(
1 + α̂

2

)
−

(
1 − α̂

2

)
ĝLL(t̄ t)σx

)
+ 
R

(
σxĝRR(t t̄)

(
1 − α̂

2

)
−

(
1 + α̂

2

)
ĝRR(t̄ t)σx

)

+ 2
√

x
L
R

(
σxM

†ĝRL

(
1 + α̂

2

)
+

(
1 + α̂

2

)
M†ĝRLσx − σxĝLRM

(
1 − α̂

2

)
−

(
1 − α̂

2

)
ĝLRMσx)

]

+
L

δĝLL(t1t2)

δα(t)
+ 
R

δĝRR(t1t2)

δα(t)
+ 2

√
x
L
R

[
δĝLR(t1t2)

δα(t)
M + M† δĝRL(t1t2)

δα(t)

]
. (B1)

The current takes the form

Jd = e

∫
dε

2π
Tr

{
G(ε)

{
1

2
[−
L(σxĝLL(ε) − ĝLL(ε)σx) + 
R(σxĝRR(ε) − ĝRR(ε)σx) + 2

√
x
L
R(σxM

†ĝRL(ε)

+M†ĝRL(ε)σx − σxĝLR(ε)M − ĝLR(ε)Mσx)] + 
LδĝLL(ε,ω) + 
RδĝRR(ε,ω)

+ 2
√

x
L
R(δĝLR(ε,ω)M + M†δĝRL(ε,ω))

}}
. (B2)

The variations of the GFs are given as a Fourier transform,

δĝLL(ε,ω) = 4xĝLL(ε − ω)[σxḡR(ε) − ḡR(ε − ω)σx]ĝLL(ε)

δĝRR(ε,ω) = −4xĝRR(ε − ω)[σxḡL(ε) − ḡL(ε − ω)σx]ĝRR(ε)
(B3)

δĝLR(ε,ω) = ĝLL(ε − ω)σxḡR(ε) + δgLL(ε,ω)(1 + α̂)ḡR(ε)

δĝRL(ε,ω) = −ḡR(ε − ω)σxĝLL(ε) + ḡR(ε − ω)(1 − α̂)δgLL(ε,ω).

Performing the trace in Keldysh space and using the explicit form of the lead GFs Eqs. (A2)–(A5) as well the dot GFs
Eqs. (A10)–(A13) we arrive at Eqs. (18)–(20).

APPENDIX C: CURRENT NOISE POWER

We consider the current noise power for equal tunneling widths 
L = 
R to order x. At first we present the derivation of Sd1.
This part of the noise power depends on the second variation of the vertex function δ2Q. Their Fourier transformed Keldysh
components acquire a form

(δ2Q)11
ω = − 
̄

4

[
i + 4

√
xνF1ω + i

√
x�n�τ

1 + x
F2ω − 2ix

1 + x
(4 − F3 + F4)

]

(δ2Q)22
ω = 
̄

4

[
i − 4

√
xνF1ω + i

√
x�n�τ

1 + x
F2ω − 2ix

1 + x
(4 − F3 + F4)

]
(C1)

(δ2Q)21
ω = i
̄

16

[
((+)

ε−ω + 
(+)
ε+ω) + 6

√
x�n�τ

1 + x
((−)

ε−ω + 
(−)
ε+ω)

]
,

where

F1ω = 1 − (L + xR)fR(ε) + R(fL(ε) + xfR(ε))

4(1 + x)
F2ω = LfR(ε) − RfL(ε)

(C2)
F3 = 1

1 + x
{[(fL(ε) + xfR(ε))fR(ε − ω) + (L ⇔ R)] + (ω → −ω)}

F4 =
√

RB(−)
ε ((−)

ε+ω + 
(−)
ε−ω).

Here L,R = fL,R(ε − ω) + fL,R(ε + ω). After tracing Keldysh space we obtain

Sd1 = −e2

2
Tr [GR(δ2Q)11 + GK (δ2Q)21 + GA(δ2Q)22]. (C3)
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Using the explicit forms for vertices (C1) [see also first Eq. (24)] we arrive at

S0(ω) = −e2 
̄

2

∫
dε

2π
Tr

{
ImGR(ε)

[
1 − 1

8
(fL(ε) + fR(ε))((+)

ε−ω + 
(+)
ε+ω)

]}
(C4)

S1(ω) = −e2 
̄

2

∫
dε

2π
Tr

{
ImGR(ε)

[ �n�τ
1 + x

(
F2ω − 3

4
(fL(ε) + fR(ε))((−)

ε−ω + 
(−)
ε+ω)

)]

− 4νF1ωReGR(ε) − 
̄

4
GR(ε)�n�τGA(ε)(−)

ε ((+)
ε−ω + 

(+)
ε+ω)

}
(C5)

and the formula for S(2) is given in the main text Eq. (25).
The other part of the current spectral density Sd2(ω) [see Eq. (23)] is defined by Fourier transformed GFs and vertices

Sd2(ω) = −e2
∫

dε

2π
Tr

[
G

(
ε − ω

2

)
δQ(ω)G

(
ε + ω

2

)
δQ(−ω)

]
(C6)

2δQ(ω) = A

(
ε + ω

2

)
+ B

(
ε − ω

2

)
+ C

(
ε − ω

2
,ε + ω

2

)
+ 4xD

(
ε − ω

2
,ε + ω

2

)
+ 8x

√
xE

(
ε − ω

2
,ε + ω

2

)
,

where

A(ε) = 


2
σx{−(ĝLL(ε) − ĝRR(ε)) + 2

√
x[M†gR(ε)ĝLL(ε) − ĝLL(ε)gR(ε)M]}

B(ε) = 


2
{ĝLL(ε) − ĝRR(ε) + 2

√
x[M†gR(ε)ĝLL(ε) − ĝLL(ε)gR(ε)M]}σx

(C7)
C(ε,ε′) = 2

√
x
[ĝLL(ε)σxgR(ε′)M − M†gR(ε)σxĝLL(ε′)]

D(ε,ε′) = 
[ĝLL(ε)(σxgR(ε′) − gR(ε)σx)ĝLL(ε′)] − (L ⇔ R)

and

E

(
ε − ω

2
,ε + ω

2

)
= Ŷ gR

(
ε + ω

2

)
M + M+gR

(
ε − ω

2

)
Ŷ

(C8)

Ŷ = 
ĝLL

(
ε − ω

2

)[
σxgR

(
ε + ω

2

)
− gR

(
ε − ω

2

)
σx

]
ĝLL

(
ε + ω

2

)
.

Indeed the vertex function D(ε,ε′) is irrelevant for spin flip processes and may be ignored. Explicit form for Keldysh
components of δQ(ω) to linear order in x can be simply found:

δQ21(ω) = i
̄
√

x�n�τ

δQ11(ω) = − 
̄
√

RB

4
i

(−)
ε−ω/2 − 
̄

√
x

2(1 + x)

[(
2ν

(−)
ε−ω/2 + 2i�n�τ (xfR(ε − ω/2)) + 1

2


(+)
ε−ω/2

)]

δQ22(ω) = 
̄
√

RB

4
i

(−)
ε+ω/2 − 
̄

√
x

2(1 + x)

[(
2ν

(−)
ε+ω/2 − 2i�n�τ (xfR(ε + ω/2)) + 1

2


(+)
ε+ω/2

)]
(C9)

δQ12(ω) = 
̄
√

x

1 + x
{i�n�τ [1 + x − (fR(ε + ω/2)(fL(ε − ω/2) + xfR(ε − ω/2)) + (ω → −ω))]

− ν[fR(ε + ω/2)fL(ε − ω/2) − (ω → −ω)]}.
These formulas for δQ(ω) can be applied for all x if modifications which come from D(ε,ε′) and E(ε,ε′) vertices are included.

D(ε,ε′) introduces a factor 1 + TB(3 − x)/2
√

RB into the first term in expressions for δQ11(ω) and δQ22(ω). There is also a
contribution to δQ12(ω): iTB
̄(fL(ε + ω/2)fL(ε − ω/2) − (L → R)). All these additions do not influence the resonance part of
the tunneling. If we consider the limit of large x the vertex E(ε,ε′) is important. In this case we obtain that an apparent constant
term in Eq. (33) cancels in the vertex δQ(ω), hence the resonance term vanishes at large x.

With the help of these vertex functions we calculate all parts of the Sd2 noise power [see Eq. (24)]:

S0(ω) = e2
̄2

16
RB

∫
dε

2π
Tr (q̂RR + q̂AA)(−)

ε−ω/2
(−)
ε+ω/2

(C10)
SK

1 (ω) = −1

4
e2
̄2

√
RB

∫
dε

2π
Tr [(q̂RK − q̂KA)�n�τ

(−)
ε−ω/2 + (ω → −ω)]
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SAA+RR
1 (ω) = e2
̄2

√
RB

4(1 + x)

∫
dε

2π
Tr

{
−iν(q̂RR − q̂AA)

(


(−)
ε−ω/2

(−)
ε+ω/2 + 1

4
(q̂RR + q̂AA)�n�τ

)
[(−)

ε−ω/2
(+)
ε−ω/2 + (ω → −ω)]

}
S1(ω) = SK

1 (ω) + SAA+RR
1 (ω) (C11)

where

q̂ab = Ga(ε − ω/2)Gb(ε + ω/2)

and a,b label the retarded, advanced or Keldysh GFs: a(b) = R,A,K . In Eq. (C10) to order
√

x we can take GK (ε) =
iImGR(ε)(+)

ε . The singular contribution S2 of Sd2 that is linear in x is presented in the main text Eq. (26).
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