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We study a particle on a ring in the presence of a dissipative Caldeira-Leggett environment and derive its
response to a dc field. We show how this non-equilibrium response is related to a flux averaged equilibrium
response. We find, through a two-loop renormalization group analysis, that a large dissipation parameter η flows to
a fixed point ηR = h̄/(2π ). We also reexamine the mapping of this problem to that of the Coulomb box and show
that the relaxation resistance, of recent interest, is quantized for large η. For finite η > ηR we find that a certain
average of the relaxation resistance is quantized. We propose a Coulomb-box experiment to measure a quantized
noise.
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I. INTRODUCTION

Two of the most important mesoscopic structures are
rings, for the study of persistent currents, and quantum dots
or boxes, for the study of charge quantization. Of particular
recent interest is the quantization of the relaxation resistance,
defined via an ac capacitance of a single-electron box (SEB).
A SEB is defined as a quantum dot that has Nc transmission
channels into a single-electron reservoir (i.e., an electrode)
and is capacitively coupled to a gate voltage. This setup
is equivalent to an RC circuit1,2 whose capacitance at low
frequency ω has the form C0(1 + iωC0Rq), identifying the
relaxation resistance Rq . Following the prediction of Büttiker,
Thomas, and Prêtre1 that Rq = h/(2e2) for a single channel,
a quantum mesoscopic RC circuit has been implemented in
a two-dimensional electron gas2 and Rq = h/(2e2) has been
measured. The theory has been recently extended to include
Coulomb blockade effects,3,4 showing that Rq = h/(2e2) is
valid for small dots and crosses over to Rq = h/e2 for large
dots.

In parallel, recent data has shown Aharonov-Bohm
oscillations from single electron states in semiconducting
rings.5 Further theoretical works have considered the effects
of dissipative environments on a single particle in a ring,6

in particular studying the renormalization of the mass M∗
and its possible relation to dephasing.6–9 A related case of a
ring coupled by tunneling to an electron lead has also been
studied.10

It is rather remarkable that the ring and box problems
are related via the Ambegaokar, Eckern, and Schön (AES)
mapping11 where the ring experiences a Caldeira-Leggett
(CL)12 environment. While the exact mapping assumes weak
tunneling into the box with many channels, it has been
extensively used to describe various tunnel junctions,13 the
Coulomb blockade phenomena in SEBs, and in the single
electron transistor (SET).13–22

The ring problem is defined by a particle confined to a
ring, coupled to a dissipative environment of the Caldeira-
Leggett type, and in the presence of a field E, generated
by a time dependent flux φx through the ring. This scenario
is schematically illustrated in Fig. 1. The Caldeira-Leggett
coupling can be realized, for example, by a normal metal
whose mean-free path is much larger than the ring’s radius.9

In the present work we address the ring problem by the
real time Keldysh method and study it using a two-loop
expansion and renormalization group (RG) reasoning. We
find that perturbation theory identifies an unexpected small
parameter sin[h̄/(2η)], where η is the dissipation parameter on
the ring, or the lead-dot coupling in the SEB. We infer that
a large η flows to a fixed point ηR with h̄/(2ηR) = π . While
the thermodynamics of the ring-type problem has been much
studied, including extensive Monte Carlo studies17,20 of M∗,
no sign of a finite-coupling fixed point has been detected. Our
method evaluates the response to a strictly dc electric field E,
equivalent to a magnetic flux through the ring that increases
linearly with time; hence a nonequilibrium response. We claim
that thermodynamic quantities like M∗, that are flux sensitive
decouple from the response to E, a response that averages over
flux values. This general relation between nonequilibrium and
equilibrium responses is given by Eq. (39) below. This relation
has been noticed for a model with particle tunneling between
a ring and an environment.23

In terms of the SEB, our results extend the previous
analysis3,4 to the case of many channels Nc, an experimentally
realizable scenario.24 We note that for Nc > 1 the relaxation
resistance for noninteracting electrons1 becomes h/(2Nce

2).
We find that for strong coupling, η/h̄ � 1, the relaxation
resistance is quantized to e2/h up to an exponentially small
correction ∼e−πη/h̄. For finite η, but still η > ηR we find that
a certain average of the relaxation resistance is quantized [see
Eq. (82)].

The present work considerably expands on our previous
letter.25 In Sec. II we present the ring and box models, with
some exact general properties. In Sec. III we present RG
and numerical solutions for the semiclassical case, while
Sec. IV presents the perturbation and RG analysis of the
full quantum case. The discussion in Sec. V summarizes our
results, discusses its topological interpretation, and details a
proposed Coulomb-box experiment to detect our predicted
quantized noise. The appendices give details of the ring-box
mapping and of the various perturbation expansions. We
consider temperature T = 0 throughout.

As a simple motivation for our main result, we present
here a topological interpretation of the fixed point ηR , based
on the Thouless charge pump concept.26 Consider a slow
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FIG. 1. (Color online) Artist’s view of a particle on a ring, coupled
to an environment, with a field E = φ̇x due to a time dependent flux
through the ring. The particle polarizes the environment which in turn
modifies the motion of the particle at later times (i.e., an effective
nonlocal interaction).

change of φx by one unit with h̄φ̇x = ηR〈θ̇〉. For the special
value ηR = h̄/(2π ) the total change in the position of the
particle is

∫
t
〈θ̇〉dt = 2π ; that is, the particle comes back

to the same position on the ring and a unit charge is
transported.

II. MODEL AND GENERAL PROPERTIES

A. Semiclassical model

We derive first a Langevin equation for a particle on a ring.
Consider the standard Langevin equation for a particle with
coordinate xt in one dimension of the form

R−1
t,t ′xt ′ = ξt , (1)

where ξt is a Gaussian random force from an environment,
where the average on the environment degrees of freedom
is

〈ξt ξt ′ 〉 = Bt,t ′ . (2)

This relation defines a linear response for either xω = Rωξω or
ξω = R−1

ω xω, after Fourier transforms [e.g., Rω is the Fourier
transform of Rt = Rt,0]. Hence the fluctuation dissipation
theorem (FDT) at temperature T can be applied either way,
leading to

Kx(ω) = h̄ coth
(

1
2βh̄ω

)
Im[Rω],

(3)

Bω = h̄ coth
(

1
2βh̄ω

)
Im

−1

Rω

,

where Kx(ω) is the Fourier transform of Kx(τ ) = 1
2 〈xtxt+τ +

xt+τ xt 〉. The simplest choice corresponds to a particle with
mass m and friction coefficient η, so that at temperature
T = 0,

mẍt + ηẋt = ξt ,

R0(ω) = −1

mω2 + iωη
, R0(t) = 1

η
[1 − e−ηt/m]
(t),

Bω = h̄η|ω|, Bt = −h̄η

πt2
(t �= 0), (4)

where 
(t) is the Heaviside function and R0(t − t ′) is the
response in this case. While the mass provides a high-
frequency cutoff which we denote ωc = η/m, the singularity
of Bt at t = 0 implies the need for an additional cutoff.
This additional cutoff is a convenience and will be used
below in the simulations as well as in the RG derivation.

A method for deriving general response functions is based
on Kramers-Kronig relations.27 In the notation of Eq. (2.7)
of Ref. 27 we choose Reμ(ω) = η/(1 + ω2τ 2

0 ) so that the
response function R−1

t−t ′ , after Fourier transform, is

R−1
ω = −mω2 − iωη

1 − iωτ0
. (5)

To justify the use of this form it suffices to say that it has
the remarkable and necessary property that both Rω and R−1

ω

have no poles in the upper half plane, as needed for causal
functions; [note that Rω reduces to R0(ω) when τ0 = 0]. The
FDT at T = 0 gives

Bω = h̄|ω|η
1 + ω2τ 2

0

, (6)

so that 1/τ0 provides a cutoff for the environment frequencies,
in addition to the cutoff m/η = 1/ωc. Hence for 4τ0 < m/η

(δ → +0),

Rt = 
(t)
τ0

m

[
m

ητ0
e−δt + 1 − λ1

λ1x
e−λ1t/τ0 − 1 − λ2

λ2x
e−λ2t/τ0

]
,

λ1 = 1

2
[1 + x], λ2 = 1

2
[1 − x], x =

√
1 − 4ητ0

m
, (7)

while for 4τ0 > m/η with x = √
4ητ0/m − 1,

Rt = 
(t)
1

η

{
e−δt −

[
1 − x2

2x
sin(xt/2τ0)

+ cos(xt/2τ0)

]
e−t/2τ0

}
. (8)

Consider now the two-dimensional system and its projec-
tion on a ring [i.e., xt = (cos θt , sin θt )], so that θt is the angular
position of the particle and the radius is chosen as unity. In
cartesian coordinates we define random forces in the x, y

directions so that R−1
t−t ′ cos θt ′ = −ξb

t , R−1
t−t ′ sin θt ′ = ξa

t . The
ring potential confines the motion to the azimuthal part, so
that only the tangent force −ξa

t cos θt + ξb
t sin θt is allowed,

hence

− sin θ (t)R−1
t−t ′ cos θt ′ + cos θtR

−1
t−t ′ sin θt ′

= ξa
t cos θt + ξb

t sin θt + E, (9)

where ξa
t , ξ b

t are independent and each have the correlations
of Eq. (2). An external tangent electric field E has been added
corresponding to a flux through the ring that is increasing
linearly with time φx = Et . With R0(t − t ′) given by Eq. (4)
the differential form R−1

0 (t) = mr∂2
t + ηr∂t , can be used

leading to

mθ̈t + ηθ̇t = ξa
t cos θt + ξb

t sin θt + E. (10)

This nonlinear Langevin equation has been studied also in the
SET context.28 Comparing the time derivatives in Eq. (10)
identifies a cutoff frequency ωc = η/m. At ω > ωc the mass
term dominates while at ω < ωc the environment dominates,
leading to renormalizations. The nonlinear Langevin equa-
tion (10), including an average on the random forces, is
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equivalent to a partition function

Z =
∫

D[θ,ξ ] δ
(
mθ̈t + ηθ̇t − ξa

t cos θt − ξb
t sin θt − E

)

× exp

{
−

∫
ω

[∣∣ξa
ω

∣∣2 + ∣∣ξb
ω

∣∣2]
/(2Bω)

}
. (11)

Introducing the “quantum” field θ̂ by δ(Xt ) = ∫
D[θ̂]eiθ̂tXt ,

and averaging over the noise field ξx, ξy results in the
semiclassical partition function Z = ∫

D[θ,θ̂ ]e−S[θ,θ̂ ] where
S[θ,θ̂ ] = S0 + Sint is given by the t, t ′ integrations

S0 = i

∫
t,t ′

θ̂t (Rt,t ′ )
−1θt ′ − iE

∫
t ′
θ̂t ′

= i

∫
ω

R−1
ω θ̂ωθ−ω − iE

∫
t ′
θ̂t ′ , (12)

Sint = 1

2

∫
t,t ′

θ̂tBt,t ′ θ̂t cos(θt − θt ′).

This has the form of a Keldysh action, with θ, θ̂ being the
classical and quantum fields, respectively. We will see below
that this action is the semiclassical h̄ → 0 limit of the full
quantum system.

B. Quantum model

We proceed to define the full quantum problem. The one-
dimensional Langevin system12,29,30 has the Keldysh partition
Z = ∫

Dx̂tDxte
−SK where

SK = i

∫
t,t ′

x̂tR
−1
t,t ′xt ′ + 1

2

∫
t,t ′

x̂tBt,t ′ x̂t ′ (13)

and x̂t , xt are the quantum and classical fields, respectively,

xt = 1

2
(x+

t + x−
t ), x̂t = 1

h̄
(x+

t − x−
t ), (14)

and x±
t are on the upper and lower Keldysh contour,

respectively. On a ring, we use a two-dimensional vector
notation

x+
t = [cos θ+

t , sin θ+
t ], x−

t = [cos θ−
t , sin θ−

t ]. (15)

Defining

θt = 1

2
(θ+

t + θ−
t ), θ̂t = 1

h̄
(θ+

t − θ−
t ), (16)

and using trigonometric identities we obtain the quantum
action

SK = i
2

h̄

∫
t,t ′

R−1
t,t ′ sin

(
h̄

2
θ̂t

)
cos

(
h̄

2
θ̂t ′

)
sin(θt ′ − θt )

+ 2

h̄2

∫
t,t ′

Bt,t ′ sin

(
h̄

2
θ̂t

)
sin

(
h̄

2
θ̂t ′

)
cos(θt ′ − θt ).

(17)

We note that the path integral involves continuous θt

trajectories that can involve n rotations around the ring.
Consider the time evolution from an initial wave function
ψ(θ0,t0) at time t0 to a final state ψ(θ̃t ,t), where both initial

and final angles are compact, 0 < θ0,θ̃t < 2π ,

ψ(θ̃t ,t) =
∫ 2π

0
dθ0

∑
n

∫ θ̃t+2πn

θ0

Dθe−S(t,t0)ψ(θ0,t0). (18)

The sum on the integers n expresses that the probability
to arrive at a given θ̃t is a sum of probabilities, each
with n rotations. The path integral can therefore be written
in terms of a decompactified variable θt = θ̃t + 2πn (i.e.,∑

n

∫ θ̃t+2πn

θ0
Dθ → ∫ θt

θ0
Dθ where now −∞ < θt < ∞). This

shift does not affect the periodic forms in Eq. (17); however,
it does affect an external electric field E. Consider a time-
dependent flux φx(t) = Et that contributes to the action a term∫ tf

ti

φx(t)θ̇t dt = −E

∫ tf

ti

θtdt + φx(ti)θti − φx(tf )θtf .

The partial integration is allowed only for the decompactified
variable θt (i.e., the work done by E is finite for each 2π

rotation). The boundary terms are neglected; for example,
one can choose φx(ti) = φx(tf ) = 0 where ti , tf → −∞ are
boundary times on a Keldysh contour; the field E is turned on
slowly away from these times.

In the following we will consider a perturbative scheme
with a field E and a bare velocity v = E/η and with θt de-
composed to θt = δθt + vt [the true velocity is defined below
as vR(E) = 〈θ̇t 〉]. The velocity v provides a low-frequency
cutoff eliminating divergence of the perturbative expansion
and eventually allows for RG treatment. It will be convenient
to use the two-cutoff response (5) with R−1

ω = −mω2 + δR−1
ω ,

where δR−1
ω = −iωη/(1 − iωτ0), hence

δR−1
t,t ′ = ∂t ′

∫
ω

−η

1 − iωτ0
e−iω(t−t ′)

= − η

τ0
∂t ′[e

−(t−t ′)/τ0
(t − t ′)]

= η

τ0
e−(t−t ′)/τ0
(t − t ′)∂t ′ . (19)

The operator identity is satisfied for any function decaying
faster then e|t ′|/τ0 at t ′ → −∞. Note,

i

∫
t,t ′

θ̂t δR
−1
t,t ′vt ′ = i

ηv

τ0

∫
t

θ̂t

∫ t

−∞
e−(t−t ′)/τ0dt ′ = ivη

∫
t

θ̂t .

(20)

The mass term with mω2 → δ(t − t ′)∂t∂t ′ produces
m

∫
t

˙̂θ t θ̇t = m
∫
t

˙̂θ t δθ̇t + mv
∫
t

˙̂θ t ; the last term with mv =
E/ωc is neglected relative to the field term

∫
t
Et ˙̂θ t . The full

action is then

SK = S0 + Sint + Sc,

S0 = i

∫
t,t ′

θ̂tR
−1
t t ′ θt ′ − iE

∫
t

θ̂t = i

∫
t,t ′

θ̂tR
−1
t t ′ δθt ′ ,

Sint = 2

h̄2

∫
t,t ′

Bt,t ′ sin

(
h̄

2
θ̂t

)
sin

(
h̄

2
θ̂t ′

)
cos(θt ′ − θt ), (21)

Sc = i
2

h̄

∫
t,t ′

δR−1
t,t ′

×
[

sin

(
h̄

2
θ̂t

)
cos

(
h̄

2
θ̂t ′

)
sin(θt ′ − θt ) − h̄

2
θ̂t θt ′

]
.
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The use of a single cutoff (4) with

R−1
0 (t,t ′) = δ(t − t ′)[m∂t∂t ′ + η∂t ′] (22)

leads to a simpler action. It corresponds to τ0 → 0, hence
δR−1

t,t ′ → ηδ(t − t ′)∂t ′ ,

2

h̄
R−1

0 (t,t ′) sin

(
h̄

2
θ̂t

)
cos

(
h̄

2
θ̂t ′

)
sin(θt ′ − θt )

= δ(t − t ′)
[
m ˙̂θ t θ̇t + η

h̄
sin(h̄θ̂t )θ̇t−

]
, (23)

where t− is infinitesimally below t so that the retarded nature
of R−1

t,t ′ is maintained. The action SK = S0 + Sint + Sc is
then

S0 = i

∫
t,t ′

θ̂tR
−1
0 (t,t ′)δθt ′ = i

∫
t

[m ˙̂θ t δθ̇t + ηθ̂t δθ̇t ]

= i

∫
t

[m ˙̂θ t θ̇t + ηθ̂t θ̇t ] − iE

∫
t

θ̂t ,

Sint = 2

h̄2

∫
t,t ′

Bt,t ′ sin

(
h̄

2
θ̂t

)
sin

(
h̄

2
θ̂t ′

)
cos(θt ′ − θt ),

Sc = iη

h̄

∫
t

[sin(h̄θ̂t )θ̇t− − h̄θ̂t θ̇t− ], τ0 → 0. (24)

Note that this action reduces to that of the semiclassical
case (12) when h̄ → 0.

C. Renormalized friction

The renormalized friction ηR(E) is defined by the renor-
malized response RR

t,t ′ = i〈θt θ̂t ′ 〉E and its dc limit:

1

ηR(E)
= lim

ω→0

( − iωRR
ω

)
, (25)

in analogy with the bare form (4). We show now that the
renormalized ηR(E) is also the local slope of dvR/dE, where
vR is the E-dependent renormalized velocity

vR ≡ 〈θ̇t 〉 =
∫

D[θ ]θ̇t e
−SK . (26)

Therefore,

dvR

dE
= i

〈 ∫
t ′
θ̇t θ̂t ′

〉
=

∫
t ′

d

dt
RR

t,t ′ =
∫

t ′

∫
ω

(−iω)RR
ω e−iω(t−t ′)

= lim
ω→0

−iω

−iηR(E)ω
= 1

ηR(E)
. (27)

In particular we are interested in the limit ηR = ηR(E → 0).
We show now an alternative procedure for evaluating ηR .

Consider the Keldysh partition Z = ∫
D[θ ]e−SK and shift

θ̂t → θ̂t + at . The result must be at independent, and by
choosing the form (23) with τ0 → 0 (the following identity
is actually independent of cutoff choices),

0 = δZ

δat

∣∣∣∣
0

= −
〈
δ(S0 + Sint + Sc)

δθ̂t

〉
= −i(ηvR − E − δE),

δE ≡ i

〈
δ(Sint + Sc)

δθ̂t

〉
, (28)

since −i〈δS0/δθ̂t 〉 = −m〈θ̈t 〉 + η〈θ̇〉 − E and vR is time
independent, at least for long times.

Taking an E derivative of Eq. (28) and using Eq. (27) we
obtain

1

ηR(E)
= 1

η
+ 1

η2

∂

∂v
δE. (29)

We have checked, up to second-order terms, that the results of
Eqs. (27) and (29) coincide. The use of Eq. (29) is technically
easier.

D. Equilibrium correlations

In this section we consider the equilibrium response to a
change in flux and derive a relation with the nonequilibrium
response to a field.

Consider now the form of K̃(ω) as a response to a flux φx .
Linear response to δHring = +h̄θ̇δφx(t) is

h̄〈θ̇〉 = −
∫

t ′
K̃t,t ′δφx(t ′). (30)

This corresponds also to the velocity correlation

K̃t,t ′ = +iθ (t − t ′)〈[θ̇t ,θ̇t ′ ]〉. (31)

We expect that the dc response is positive for small φx , so
we define

K̃(ω) = −K0(φx) + iωK1(φx) + O(ω2). (32)

The response K0(φx) is the persistent current; that is, for a
static flux one can integrate Eq. (30):

〈θ̇〉 =
∫ φx

0
K0(φ′

x)dφ′
x. (33)

The periodicity of the persistent current implies∫ 1
0 K0(φx)dφx = 0. The curvature of the free energy F

(or energy at T = 0) at φx = 0 is a well-studied object.6–9

For general φx it is defined by a Matsubara imaginary time
connected correlation

1

h̄

∂2F

∂φ2
x

= (β)−1
∫ β

0

∫ β

0
〈θ̇τ θ̇τ ′ 〉cdτdτ ′ = K0(φx), (34)

where K(iωn = 0) = +K0 (there is a sign difference in the
standard Matsubara notation). An effective mass is defined
by K0(0) = h̄/M∗ so that M∗ = m without interactions,
while for strong η � 1 coupling M∗ ∼ eπη is exponentially
large.6–9

To appreciate the role of K1 consider FDT for the
symmetrized correlation at small ω

〈|θ̇ω|2〉sym = sgn(ω)ImK̃ω = |ω|K1. (35)

The diffusion involves the response 〈|θω|2〉 = K1/|ω|, hence
for t → ∞

〈(θt − θ0)2〉 = K1

∫
dω

1 − cos ωt

π |ω| = 2K1

π
ln(ωxt), (36)

where ωx is a characteristic frequency where higher-order
terms in ω terms set in.
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Consider now the linear response to an electric field
δHring = −E(t)θt and use the response 〈θt 〉 = RR

t,t ′E(t ′). The
definition (25) implies that the low-ω limit has the form
RR

ω = −1/(iωηR). Since E = h̄φ̇x we expect h̄ω2RR
ω = K̃(ω).

However, there is a difficulty with the latter relation, if taken
literally,

−h̄ω2

iωηR
? = ? − K0(φx) + iωK1(φx). (37)

It is also not clear which φx to use in this relation. To resolve
this issue consider the K̃ response with a constant electric field

h̄〈θ̇t 〉 = −
∫

t ′
K̃t,t ′Et ′. (38)

Note first that an additional constant φx in Et ′/h̄ + φx can
be eliminated by redefining the origin of the time t ′, hence
the persistent current part should be eliminated. More pre-
cisely, define φx(t) = Et/h̄; the ω = 0 component K0(φx) =
K0(Et/h̄) becomes a periodic function [i.e., an ac response
with frequency ωE = (2π/h̄)E]. For ω → 0 this persistent
current response averages to zero (i.e.,

∫ 1
0 K0(φx)dφx = 0).

The same reasoning applies to a φx average on K1(φx). Hence
for the purpose of evaluating the dc response of Eq. (25) we
need to average on the flux in Eq. (32), hence

lim
E→0

lim
ω→0

K̃(ω)

iω
=

∫ 1

0
K1(φx)dφx = h̄

ηR
. (39)

The order of limits in Eq. (5) signifies that ηR is essentially
a nonequilibrium response. The equilibrium-nonequilibrium
relation (39) has been noticed in the solution of a Boltzmann
relaxation equation for particles on a ring, allowing for particle
tunneling into an environment.23

The physical picture is that in a dc field the particle rotates
around the ring and produces two types of currents. First is the
persistent current that oscillates in time as φx increases and is
therefore time averaged to zero; this current is nondissipative.
Second, there is a genuine dc response from the iωK1 term,
which is dissipative.

E. Coulomb box

Consider now the Coulomb-box system; namely, a finite
region (a “dot”) with charging energy Ec coupled by tunneling
to a single metallic lead. The Hamiltonian is

H =
∑

k

εka
†
k,iak,i +

∑
α,i

εαd
†
α,idα,i + Ec(N̂ − N0)2

+
∑
k,α,i

tk,α,ia
†
k,idα,i + H.c., (40)

where i = 1, . . . ,Nc are channel indices, dα,i are dot electron
operators with spectra εα , ak,i are lead electron operators with
spectra εk , N̂ = ∑

α,i d
†
α,idα,i is the number operator on the

dot, Ec = e2/(2Cg) is the charging energy with Cg is the
geometric (bare) capacitance, and N0 is the gate voltage in
units of 2Ec. The channel index i is diagonal in the tunneling
term (i.e., corresponds to transverse modes that are conserved
in tunneling).

Consider the density correlations

Kt,t ′ = +iθ (t − t ′)〈[N̂t ,N̂t ′ ]〉. (41)

The AES mapping to the ring problem is reproduced in
Appendix A. In particular, N0 corresponds to −φx , 2Ec to
h̄2/m, and the relation to the velocity correlation on the ring is

h̄2K̃t,t ′ = −2Ech̄δ(t − t ′) + 4E2
cKt,t ′ . (42)

Using the notation3 K(ω) = h̄C0(1 + iωC0Rq)/e2, where C0

is the renormalized capacitance and Rq is the relaxation
resistance, we obtain

h̄K̃(ω) = −2Ec + 4E2
c

C0

e2
(1 + iωC0Rq). (43)

Hence the mapping between the Coulomb box and the ring for
the curvature is, using Eq. (34),

h̄2

M∗(φx)
= h̄K0(φx) = 2Ec

(
1 − C0

Cg

)

⇒ m

M∗(φx)
= 1 − C0(N0)

Cg

, (44)

while for the dissipation, using Eq. (39),

h̄

ηR
=

∫ 1

0
K1(φx)dφx = e2

h̄

∫ 1

0

C2
0 (N0)

C2
g

Rq(N0)dN0. (45)

We note that
∫ 1

0 [C0(N0)/Cg]dN0 = 1 due to the periodicity of
F (φx). An extensive study6–9 of M∗(0) shows that it satisfies
M∗(0) > m and that for large η (the bare interaction parameter)
M∗(0)/m ∼ eπη � 1. Hence,

C0

Cg

= 1 − O(e−πη), η � 1, (46)

and C0 → Cg for large η.
At this stage we can already propose an interesting

experiment for the SEB. By analogy with E = h̄φ̇x in the
ring, we propose measuring the response to a gate voltage that
is linear in time N0 ∼ t . This leads to a dc current into the
Coulomb box whose dissipation is the average in Eq. (45).
This average is predicted to be quantized, at least for η > ηR ,
as shown below.

III. SEMICLASSICAL RENORMALIZATION GROUP
AND NUMERICS

A. Perturbations and renormalization group

We study here the action (12) with a perturbation series
for correlation functions. Consider first the correlation Ct ′,t =
〈θt ′θt 〉, which to first order is

C
(1)
t,t ′ = 〈θt ′θt (−Sint)〉S0 =

∫
t1,t2

Bt1,t2 cos v(t1 − t2)Rt,t1Rt ′,t2 .

(47)

In Fourier space

C(1)
ω = |Rω|2Bv

ω, (48)

where Bv
ω = 1

2 (Bω+v + Bω−v). Since C
(1)
t ′=t is divergent it is

useful to evaluate C̃t,t ′ = 〈[θt − θt ′]2〉, which to first order is,
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with τ = t − t ′ (τ � 1/ωc),

C̃τ =
∫

ω

Bv
ω|Rω|2(1 − cos ωτ )

≈ 2h̄

πη

{
ln

(
ητ

m

)
, τ < 1/v

1
2πvτ, 1/v < τ.

(49)

For E = 0 the angular position diffuses logarithmically, while
for E �= 0 the long-time fluctuation is linear in time.

Consider next the response function to second order in Sint,

RR
t,t ′ = i〈θ̂t ′θt 〉 = Rt,t ′ + R

(1)
t,t ′ + R

(2)
t,t ′

= Rt,t ′ + i

〈
θ̂t ′θt

(
− Sint + 1

2
S2

int

)〉
S0

. (50)

Note that the disconnected terms in the perturbation 〈Sn
int〉S0

vanish for any order n, due to the normalization Z = 1. The
first-order response function is

R
(1)
t,t ′ = −i

1

2

∫
t1,t2

Bt1,t2

〈
θ̂t1 θ̂t2 cos

(
θt1 − θt2

)
θ̂t ′θt

〉
S0

. (51)

The result in the frequency variable is (see Appendix B)

R(1)
ω = R2

ω

∫
ω1

Rω1

[
Bv

ω1
− Bv

ω−ω1

]
= R2

ω

∫
t

RtBt cos vt(eiωt − 1). (52)

We note that for v = 0 FDT is maintained, to this order,
C(1)

ω |v=0 = ImRωh̄ sgn(ω).
The renormalized η to first order is then

1

ηR
1

= lim
ω→0

(−iω)R(1)
ω = lim

ω→0

−iω

(−iω)2η2

∫
t

RtBt cos vt(iωt)

= 1

2η2
ln

(
1 + ω2

c/v
2
) = − ln v/ωc

η2
+ O(v). (53)

Considering next the second order in Eq. (50) we obtain
(see Appendix B)

R(2)
ω = R2

ω

(
− 1

2

∫
t

RtBt cos vt(eiωt − 1)C̃(1)
t

+
∫

t

R
(1)
t Bt cos vt(eiωt − 1)

+Rω

[ ∫
t

RtBt cos vt(eiωt − 1)

]2

−
∫

t1,t2

Rt1Bt1Bt2 sin vt1 sin vt2(1 − eiωt1 )t1

)
. (54)

Denoting the contribution of the last term in Eq. (54) as
δ(1/ηR

2 ) we obtain for the renormalized dissipation to second
order (with ln v → ln v/ωc implied below)

1

ηR
2

= 1

η
− ln v

η2
+ ln2 v − ln v

η3
+ δ

(
1

ηR
2

)
. (55)

The contribution of the last term is peculiar and depends on the
order in which the limits are taken. We define a nonequilibrium
limit where ηR is evaluated for a strictly dc field (i.e., ω → 0
is taken first) and then a logarithmically divergent E �= 0 term

is obtained; namely,

δ

(
1

ηR
2

)
= 1

η2
lim
v→0

lim
ω→0

1

iω

×
∫

t1,t2
Rt1Bt1Bt2 sin vt1 sin vt2(1 − eiωt1 )t1

= − 1

η3
lim
v→0

∫
t1

Rt1Bt1 t
2
1 sin vt1

∫
t2

Rt2Bt2 sin vt2

= lim
v→0

1

η3

∫ ∞
sin(vt1)

∫ ∞
sin(vt2)/t2

2

= lim
v→0

1

η3

1

v
v ln v + O(v) = 1

η3
ln v. (56)

Considering next the alternative equilibrium order of limits
(i.e., first E → 0), we obtain

lim
ω→0

lim
v→0

sin(vt1) sin(vt2) = 0, (57)

hence δ(1/ηR
2 ) = 0. The renormalized η to second order is then

1

ηR
2

= 1

η
− ln v

η2
+ ln2 v + b0 ln v

η3
, (58)

where b0 depends on the order of limits, the nonequilibrium
case has b0 = 0, while the equilibrium one has b0 = −1.
The latter case is in fact the known equilibrium result.16

The distinction between the two limits will become more
pronounced in the full quantum treatment.

B. Numerical solution of Langevin equation

We solve the nonlinear Langevin equation numerically.
The time is discretized to t = T/N × (1,2, . . . ,N ), with T

being the total time span of system. The noise term ξ i
t is

generated numerically using a discrete Fourier transform of
ξ i
ω = √

BωTRi where Ri is a unit white Gaussian noise.
The correlation function linearity requires introducing a high-
frequency cutoff τ0. We choose the cutoff to be in Lorentzian
form Bω = h̄η|ω|/(1 + ω2τ 2

0 ), in the following section we
explain the importance of this choice.

We solve the equation in an iterative procedure. Using the
convolution form

θt =
∫

t ′
Rt,t ′

[
ξx
t ′ cos θt ′ − ξ

y

t ′ sin θt ′ − E
]
, (59)

starting with an arbitrary configuration of θ
(0)
t we calculate

the right-hand side (RHS) of (59) to find a new θ
(1)
t . We

repeat the procedure n times until the expression is saturated
when θ

(n)
t = θ

(n+1)
t . This procedure is improved if instead of

taking the convolution result as the next order θt we use some
mixing of that result and of the previous θt configuration
in the form θ

(m)
t = (1 − β)θ (m−1)

t + β × RHS where β is a
mixing parameter. Typically n would be of the order of 105

and β = 0.1.
With this choice the Langevin equation takes the following

form:

mθ̈t = ξx
t cos θt + ξ

y
t sin θt + E + �t,

(60)

�t = η

τ 2
0

∫ t

−∞
sin[θt − θt ′ ]e

−(t−t ′)/τ0dt ′,
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FIG. 2. (Color online) (Left panel) Velocity-field relation for Eq. (60) with η = 30h̄/π , ωc = 100/τ0, and τ0 = 20�τ . Here N = 215,
�τ = 1/20. The circles are numerical data, the full red line is a first-order perturbation in 1/η, the dashed lower red line is its logarithmic
expansion for large ln v/ωc and the dashed upper (black) line includes the second-order logarithmic term, corresponding to Eq. (58) for b0 = 0.
Note that the data is not reliable for E/(ηωc) � 1/(�τNωc) ∼ 0.06. (Right panel) The same data and line types after subtracting the first-order
terms [i.e., E(2)/(ηv) = E/(ηv) − 1 − h̄( ln(v/ωc) − 1)/(πη)]. An additional dash-dotted line corresponds to b0 = −1, which is a worse fit
to the data than b0 = 0 (dashed upper line). Note that the numerical data displays E/v rather than dE/dv, hence Eq. (53) acquires a −1
term.

where �t is a correction term defined by δR−1
ω in the response

function (19) because
∫
t ′ δR

−1
t,t ′ [ξ

x
t ′ cos θt ′ + ξ

y

t ′ sin θt ′ + E] =
− ∫

ω
mω2�ω.

In the numerical system we have now four time scales,
two numerical time scales, i.e. the time segment �τ =
T̄ /N and the time span T̄ , as well as the two physi-
cal high-frequency cutoffs, 1/τ0 for the noise and ωc the
mass cutoff. The region of interest corresponds to veloc-
ity vR = 〈θ̇t 〉 between the time scales �τ � τ0 < 1/ωc �
1/vR ∼ 1/v < T̄ . The inequality τ0 < 1/ωc is useful since
we compare the numerical result to an asymptotic re-
sult in which ωc rather than 1/τ0 is the high-frequency
cutoff.

With the result for θt we can find the renormalized 1/ηR =
dvR/dE with vR = 〈θ̇t 〉 where the average 〈. . .〉 reflects an
average on both the time domain t > 1/ωc and on numerous
realizations of the noise.

In the left panel of Fig. 2 our numerical solution for the
Langevin equation is shown, including a fit to the second order
with b0 = 0. On the right panel the first order is subtracted with
either the nonequilibrium b0 = 0 or the equilibrium b0 = −1.
The first is in fact a better fit for the numerical data. When 1/v

approaches the simulation time span T̄ the numerics become
unreliable, as the particle cannot complete even one revolution
in time T̄ ; a plateau is then observed at low E.

With the numerical results for θτ we can also generate
the correlation function C̃τ = 〈[θτ − θ0]2〉, the first-order
perturbation for this correlation function is given in Eq. (49).
In Fig. 3 we plot this correlation function as a function of the
time separation τ for the same parameters as in Fig. 2, with and
without a finite field. The data is fairly close to the first-order
result (49) for not too long times; that is, for zero field the
correlation has a subdiffusion logarithmic behavior while for
finite force the correlation has a diffusion (∼τ ) behavior.
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0 500 1000 1500
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FIG. 3. (Color online) (Left panel) Correlation function C̃τ as a function of time (blue, upper line) and the asymptotic results of Eq. (49)

(red, lower line) for E = 0. (Right panel) Correlation function as a function of time (blue, upper line) and the asymptotic results of Eq. (49)
(red, lower line) for E/η = 1 and τ0 = 1.
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IV. QUANTUM RENORMALIZATION GROUP

A. Perturbations from Sint

Consider now the definition ηR in Eqs. (28) and (29):

−iδE(1) =
〈
δSint

δθ̂t

〉
0

= 2

h̄

∫
t ′
Bt,t ′

〈
cos

(
h̄

2
θ̂t

)
sin

(
h̄

2
θ̂t ′

)
cos(vt − vt ′ + δθt − δθt ′ )

〉
0

= 2

h̄

∫
t ′
Bt,t ′

∑
σ,σ ′,μ=±

σ ′

8i

〈
exp

[
1

2
ih̄σ θ̂t + 1

2
ih̄σ ′θ̂t ′ + iμ(vt − vt ′ + δθt − δθt ′ )

]〉
0

= 2

h̄

∫
t ′
Bt,t ′

∑
σ,σ ′,μ=±

σ ′

8i
exp

[
− 1

2
μh̄(σ iRt ′t − σ ′iRtt ′ ) + iμ(vt − vt ′)

]
. (61)

For t < t ′ the term σ ′Rtt ′ = 0 and then
∑

σ ′ = 0. The result is then finite only for t > t ′; defining μ′ = μσ ′,

= 2

h̄

∫
t ′
Bt,t ′

∑
σ ′,μ′=±

σ ′

4i
exp

[
iσ ′μ′(vt − vt ′) + 1

2
ih̄μ′Rtt ′

]
= i

2

h̄

∫
t ′
Bt,t ′ sin v(t − t ′) sin

(
1

2
h̄Rtt ′

)
. (62)

Hence the force correction is

δE(1) = −2

h̄

∫
τ

Bτ sin

(
1

2
h̄Rτ

)
sin(vτ ), (63)

so that, by using Eq. (29) and performing the calculation of the integrals with arbitrary cutoffs τ0 and ω−1
c = m/η, one obtains

1

ηR
= 1

η
− 2

πη

[
sin

(
h̄

2η

)
ln(v/ωc) + C + O(v)

]
, (64)

where the constant C depends on τ0 and ωc. Although we will not need it below, its detailed form is given in Appendix C in the
limit τ0 = 0.

Consider next second order in Sint:

iδE(2) = 1

2

〈
δ

δθ̂t1

S2
int

〉
= 1

2
4

(
2

h̄2

)2
h̄i

2 × 26

∑
εiσ,σ ′=±

ε2ε3ε4

∫
t2,t3,t4

Bt1,t2Bt3,t4e
iσv(t1−t2)+iσ ′v(t3−t4)

×
〈

exp

[
1

2
i
(
ε1θ̂t1 + ε2θ̂t2 + ε3θ̂t3 + ε4θ̂t4

) + iσ
(
θt1 − θt2

) + iσ ′(θt3 − θt4

)]〉
0

. (65)

Note that δ/δθ̂t1 can be applied also at either t2,t3,t4 and all these terms are identical since sin( 1
2h̄θ̂ti ) appears in the same form

for all ti , hence a factor of four. Now change all εi, σ, σ ′ → −(εi, σ, σ ′) and define σ ′ = σμ to obtain

iδE(2) = i2

16h̄3

∑
εiσ,μ=±

ε2ε3ε4σ

∫
t2,t3,t4

Bt1,t2Bt3,t4 sin[v(t1 − t2) + μv(t3 − t4)]

× exp

{
− 1

2
h̄
〈
σ
(
ε1θ̂t1 + ε2θ̂t2 + ε3θ̂t3 + ε4θ̂t4

)[
θt1 − θt2 + iμ

(
θt3 − θt4

)]〉
0

}

= −1

8h̄3

∑
εi ,μ=±

ε2ε3ε4

∫
t2,t3,t4

Bt1,t2Bt3,t4A2 sin[v(t1 − t2) + μv(t3 − t4)], (66)

where

A2 = exp
{

1
2 ih̄ε1

( − Rt2,t1 + μRt3,t1 − μRt4,t1

)}
exp

{
1
2 ih̄ε2

(
Rt1,t2 + μRt3,t2 − μRt4,t2

)}
× exp

{
1
2 ih̄ε3

(
Rt1,t3 − Rt2,t3 − μRt4,t3

)}
exp

{
1
2 ih̄ε4

(
Rt1,t4 − Rt2,t4 + μRt3,t4

)}
. (67)

Note that in A2 if t2 is the maximal time then its second factor equals 1 and
∑

ε2
ε2 = 0. Similarly, if t3 (or t4) is the maximal

time, the third (or fourth) factor equals 1 and
∑

ε3
ε2 = 0 (or

∑
ε4

ε2 = 0). Therefore, t1 must be the maximal time and the first
factor equals 1. The result is symmetric in t3 ↔ t4, so choose t3 > t4, with factor two. Hence three time orderings, denoted by A,
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B, C, δE(2) = δEA + δEB + δEC ,

δEA = 4

h̄3

∑
μ

∫
t1>t2>t3>t4

sin

(
1

2
h̄Rt1,t2

)
sin

[
1

2
h̄
(
Rt1,t3 − Rt2,t3

)]
sin

[
1

2
h̄
(
Rt1,t4 − Rt2,t4 + μRt3,t4

)]

×Bt1,t2Bt3,t4 sin[v(t1 − t2) + μv(t3 − t4)],

δEB = 4

h̄3

∑
μ

∫
t1>t3>t2>t4

sin

[
1

2
h̄
(
Rt1,t2 + μRt3,t2

)]
sin

(
1

2
h̄Rt1,t3

)
sin

[
1

2
h̄
(
Rt1,t4 − Rt2,t4 + μRt3,t4

)]

×Bt1,t2Bt3,t4 sin[v(t1 − t2) + μv(t3 − t4)], (68)

δEC = 4

h̄3

∑
μ

∫
t1>t3>t4>t2

sin

[
1

2
h̄
(
Rt1,t2 + μRt3,t2 − μRt4,t2

)]
sin

(
1

2
h̄Rt1,t3

)
sin

[
1

2
h̄
(
Rt1,t4 + μRt3,t4

)]

×Bt1,t2Bt3,t4 sin[v(t1 − t2) + μv(t3 − t4)].

The B and C terms can be time ordered as A by t2 ↔ t3 in B and t2 → t4, t4 → t3, t3 ↔ t2 in C. In terms of the μ = ± components,

δE+
A + δE−

C = 4

h̄3

∫
A

sin

(
1

2
h̄Rt1,t2

)
sin

[
1

2
h̄
(
Rt1,t3 − Rt2,t3

)]
sin

[
1

2
h̄
(
Rt1,t4 − Rt2,t4 + Rt3,t4

)]
× [

Bt1,t2Bt3,t4 + Bt1,t4Bt2,t3

]
sin[v(t1 − t2 + t3 − t4)],

δE−
A + δE−

B = 4

h̄3

∫
A

sin

(
1

2
h̄Rt1,t2

)
sin

[
1

2
h̄
(
Rt1,t3 − Rt2,t3

)]
sin

[
1

2
h̄
(
Rt1,t4 − Rt2,t4 − Rt3,t4

)]
× [

Bt1,t2Bt3,t4 + Bt1,t3Bt2,t4

]
sin[v(t1 − t2 + t4 − t3)], (69)

δE+
B + δE+

C = 4

h̄3

∫
A

sin

(
1

2
h̄Rt1,t2

)
sin

[
1

2
h̄
(
Rt1,t3 + Rt2,t3

)]
sin

[
1

2
h̄
(
Rt1,t4 − Rt3,t4 + Rt2,t4

)]
× [

Bt1,t3Bt2,t4 + Bt1,t4Bt2,t3

]
sin[v(t1 − t3 + t2 − t4)].

In Appendix E we derive the ln2 v coefficient directly for
the single-cutoff case where τ0 = 0. Here we proceed with
a shorter indirect method. In general we have two cutoffs
m/η, τ0 in Eq. (7) and we define τ1(m/η, τ0) as the cutoff time
for the response Rt [Eq. (7)]. For the purpose of identifying
the leading ln2 v term we take a formal limit such that this
cutoff time is τ1 → 0. We will eventually restore physical
cutoffs corresponding to m/η, τ0 in Rt . The only cutoff for
now is τ0 in Bω [Eq. (6)]. In this limit Rt → 1

η

(t)e−δt where

δ → +0 to ensure the retarded nature [poles of 1/(ω + iδ)].
The significant virtue of this limit is that the first two equations
of (69) vanish since Rt1,t3 − Rt2,t3 → 0, leaving just the last
form. The evaluation of δE(2) in this limit is straightforward
(Appendix D), leading to

δE(2) = 4η2

π2h̄
sin2

(
h̄

2η

)
sin

(
h̄

η

)
v ln(vτ0)[ln(vτ0) + 1].

(70)

Hence, from Eq. (29),

1

ηR(2)
= 4

π2h̄
sin2

(
h̄

2η

)
sin

(
h̄

η

)
[ln2(vτ0) + 3 ln(vτ0) + 1].

(71)

So far δE(2) is calculated in a formal limit τ1 → 0.
We proceed by asserting that for any τ0, τ1 the leading
singularity as v → 0 is a ln2 v term, as expected for a two-loop
calculation. This term must involve an η-dependent function
fη(τ0,τ1) that has dimensions of time. Fixing the coefficient

of ln2[vfη(τ0,τ1)] as in Eq. (71), we have fη(τ0,0) = τ0 while
for τ0 → 0, when τ1 → m/η = 1/ωc we must have the form
fη(0,τ1) = b(η)τ1 = b(η)/ωc. The two-loop correction (71)
becomes, at τ0 = 0,

1

ηR(2)
= 4

π2h̄
sin2

(
h̄

2η

)
sin

(
h̄

η

)
ln2

[
v

ωc

b(η)

]
+ O(ln v).

(72)

The renormalized friction therefore has the form

1

ηR
= 1

η
− 2

πη
sin

(
h̄

2η

)
ln

[
v

ωc

]
+ 4

π2h̄
sin2

(
h̄

2η

)
sin

(
h̄

η

)

×
{

ln2

[
v

ωc

]
+ b0(η) ln

[
v

ωc

]}
. (73)

We have thus identified the coefficient of the ln2(v) term;
this coefficient is also identified by the more lengthy cal-
culation of the τ0 = 0 case in Appendix E. In Appendix E
we furthermore show that the coefficient of the ln v term
[i.e., sin2 (h̄/(2η)) sin(h̄/η)b0(η)], has at least one factor of
sin (h̄/(2η)). Hence the perturbation expansion as well as
the following RG analysis are justified near the zeros of
sin (h̄/(2η)).

We note that in the semiclassical limit the perturbation
expansion is in R2n−1Bn/η2 ∼ 1/ηn+1 for large η; in the
quantum case the R2n−1 factors become periodic functions.
The main conclusion is that there is a new small parameter in
the perturbation series, sin (h̄/(2η)).
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B. Perturbations from Sc

Here we consider the Sc interaction in Eq. (21). The Sc

terms are

〈θ̂t ′θtSc〉 = 〈
θ̂t ′θtS

2
c

〉 = 0. (74)

However, the mixed term and the corresponding correction to
1/η are

δRm
t,t ′ = i〈θ̂t ′θtScSint〉,

⇒ 1

ηm
= 2

πh̄

[
sin

h̄

2η

(
sin

h̄

η
− h̄

η

)

+ h̄

2η
cos

h̄

2η

(
sin

h̄

η
− h̄

η

)]
ln(vτ1), (75)

which does not vanish at sin (h̄/(2η)) = 0. Note, however that
this term is ∼h̄3 (i.e., a three-loop term). Furthermore, other
response functions do show such zeros. For example, for the
R̄t,t ′ correlation [Eq. (77) below] we have 〈θt sin h̄

2 θ̂t ′Sc〉 = 0
to first order, while in second order,

δR̄m
t,t ′ = 2i

h̄

〈
θt sin

h̄

2
θ̂t ′ScSint

〉
,

(76)

⇒ 1

η̄m
= 2

πh̄
sin

h̄

η

(
sin

h̄

η
− h̄

η

)
ln(vτ1).

We note that there are many other operators that have vanishing
perturbations at sin (h̄/(2η)) = 0 to second order in Sint, Sc; for
example, the dissipation term in Eq. (9) 〈θt sin(h̄θ̂t ′ )〉, or the
response to an ac field with frequency v 〈θt cos δθt ′ sin h̄

2 θ̂t ′ 〉.

C. Renormalization-group analysis

We note that in Eq. (73) g = (2/π ) sin (h̄/(2η)) acts as an
unexpected small parameter for the expansion, since all diver-
gences vanish when g = 0. It raises the interesting possibility
that g = 0 be viewed as a RG fixed point. For that we need
to find a renormalized coupling which obeys multiplicative
RG, the simplest choice being gR = (2/π ) sin (h̄/[2ηR(E)]).
The question is then whether the β function β = −E∂EgR

can be written only in terms of gR . Although the nonperiodic
1/η factor in Eq. (73) appears at first to be problematic, we
propose that resummation from higher loops, which allows
for higher-order terms O(1/η4) changes the one-loop term in
Eq. (73) by h̄/(2η) → sin (h̄/(2η)).

To further motivate this proposal we consider the response

R̄t,t ′ = i
2

h̄

〈
θt sin

(
h̄

2
θ̂t ′

)〉
. (77)

Physically, exp(±ih̄θ̂t ′/2) corresponds to an electric field pulse
δE(t) = ±(h̄/2)δ(t − t ′) or equivalently a rapid change of
flux by ±1/2, therefore R̄t,t ′ corresponds to the difference
in response to these two flux pulses. Defining the dissipation
parameter η̄R for R̄t,t ′ as in Eq. (25) we obtain that the one-loop
term is fully periodic with

h̄

2η̄R
= h̄

2η
− 2

π
sin2

(
h̄

2η

)
ln[τ1v], (78)

hence h̄/(2η) → sin (h̄/(2η)) in Eq. (73).

We propose then that a RG consistent theory corresponds
to

h̄

2ηR
= h̄

2η
− 2

π
sin2

(
h̄

2η

)
ln[τ1v] + 4

π2
sin3

(
h̄

2η

)

× cos

(
h̄

2η

)
{ln2[τ1v] + b0(η) ln[τ1v]}. (79)

Taking a sine of both sides it yields to order g3, with b0 =
b0(g = 0),

gR =g ∓ g2 ln(v/ωc) + g3[ln2(v/ωc) + b0 ln(v/ωc)], (80)

where ± refers to g = 0 with cos (h̄/(2η)) = ±1, leading to

β(gR) = dgR

−d ln v
= ±g2

R − b0g
3
R + O

(
g4

R

)
. (81)

This RG equation is satisfied for both ± fixed points as seen
by substituting Eq. (80). We propose then that gR = 0 are
exact zeros of the perturbation expansion and the additional
requirement of a RG structure leads to the result (80).

Equation (80) yields fixed points at h̄/(2ηn) = nπ with
n = 1,2,3, . . . that are attractive at η > ηn and repulsive at
η < ηn (i.e., the flow of η �= ηn is always to smaller η). At
these fixed points a Gaussian evaluation yields the correlation
〈cos θt cos θ0〉 ∼ t−2n. We recall now a theorem for the lattice
model31 where the equilibrium action with mass-related cutoff
is replaced by an action on a lattice resulting in an XY

model with long-range interactions. The theorem states31 that
〈cos θt cos θ0〉 ∼ 1/t2; this result was also derived9 to first
order in η. The range η > η1 has a RG flow to η1 and
is therefore consistent with the theorem. The hypothesis of
Gaussian fixed points corresponding to n � 2 is inconsistent
with the theorem; that is, 〈cos θt cos θ0〉 becomes a relevant
operator at the n � 2 points rendering them unstable. Note that
in the SEB problem cos θt corresponds to a lead-dot voltage
and its correlations determine the SET conductance,11,13,21

while in the ring problem it corresponds to fluctuations in
the circular asymmetry.

For η < η1 the system could have non-Gaussian fixed points
or a line of fixed points as hinted by the small η perturbation.9

The equilibrium K1(φx) was evaluated for small η and for T →
0 has the form22 K1(φx) ∼ δ(φx − 1/2)/T (i.e., the dissipation
is concentrated at the single point φx = 1/2). This implies from
Eq. (39) that ηR ∼ T and therefore vanishes at temperature
T = 0. It is not clear, however, that η = 0 is a fixed point
in the RG sense and if so what is its range of attraction. An
η = 0 fixed point would imply the implausible result that the
ring conductance diverges for small but finite η. We therefore
expect that η1 ≡ ηR is the single fixed point in this system, as
illustrated in Fig. 4.

V. DISCUSSION

The special value ηR = h̄/(2π ) has a topological interpreta-
tion as a Thouless charge pump,26 as shown in the introduction.

Η
2Π0

FIG. 4. (Color online) RG flow of η.
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Hence a slow change in φx by one unit results in transporting
a unit charge once around the ring if ηR = h̄/(2π ). Such
quantization has been shown for cases where the spectrum has
a gap,26 although quantized charge transport was shown also
in cases without a gap;32,33 in our case the gap vanishes15 at
flux φx = 1/2. Vanishing of this gap is essential in solving
for the dissipation problem in the ring via Landau-Zener
transitions, as studied in related models.34 We note that the
quantized ηR also results from arguing that there should
be a unique frequency ωE = (2π/h̄)E = v as E → 0 [see
discussion below Eq. (38)], as suggested by linear response.

We conclude from Eq. (45) that for η > η1 ≡ ηR the SEB
satisfies the quantization (see definitions in Sec. II E)∫ 1

0

C2
0 (N0)

C2
g

Rq(N0)dN0 = h

e2
. (82)

In particular, when η/h̄ � 1 we have6–9 from the known
M∗/m ∼ eπη/h̄ and from Eq. (6) C0/Cg = 1 + O(e−πη/h̄). We
expect Rq to be independent of N0 at large η, hence

Rq = h

e2
[1 + O(e−πη/h̄)], (83)

similar to the Nc = 1 case.3

The conductance of the ring can be defined by the voltage
around the ring 2πE/e and the current e〈θ̇〉/(2π ), hence we
predict that the conductance for η > ηR is

Gring = e2

4π2ηR
= e2

h
. (84)

While this well-known quantum conductance seems natural,
we emphasize that it is due to the inherent nonequilibrium
nature of the driving force and the specific limiting procedure
of taking a dc limit before the linear response limit [Eq. (39)].

Finally, we consider the conditions for our proposed box
experiment. The Coulomb box (i.e., a metallic quantum dot)

should be connected to the electrode with Nc � 1 degenerate
channels; in fact Nc can be fairly small and yet reproduce the
Nc → ∞ case, except at exponentially small temperatures.35

By analogy with E = h̄φ̇x in the ring, we propose measuring
the response to a gate voltage that is linear in time N0 = Et .
This leads to a dc current into the Coulomb box whose
dissipation is the average in Eq. (45). The field E should
be sufficiently small so that gR is sufficiently near the fixed
point. For an initial g ≈ 1 integration of ∂gR/∂ ln E = g2

R

yields gR = 1/ ln(h̄ωc/E) � g. For example, for gR � 0.1
and a typical h̄ωc ≈ 1 meV one needs E/h̄ � 108 Hz. E/h̄

has frequency units, corresponding to 108 electrons/s flowing
into the box.

While it may be possible to measure dissipation directly
(e.g., via heating), we propose measuring instead the charge
fluctuations (noise) SQ(ω) = e2〈N̂t N̂t ′ 〉ω. The latter should be
measured at frequency, temperature, and level spacings � such
that � < ω, T � 108 Hz, to yield the response to the force E.
FDT relates the (symmetrized) noise and the retarded response
K(ω) [Eq. (41)] via SQ(ω) = h̄ coth[h̄ω/(2T )]ImK(ω). From
Eq. (45) we have (at T = 0) that the gate voltage averaged
noise S̄Q(ω) satisfies S̄Q(ω)( 2Ec

eh̄
)2/ω = h̄/ηR . In particular, as

the fixed point is approached we predict S̄Q(ω)( 2Ec

eh̄
)2/ω =

2π .
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APPENDIX A: MAPPING COULOMB BOX AND RING

The AES mapping has been extensively used, yet we find it useful to reproduce it since the relation between correlation
functions has received less attention.

The Coulomb-box action corresponding to the Hamiltonian (40) is

−ih̄S =
∫

t

{∑
α

d
†
α,i(ih̄∂t − εα)dα,i − Ec(N̂ − N0)2

}
− ih̄Slead − ih̄Stunn,

(A1)
−ih̄Slead =

∫
t

∑
k

a
†
k,i(ih̄∂t − εk)ak,i , −ih̄Stunn =

∫
t

∑
k,α

tk,α,ia
†
k,idα,i + H.c.,

with the partition Z = e−S . Adding a variable θ̇t to the path integral yields

−ih̄S =
∫

t

{
Ec

[
N̂ − N0 − h̄

2Ec

θ̇t

]2

+
∑

α

d
†
α,i(ih̄∂t − εα)dα,i − Ec(N̂ − N0)2

}
− ih̄Slead − ih̄Stunn

=
∫

t

{ ∑
α

d
†
α,i(ih̄∂t − εα − h̄θ̇t )dα,i + 1

4Ec

[h̄θ̇t + 2EcN0]2

}
− ih̄Slead − ih̄Stunn. (A2)
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Now define dα = e−iθt d̃α:

−ih̄S =
∫

t

{∑
α

d̃
†
α,i(ih̄∂t − εα)d̃α,i + h̄2

4Ec

θ̇2
t + θ̇tN0 +

∑
k,α,i

[tk,α,ia
†
k,i d̃α,ie

iθt + H.c.]

}
− ih̄Slead. (A3)

The ring action in terms of θt is derived by integrating out the fermions d̃α and ak . Define time-ordered Greens’ functions on the
dot G0α,i(ω) = (ω − εα,i + isgnω0+)−1 and on the lead G0k,i(ω) = (ω − εk,i + isgnω0+)−1. In matrix notation,

Ĝ−1
i (t,t ′) =

(
G−1

0α,i(t,t
′) 0

0 G−1
0k,i(t,t

′)

)
+

(
0 tk,α,ie

iθt

t∗k,α,ie
−iθt 0

)
δ(t − t ′) ≡ Ĝ−1

0i + T̂i . (A4)

The trace over fermions, using det(iG) = exp(Tr ln iG), yields

Seff = −
∑

i

Tr ln iĜ−1
i (t,t) = −

∑
i

Tr ln
{
iĜ−1

0i (t,t ′)[δ(t − t ′) + Ĝ0i(t
′,t)T̂i(t)]

}
. (A5)

Expanding in T̂ , the zeroth order is θt independent, the first order vanishes, hence to second order,

Seff = −1

2

∑
i

Tr{Ĝ0T̂ Ĝ0T̂ } = −1

2

∑
i

∫
t,t ′

G0α,i(t,t
′)G0k,i(t

′,t)|tk,α,i |2eiθt−iθt ′ + H.c. (A6)

For completeness we derive the Matsubara effective action using
∑

α Gα,i(τ ) = T
∑

n G(ωn)eiωnτ with fermionic ωn =
πT (2n + 1):

G(ωn) =
∫

ε

ρdot(ε)

iωn − ε
=

∫ ∞

0
ρdot(ε)

[
1

iωn − ε
+ 1

iωn + ε

]
=

∫ ∞

0
ρdot(ε)

−2iωn

ω2
n + ε2

= −iπρdot(0) sgn(ωn),

(A7)∑
α

G0α,i(τ ) = 2πρdot(0)
∑
n>0

sin(ωnτ ) = ρdot(0)
πT

sin(πT τ )
,

where ρdot(ε) is the dot density of states, assumed symmetric, and eventually constant. With the lead density of states ρlead(ε),
and assuming a constant tk,α,i ,

Seff = −1

2
|t |2Ncρdot(0)ρlead(0)

∫∫
π2T 2

sin2[πT (τ − τ ′)]
cos[θ (τ ) − θ (τ ′)], (A8)

where Nc = ∑
i is the number of channels. This is the well-known equilibrium ring system with a bosonic CL environment,6–9

where η = 1
2π |t |2Ncρdot(0)ρlead(0) and m = 1/(2Ec). The expansion in T̂ is justified for |t |2 → 0; however, with Nc → ∞ any

value of η can be generated. In fact Nc can be fairly small and yet reproduce the Nc → ∞ case, except at exponentially small
temperatures.35 A similar derivation holds for the Keldysh action leading to the form (21).

We proceed now to map observables of the Coulomb box to those of the ring problem. Since the action (A3) has a term +θ̇N0

we identify N0 = −φx where φx is the flux through the ring (in units of the quantum flux). Hence,

h̄〈θ̇〉 =
∫

θ

h̄θ̇ exp

[
− i

h̄

∫
Ec

(
N̂ − N0 − h̄

2Ec

θ̇

)2

+ fermion terms

]

=
∫

θ

(h̄θ̇ + 2EcN̂ − 2EcN0) exp

[
− i

h̄

∫
h̄2

4Ec

θ̇2 + fermion terms

]
= 2Ec[〈N̂〉 − N0]. (A9)

In particular, without interaction, tkα = 0, the charge has no fluctuations 〈N̂〉 = 0 (for |N0| < 1
2 ) so that h̄〈θ̇〉 = −2EcN0 = 2Ecφx .

Consider next the time-ordered T correlations (the following is the same for 〈θ̇+
t θ̇+

t ′ 〉, 〈θ̇+
t θ̇−

t ′ 〉 with ± Keldysh
contours),

h̄2T 〈θ̇t θ̇t ′ 〉 =
∫

θ̃

h̄2θ̇t θ̇t ′ exp

[
− i

h̄

∫
Ec

(
N̂ − N0 − h̄2

2Ec

θ̇

)2

+ fermion terms

]

=
∫

θ

(h̄θ̇t + 2EcN̂t − 2EcN0)(h̄θ̇t ′ + 2EcN̂t ′ − 2EcN0) exp

[
− i

h̄

∫
h̄2

4Ec

˙̃θ
2 + fermion terms

]
= h̄2T 〈θ̇t θ̇t ′ 〉0 + 4E2

cT 〈(N̂t − N0)(N̂t ′ − N0)〉. (A10)
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To obtain the retarded response,

−iDR
t,t ′ = θ (t − t ′)〈[At,Bt ′]〉 = θ (t − t ′)〈AtBt ′ − Bt ′At 〉 = T〈A+

t B+
t ′ 〉 − 〈B−

t ′ A
+
t 〉, (A11)

where ± are Keldysh contour indices, so that A+ is earlier than B−.
Define the response Kt,t ′ of the Coulomb box, as well as the response of ring problem K̃t,t ′ in the form (displayed here with

operators whose 〈At 〉 = 0 to allow relation with time ordering)

K̃t,t ′ = +iθ (t − t ′)〈[(θ̇t − 〈θ̇〉),(θ̇t ′ − 〈θ̇〉)]〉, Kt,t ′ = +iθ (t − t ′)〈[(N̂t − 〈N̂〉),(N̂t ′ − 〈N̂〉)]〉. (A12)

From Eq. (A10) we have

h̄2T 〈(θ̇t − 〈θ̇〉)(θ̇t ′ − 〈θ̇〉)〉 + h̄2〈θ̇〉2 = h̄2T 〈θ̇t θ̇t ′ 〉0 + 4E2
cT 〈(N̂t − 〈N̂〉)(N̂t ′ − 〈N̂〉)〉 + 4E2

c

(〈N̂〉2 − 2N0〈N̂〉 + N2
0

)
. (A13)

Now using Eq. (A9) and that the relation (A10) holds for both terms in Eq. (A11), a relation between these response functions is
obtained

h̄2K̃t,t ′ = −2Ech̄δ(t − t ′) + 4E2
cKt,t ′ , (A14)

which is reproduced as Eq. (40). This relation is consistent with results in Ref. 22.

APPENDIX B: SEMICLASSICAL CASE: FIRST AND SECOND ORDER

1. First-order term

First-order perturbation of the Green’s function

R
(1)
t,t ′ = −i

1

2

∫
t1,t2

Bt1,t2

〈
θ̂t1 θ̂t2 cos

(
θt1 − θt2

)
θ̂t ′θt

〉
S0

= −i

4

∫
t1,t2

Bt1,t2

∑
σ=±

∂αi=1,2,3,4 exp
(
iα1θ̂t1 + iα2θ̂t2 + iσ θt1 − iσ θt2 + iα3θ̂t ′ + iα4θt

)∣∣∣∣
αi=0

. (B1)

An averaging with Gaussian weight

〈eiθt1 +iθt2 +···+iθ̂t1 +iθ̂t2 +···〉 = ei〈θt1 +θt2 +···〉e−〈(θt1 +θt2 +···)(θ̂t1 +θ̂t2 +···)〉 = eivt1+ivt2+···eiRt1 ,t2 +iRt2 ,t1 +···. (B2)

The retarded function

R
(1)
t,t ′ = 1

4i

∫
t1,t2

∑
σ=±

∂αi
Bt1,t2 exp

[
iα1

( − σRt2,t1 + α4Rt,t1

) + iα2
(
σRt1,t2 − α4Rt,t1

) + iα3
(
σRt1,t ′ − σRt2,t ′ + α4Rt,t1

)]
eiσv(t1−t2)

= 1

4

∫
t1,t2

∑
σ=±

∂α4Bt1,t2

(
σRt2,t1 − α4Rt,t1

)(
σRt1,t2 + α4Rt,t1

)(
σRt1,t ′ − σRt2,t ′ + α4Rt,t1

)
eiσv(t1−t2)

= −
∫

t1,t2

Bt1,t2 cos v(t1 − t2)Rt,t1Rt1,t2

(
Rt1,t ′ − Rt2,t ′

)
. (B3)

In the last expression we use RtR−t = 0.

2. Second-order term

Using the same procedure for the second order:

R
(2)
t,t ′ = i

2
〈θ̂t ′θt (Sint)

2〉 = − i

8

∫
t1,t2,t3,t4

Bt1,t2Bt3,t4

〈
θ̂t1 θ̂t2 cos

(
θt1 − θt2

)
θ̂t3 θ̂t4 cos

(
θt3 − θt4

)
θ̂t ′θt

〉
= 1

25i

∫
t1,...,4

Bt1,t2Bt3,t4

∑
σ1,σ2=±

∂αi=1,...,6

〈
exp

(
iα1θ̂t1 + iα2θ̂t2 + iα3θ̂t3 + iα4θ̂t4 + iσ1θt1 − iσ1θt2 + iσ2θt3

− iσ2θt4 + iα3θ̂t ′ + iα4θt

)〉∣∣
αi=0, (B4)

using the symmetry between σ1 ↔ −σ1 and t1 ↔ t2 and similarly for t3, t4:

R
(2)
t,t ′ = 1

8

∫
t1,t2,t3,t4

Bt1,t2Bt3,t4e
iv(t1−t2)−iv(t3−t4)∂α6

[ − Rt2,t1 + Rt3,t1 − Rt4,t1 + α6Rt,t1

][
Rt1,t2 + Rt3,t2 − Rt4,t2 + α6Rt,t2

]
× [

Rt1,t3 − Rt2,t3 − Rt4,t3 + α6Rt,t3

][
Rt1,t4 − Rt2,t4 + Rt3,t4 + α6Rt,t4

][
Rt1,t ′ − Rt2,t ′ + Rt3,t ′ − Rt4,t ′ + α6Rt,t ′

]
, (B5)
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the choice t1 > t2, t3, t4, only Rt,t1 remains. Rτ is real, we separate the exponent into two sine and two cosine terms as follows:

R
(2)
t,t ′ = 1

8

∫
t1,t2,t3,t4

Bt1,t2Bt3,t4 [cos v(t1 − t2) cos v(t3 − t4) − sin v(t1 − t2) sin v(t3 − t4)]Rt,t1

[
Rt1,t2 + Rt3,t2 − Rt4,t2

]
× [

Rt1,t3 − Rt2,t3 − Rt4,t3

][
Rt1,t4 − Rt2,t4 + Rt3,t4

][
Rt1,t ′ − Rt2,t ′ + Rt3,t ′ − Rt4,t ′

]
. (B6)

This long multiplicity of Rt terms is now separated into eight different terms. For the terms with the cosine we calculate explicitly
three terms, which we label by a to c. Term “a” is

Ra
t,t ′ = 1

2

∫
t1,t2,t3,t4

Bt1,t2 cos v(t1 − t2)Rt,t1Rt1,t2

(
Rt1,t ′ − Rt2,t ′

)
Bt3,t4 cos v(t3 − t4)

(
Rt1,t3 − Rt2,t3

)(
Rt1,t4 − Rt2,t4

)
= 1

2

∫
t1,t2

Bt1,t2 cos v(t1 − t2)Rt,t1Rt1,t2

(
Rt1,t ′ − Rt2,t ′

)
C̃t1,t2 . (B7)

This term in ω space

Ra
ω = −1

2
R2

ω

∫
t

RtBt cos vt (eiωt − 1)C̃t ,

with C̃t = 2(C(1)
t=0 − C

(1)
t ). Similarly we choose two different terms “b” and “c” and write them directly in ω space:

Rb
ω = R2

ω

∫
t

R
(1)
t Bt cos vt(eiωt − 1), (B8)

Rc
ω = R3

ω

[ ∫
t

RtBt cos vt(eiωt − 1)

]2

= R−1
ω

(
R(1)

ω

)2
. (B9)

Note the R
(1)
t in the expression Rb is the first-order result of the retarded Green function. Rc

ω is the reducible term containing
multiplication of R(1)

ω . Renormalized η for small v is

1

ηa
2

= 1

2

1

η2

∫
t

RtBt C̃(t)t = h̄

πη3

∫
t

RtBt t[ln t + γ + O(v) + O(1/t)] = − h̄2

2π2η3
ln2 v + O(v),

1

ηb
2

= − h̄

πη2

∫
t

R
(1)
t Bt t = − h̄

πη3

∫
t

RtBt t[ln t + γ + 1 + O(v) + O(1/t)] = h̄2

2π2η3
ln2 v − h̄2

2π2η3
ln v + O(v), (B10)

1

ηc
2

= 1

η3

[ ∫
t

RtBt t

]2

= h̄2

2π2η3
[ln v + O(v)]2 = h̄2

2π2η3
ln2 v + O(v).

The terms containing the sine in Eq. (B6) are, in general, of order O(v); however, we have identified the following term
which, depending on the order of limits, may contribute a term logarithmic in v for small v:

Rd
ω = −R2

ω

∫
t1,t2

Rt1Rt2Bt1Bt2 sin vt1 sin vt2(1 − eiωt1 )
∫

t3

(
Rt1+t3 − Rt3

)
. (B11)

We label the dissipation parameter form this term by δ(1/ηR
2 ) = limω→0(−iω)Rd

ω and find the logarithmic prefactor in Eq. (56),
where we use for t1 > 0∫

t3

(
Rt1+t3 − Rt3

) = 1

η

∫ 0

−t1

(
1 − e−(t1+t3) η

m

) + 1

η

∫ ∞

0

(
e−t3

η

m − e−(t1+t3) η

m

) = t1

η
. (B12)

APPENDIX C: QUANTUM CASE: FIRST ORDER, MORE DETAILS

Let us give the detailed calculation of the first-order correction in the case of a mass-only cutoff (i.e., τ0 = 0). Taking the
derivative of Eq. (63) in the text we have

∂vδE
(1) = −2

h̄

∫
τ>0

τB(τ ) sin

(
h̄

2
R(τ )

)
cos(vτ ) = 2η

π

∫
τ>0

dτ

τ
sin

[
h̄

2η

(
1 − e− η

m
τ
)]

cos(vτ )

= 2η

π

[
sin

(
h̄

2η

) ∫
τ>0

dτ

τ

(
1 − e− η

m
τ
)

cos(vτ ) −
∫

τ>0

dτ

τ

{
sin

[
h̄

2η

(
1 − e− η

m
τ
)] − sin

(
h̄

2η

)(
1 − e− η

m
τ
)}

cos(vτ )
]

= 2η

π

[
sin

(
h̄

2η

)
ln

(
η

mv

)
+ f

(
h̄

2η

)
+ O(v)

]
, (C1)
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since the first integral can be computed exactly and in the second one we can set v = 0 to get the constant piece. This determines
the constant C = f (h̄/(2η)) given in the text in Eq. (64), where the function f (x) is defined as

f (x) =
∫ +∞

0

dt

t
{sin[x(1 − e−t )] − sin(x)(1 − e−t )} = −

∫ 1

0

dz

(1 − z) ln(1 − z)
[sin(xz) − z sin x] = 1

6
x3 ln

(
8

3

)
+ O(x5)

(C2)

and is a nicely convergent integral, where one can rescale t freely. Although it is not periodic in x, upon plotting it one notes that
it seems to become almost periodic at large x.

APPENDIX D: QUANTUM CASE: SECOND ORDER FOR τ1 → 0

Since sin( 1
2h̄Rt1,t2 ) is a retarded function, we use for Rt = 
(t)e−δt

sin

(
1

2
h̄Rt1,t2

)
→ sin

(
h̄

2η

)
e−δ(t1−t2), sin

[
1

2
h̄
(
Rt1,t3 + Rt2,t3

)] → sin

(
h̄

η

)
e−δ(t1−t3)−δ(t2−t3),

sin

[
1

2
h̄
(
Rt1,t4 − Rt3,t4 + Rt2,t4

)] → sin

(
h̄

2η

)
e−δ(t1−t4)−δ(t3−t4)−δ(t2−t4). (D1)

For example, the Fourier transform of t1 − t3 and t2 − t3 should have 1/[(ω1 + iδ)(ω2 + iδ)]. Define the variables

t ′2 = t2 − t1, t ′3 = t3 − t2, t ′4 = t4 − t3, ⇒ t2 = t ′2 + t1, t3 = t ′3 + t ′2 + t1, t4 = t ′4 + t ′3 + t ′2 + t1. (D2)

These variables are more convenient since their range is independent −∞ < t ′2, t
′
3, t

′
4 < 0. The product of all convergence factors

is then eδ(3t ′2+4t ′3+3t ′4), with the factors 3, 4, and 3 unimportant since δ → 0. Hence

δE(2) = 4

h̄3 sin2

(
h̄

2η

)
sin

(
h̄

η

) ∫
ω1,ω2

Bω1Bω2

∑
σ=±

σ

2i

∫
A

eiσv(−2t ′3−t ′4−t ′2)[eiω1(t ′3+t ′2)+iω2(t ′4+t ′3) + eiω1(t ′4+t ′3+t ′2)+iω2t
′
3 ]eδ(t ′2+t ′3+t ′4)

= 4

h̄3 sin2

(
h̄

2η

)
sin

(
h̄

η

) ∫
ω1,ω2

Bω1Bω2

∑
σ=±

σ

2i

[
1

−iσv + iω2 + δ
+ 1

−iσv + iω1 + δ

]

× 1

(−2iσv + iω1 + iω2 + δ)(−iσv + iω1 + δ)

= 4

h̄3 sin2

(
h̄

2η

)
sin

(
h̄

η

) ∑
σ

σ

2
(h̄η)2

∫
dω1

2π

1

(ω1 − σv − iδ)2

|ω1|
1 + ω2

1τ
2
0

∫
dω2

2π

1

ω2 − σv − iδ

|ω2|
1 + ω2

2τ
2
0

, (D3)

where the integral over ω2 gives∫ ∞

0
dω2

[
1

ω2 − σv − iδ
− 1

−ω2 − σv − iδ

]
ω2

1 + ω2
2τ

2
0

= 2σv

∫ ∞

0
dω2

ω2(
ω2

2 − v2
)(

1 + ω2
2τ

2
0

)
= −σv ln(vτ0) + O

(
v3τ 2

0 ln(vτ0)
)
, (D4)

and over ω1 gives ∫ ∞

0
dω1

[
1

(ω1 − σv − iδ)2
+ 1

(−ω1 − σv − iδ)2

]
ω1

1 + ω2
1τ

2
0

= 2
∫ ∞

0
dω1

[
ω1

ω2
1 − v2

+ 2v2ω1

(ω1 − σv − iδ)2(ω1 + σv + iδ)2

]
= −2 ln(vτ0) − 2, (D5)

where in the last integral τ0 → 0 can be taken. Substituting (D4) and (D5) into (D3) leads to the result (70).

APPENDIX E: QUANTUM CASE: SECOND ORDER WITH MASS CUTOFF

In this Appendix we rederive the second-order quantum case using directly a mass cutoff. In particular, we identify the
coefficient of the ln2 v term, confirming that coefficient in Eq. (70), and derive some properties of the second-order ln v term.

We express Eq. (66) as

δE(2) = i

4h̄3

∑
εi

ε2ε3ε4

∫
t2,t3,t4

Bt1,t2Bt3,t4A2 sin[v(t1 − t2 + v(t3 − t4)], (E1)
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where the symmetry between t3 and t4 is used to sum over μ = ±. Defining Fti ,tj = exp (iεh̄Rti ,tj /2) − 1 Eq. (67) can be
expressed as

A2 = (
F−ε1

t2,t1
+ 1

)(
Fε1

t3,t1
+ 1

)(
F−ε1

t4,t1
+ 1

)(
Fε2

t1,t2
+ 1

)(
Fε2

t3,t2
+ 1

)(
F−ε2

t4,t2
+ 1

)
× (

F
ε3
t1,t3 + 1

)(
F

−ε3
t2,t3 + 1

)(
F

−ε3
t4,t3 + 1

)(
Fε4

t1,t4
+ 1

)(
F−ε4

t2,t4
+ 1

)(
Fε4

t3,t4
+ 1

)
= (

Fε2
t1,t2

+ F−ε1
t2,t1

+ 1
)(

F
ε3
t1,t3 + Fε1

t3,t1
+ 1

)(
Fε4

t1,t4
+ F−ε1

t4,t1
+ 1

)(
Fε2

t3,t2
+ F

−ε3
t2,t3 + 1

)(
F−ε2

t4,t2
+ F−ε4

t2,t4
+ 1

)(
F

−ε3
t4,t3 + Fε4

t3,t4
+ 1

)
. (E2)

In the last expression we used the retarded property of Fti ,tj so that Fti ,tj Ftj ,ti = 0. When transforming all functions to their
frequency domain

δE(2) = 1

16h̄3

∫
ωa,ωb

([
Bωa+v + Bωa−v

][
Bωb+v − Bωb−v

] + [
Bωa+v − Bωa−v

][
Bωb+v + Bωb−v

])
K(ωa,ωb), (E3)

K(ωa,ωb) =
∑
εi

ε2ε3ε4

∫
ω1,..ω6

[
Fε2

ω1
+ F

−ε1−ω1
+ 2πδ(ω1)

][
Fε3

ω2
+ F

ε1−ω2
+ 2πδ(ω2)

][
Fε4

ω3
+ F

−ε1−ω3
+ 2πδ(ω3)

]
× [

Fε2
ω4

+ F
−ε3−ω4

+ 2πδ(ω4)
][

F−ε2
ω5

+ F
−ε4−ω5

+ 2πδ(ω5)
][

F−ε3
ω6

+ F
ε4−ω6

+ 2πδ(ω6)
]

× (2π )3δ(ωa + ω1 + ω4 + ω5)δ(−ωb + ω2 − ω4 + ω6)δ(ωb + ω3 − ω5 − ω6). (E4)

We notice that the function K(ωa,ωb) can have poles at ωa, ωb = iδ leading to a logarithmic divergence term for either a O(ω−1)
term with the antisymmetric expression∫

ω

(Bω+v − Bω−v)
1

ω − iδ
= −2

∫ ∞

0
Bτ sin(vτ )dτ = 2h̄η

π
v ln(v) + O(v), (E5)

or for O(ω−2) terms with the symmetric expression∫
ω

(Bω+v + Bω−v)
1

(ω − iδ)2
= −2

∫ ∞

0
τBτ cos(vτ )dτ = 2h̄η

π
ln(v) + O(v), (E6)

where δ = +0. Note that the Fourier transform of 1/(ω − iδ) is e−δτ
(τ ) while that of 1/(ω − iδ)2 is e−δτ τ
(τ ). We keep here
only the long-time divergence, controlled by ln v. Keeping also short-time divergences would eventually replace ln v → ln(v/ωc)
with ωc = η/m. Equations (E5) and (E6) show that ln2(v) terms arises from either a 1/(ωaω

2
b) or 1/(ω2

aωb) terms in K(ωa,ωb).
We use the retarded property of Fτ = Fτ
(τ ) and expand the function in powers of h̄/η

F ε
ω = eiεh̄/(2η)

∞∑
n=0

1

n!

(
− ih̄ε

2η

)n
i

ω + inωc + iδ
− i

ω + iδ
. (E7)

Each of the six factors takes the form

Fεi

ω + F
εj

−ω + 2πδ(ω) =
∞∑

n=0

1

n!

(
− ih̄

2η

)n{
iεn

i eiεih̄/(2η)

ω + inωc + iδ
+ iεn

j eiεjh̄/(2η)

−ω + inωc + iδ

}
, (E8)

where the delta function cancels with the last terms of the Fω. We note that ln v terms arise from terms with at least one
vanishing nj , leading to a pole. For that particular nj the pole has a coefficient exp[iεih̄/(2η)] − exp[iεjh̄/(2η)] that vanishes
when h̄/(2η) = π × integer. Hence all terms of δE(2) have at least one periodic factor of sin[h̄/(2η)].

The triple-frequency integral Eq. (E4) with the substitution (E8) has 24 terms all with three poles in either ωa or ωb. Solving
the triple integral and the εj summations we find

K(ωa,ωb) =
∑

n1,...,n6�0

1

n1!n2!n3!n4!n5!n6!

(
− ih̄

2η

)n1+n2+n3+n4+n5+n6 2

ω3
c

{
[(−1)n2 − (−1)n4 ][(−1)n1 − e−ih̄/η]

(n2 + n3 + n4 + n5 + δ)(n1 + n2 + n3 + δ + iωa/ωc)

×
(

(−1)n3 − (−1)n5+n6eih̄/η

n3 + n5 + n6 + δ − iωb/ωc

+ (−1)n5 − (−1)n3+n6e−ih̄/η

n3 + n5 + n6 + δiωb/ωc

)
+ (−1)n2 − e−ih̄/η

(n1 + n2 + n3 + δ + iωa/ωc)

×
(

[(−1)n3 − (−1)n5+n6eih̄/η][(−1)n1 − (−1)n4 ]

(n3 + n5 + n6 + δ − iωb/ωc)[n1 + n3 + n4 + n6 + δ + i(ωa − ωb)/ωc]

+ [(−1)n3+n6eih̄/η − (−1)n5 ][(−1)n1+n4eih̄/η − e−ih̄/η]

(n3 + n5 + n6 + δ + iωb/ωc)[n1 + n3 + n4 + n6 + δ + i(ωa + ωb)/ωc]

)

+ (−1)n2 − e−ih̄/η

(n1 + n2 + n3 + δ + iωa/ωc)(n1 + n4 + n5 + δ + iωa/ωc)

×
(

[(−1)n3 − (−1)n6 ][(−1)n1+n5eih̄/η − (−1)n4 ]

[n1 + n3 + n4 + n6 + δ + i(ωa − ωb)/ωc]
+ [(−1)n1+n4eih̄/η − (−1)n5 ][(−1)n3+n6eih̄/η − e−ih̄/η]

[n1 + n3 + n4 + n6 + δ + i(ωa + ωb)/ωc]

)}
. (E9)
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At this stage the ln2 v term can be simply identified, since this term needs poles in both ωa and ωb. The only such term which
has the form [(ωa − iδ)(ωb − iδ)2]−1 is the term where n1 = n2 = · · · = n6 = 0; no other term has a zero-frequency divergence
at both ωa and ωb. For this term we get

K0(ωa,ωb) = 16 sin2[h̄/(2η)] sin(h̄/η)

(ωa − iδωc)2(ωb − iδωc)
. (E10)

And the full expression from Eq. (E1), using Eqs. (E5) and (E6), is then

δE(2) = 16

16h̄3

4h̄2η2

π2
v ln2(v) sin2 h̄

2η
sin

h̄

η
+ O(ln v) = 4η2

π2h̄
sin2 h̄

2η
sin

h̄

η
v ln2(v) + O(ln v). (E11)

This coefficient of the v ln2(v) term agrees with that of Eq. (70).
We consider next some of the terms that contribute to the ln v coefficient. From Eq. (E5) we know that only terms with a

single pole [i.e., either 1/(ωa − iδ) or 1/(ωb − iδ)] contribute. We define an expansion

K(ωa,ωb) = K0(ωa,ωb) +
∞∑

n̄=1

(
− ih̄

2η

)n̄ 2

ω2
c

kn̄(ωa,ωb), (E12)

where n̄ = ∑6
j=1 nj . Thus there are six terms for n̄ = 1, 21 terms for n̄ = 2, and 56 terms for n̄ = 3. Due to the ωa, ωb symmetry

we define

κn̄(ω) = lim
ωa→0

ωakn̄(ωa,ω) + lim
ωb→0

ωbkn̄(ω,ωb), (E13)

so that one integration gives a ln v while the other gives its coefficient in the form

δE(2) = 4η2

π2h̄
sin2 h̄

2η
sin

h̄

η
v ln2(v) + η

2ω2
ch̄

2π

∞∑
n̄=1

(
− ih̄

2η

)n̄ ∫
ω

Bωκn̄(ω)v ln(v) + O(1). (E14)

For the first few terms we find

κ1(ω) =
P2 + P2 cos h̄

η

P4
sin2 h̄

2η
, κ2(ω) =

P4 + P4 cos h̄
η

P6
sin

h̄

2η
, κ3(ω) =

P8 + P8 cos h̄
η

P10
sin2 h̄

2η
, (E15)

where PI is a polynomial of ω/ωc of degree I . The result is consistent with having at least one factor of sin[h̄/(2η)], as shown
above in general.
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