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PACS 37.10.Gh – Atom traps and guides
PACS 74.25.Wx – Vortex pinning (includes mechanisms and flux creep)
PACS 74.25.N- – Response to electromagnetic fields

Abstract – We study trapping of a cold atom by a single vortex line in an extreme type-II
superconducting chip, allowing for pinning and friction. We evaluate the atom’s spin flip rate and
its dephasing due to the vortex fluctuations in equilibrium and find that they decay rapidly when
the distance to the vortex exceeds the magnetic penetration length. We find that there are special
spin orientations, depending on the spin location relative to the vortex, at which spin dephasing
is considerably reduced while perpendicular directions have a reduced spin flip rate.

Copyright c© EPLA, 2012

Introduction. – A significant goal of atom-chip exper-
iments is to trap cold atoms near a surface at the submi-
cron scale. The magnetic fluctuations near a metallic
surface lead to significant spin flip (sf) transition towards
untrapped magnetic sublevels and hence loss of atoms
from the trap [1]. This has led to theoretical study of
superconducting atom chips predicting a significant reduc-
tion of noise [2–4] of 6–12 orders of magnitude. The reduc-
tion is more significant when the atom’s distance z from
the surface is in the range λ< z < δ, where λ is the London
penetration length and δ is the skin depth of the normal
phase; e.g., for Nb chip and Rb atom with sf frequency
ν = 560KHz we have λ= 35nm and δ= 150µm. Experi-
mental data [5,6] have reached ≈ 30µm showing, however,
an enhancement of the lifetime by a factor ≈ 10.
In current atom-chip experiments, DC magnetic fields

of the order of 10–100G are applied orthogonally to slabs
of type-II superconductors, resulting in vortices within
the superconducting material. Dynamics of finite density
vortices (i.e., vortex spacing � λ) were considered as a
source of noise [7], and the relation to flux flow was
studied [8,9]. Furthermore, magnetic fluctuations lead to
dephasing of coherent spin states [9,10].
Further interest in vortices is their control of the

magnetic field close to the surface hence producing a
magnetic trap. Stable traps due to vortices on a thin super-
conducting disc were demonstrated experimentally [11].
Other shapes of chip can lead to programmable magnetic

(a)E-mail: hbaruch@bgu.ac.il

trap geometries [12]. Furthermore, isolated vortices can be
generated in a remanent state, leading to stable traps [13].
Near-field noise is expected to be reduced due to the prox-
imity of the superconductor, and technical noise is mini-
mized as no transport current is needed to create the
trap.
In the present work we consider fluctuations of a

single vortex and the resulting dephasing and sf rate
of an atom above the surface. We consider the limit of
type-II superconductors, i.e., the ratio κ= λ/ξ is large,
where ξ is the coherence length. We also assume that
dissipation is dominated by the vortex frictional motion,
i.e., the surrounding superconductor is non-dissipative;
the latter has been studied separately [2–4]. We consider
the vortex displacement u(z), where z < 0 is the distance
from the surface at z = 0, and show that it must end
perpendicular to the surface for large κ, i.e., du/dz|0 = 0.
This boundary condition was shown for superfluids [14]
and has been applied to superconductors [15,16], yet it
was not explicit in related works [17,18]. In addition
to elastic and external forces, the vortex responds to
pinning and friction forces. We consider strong pinning
due to a columnar defect, or weak pinning where friction
dominates. We find that the magnetic fluctuations decay
rapidly at distances beyond λ, yet even at short distance
they have significant minima corresponding to a location-
dependent eigenvector. Choosing the trap direction along
this eigenvector reduces dephasing [9,10] considerably,
while choosing it in the perpendicular direction reduces
the sf rate.
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The strategy is to consider a magnetic dipolem at posi-
tion r= 0, z0 > 0 (r and u(z) are 2-dimensional vectors)
that emits a magnetic field hi(r, z) with frequency ω that
is incident on the surface z = 0. The boundary condi-
tions determine a reflected magnetic field hr(r, z), hence
a response function hri (0, z0) = αi,jmj . Consider a spin
polarized in a direction n̂ which is the static magnetic
field at the trap center. The fluctuation dissipation theo-
rem determines then the magnetic fluctuations, and the sf
rate of an atom with moment µ is given by the Golden
rule as [19,20]

Γsf =
2µ2

�2

∑
i Im[αii]

e�ω/kBT − 1 . (1)

Here ω is the transition frequency between the spin
levels, T is the temperature and i sums on the two
perpendicular directions to n̂ (for spin > 1 one needs 2 or
more transitions of the form (1)). In contrast, dephasing is
caused by the fluctuations in the energy difference of two
trapped magnetic sublevels [9,10], hence it is determined
by Im[αii] where i is now in the n̂ direction.
The evaluation of the reflected wave proceeds in the

following steps: i) evaluate the magnetic field at z < 0 and
then hr(r, z) in term of a general vortex shape u(z), ii) find
an equation of motion for u(z), including elastic, external
source, friction and pinning forces, and solve as a response
to m, iii) combine i) and ii) to find the response αij and
hence the dephasing and sf rates.

Magnetic fields. – Consider a superconductor occu-
pying half space at z < 0 with a single vortex line whose
equilibrium position is at r= u0, i.e., it is perpendicular
to the surface. Allowing for fluctuations, the vortex posi-
tion becomes u(z) so that the local vortex orientation is
ẑ+du/dz and the superconducting phase ϕ(r, z) satisfies

∇×∇ϕ= 2πδ2(r−u)
(
ẑ+
∂u

∂z

)
. (2)

This equation satisfies
∮
γ
∇ϕ ·dl= 2π with the line inte-

gral in the r plane around r= u(z) at any given z < 0. It
is assumed that u(z) is single valued, i.e., the vortex does
not bend by more than π/2. Equation (2) can be solved
as

∇ϕ= (ẑ+
∂u
∂z
)× (r−u)

(r−u)2 . (3)

The vector potential A(r, z) is a solution of London’s
equation [21]

A+λ2∇×∇×A= φ0
2π
∇ϕ, (4)

where φ0 is the flux quantum. The equation for the
magnetic field h(r, z) =∇×A(r, z), or its Fourier trans-
form h(r, z) =

∫
k
hk(z)e

ik·r where
∫
k
≡ ∫ d2k/(2π)2, is

[
1

λ2
+ k2− ∂

2

∂z2

]
hk(z) =

φ0

λ2
e−ik·u(z)

(
ẑ+
∂u

∂z

)
. (5)

The solution is found by the Green’s function Gk(z, z
′) for

h̄k(z) = hk(z)−hk(0)eρz, with ρ=
√
1
λ2
+ k2, which has

the desirable boundary condition h̄k(0) = 0,

Gk(z, z
′) =

1

2ρ
[e−ρ|z−z

′|− eρ(z+z′)]. (6)

The form of this Green’s function reproduces the effects
of image vortices [17,18] and allows for straightforward
calculations for a general shape vortex. Corrections to (6)
and to the following results are of order O(e−L/λ) for a
finite thickness L of the superconductor.
It is convenient to shift the particular solution of (5)

h̄p(r, z) to hp = h̄p−λ2∇(∇· h̄p) so that ∇·hp = 0, hence

hp =
φ0

λ2

∫
k

∫
z′
eik·[r−u(z

′)]
[
Gk(z, z

′)
(
ẑ+
∂u

∂z′

)

+λ2eρ(z+z
′)(ik+ ρẑ)

]
. (7)

The overall solution then is h(r, z) = hp(r, z)+h0(r, z),
where h0(r, z) is a solution of the homogenous part of (4),
to be determined by matching with the external fields.
We proceed now to study boundary conditions. For

low frequencies ω the dominant term in the dynamics
is friction, linear in ω. The Maxwell equation in the

vacuum z > 0 is then ∇×∇×A= 0, neglecting the ω2
c2
A

term. The current vanishes at the surface, i.e., (∇×
h)z(r, 0) = 0, and as usual, h(r, z) is continuous across
z = 0. Note that ∇ ·A= φ02π∇2ϕθ(−z) leads to a jump in
∂zAz, however this boundary condition is not needed for
h(r, z) (eq. (10) below) within our quasistatic limit.
The vector potential at z > 0 has incoming and reflected

components

A(r, z > 0) =

∫
k

Aik(z)e
ik·r+kz +

∫
k

Ark(z)e
ik·r−kz, (8)

where k= |k|, the gauge is (ik+ kẑ) ·Ai = (ik− kẑ) ·
Ar = 0 and Ai = 2πe−kz0(ik̂+ ẑ)×m is the dipole’s
radiation.
The continuity of magnetic fields can be written as

(ik+ kẑ)×Ai+(ik− kẑ)×Ar = hkp(0)+hk0 , (9)

where hp(r, z) =
∫
k
eik·rhp(k, z), h0(r, z) =

∫
k
eik·r+ρzhk0 .

Applying (ik− kẑ) on (9) eliminates Ar and with
(∇×h)z(r, 0) = 0 and using (∇×hp)z(r, 0) = 0 the total
field can be written as

h(r, z) = φ0

∫
k

∫
z′
eik·[r−u(z

′)]
[
1

λ2
Gk(z, z

′)
(
ẑ+
∂u

∂z′

)

+eρ(z+z
′)(ρ− k)(ẑ− ik̂)

]

−
∫
k

eik·r+ρz
2

ρ+ k
[(ik× ẑ) ·Ai](kẑ+ iρk̂).

(10)
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Applying (ik+ ρẑ) on (9) identifies, after some algebra,
our goal

hr(r, z) = [S]− φ0
λ2

∫
k

∫
z′
eik·[r−u(z

′)]e−kz+ρz
′ ik̂− ẑ
k+ ρ

,

(11)

where [S] =
∫
k
eik·r−vz

(
v−ρ
v+ρ (ik× ẑ) ·Ai

)
[ik̂− ẑ] stands

for a pure superconductor response, i.e., in the absence of
a vortex; this term does not contribute to the magnetic
fluctuations.

Vortex equation of motion. – We derive here the
forces on the vortex: an elastic force, a Lorentz force due
the source field, and add friction and pinning forces. The
intrinsic forces can be derived from a London free energy
in terms of∇ϕ (eq. (3)) as a variation on u(z). The result
is the familiar Lorenz force

Fu(z) =
φ0

4π
(∇×h)×

(
ẑ+
∂u

∂z

)
||

= Felasu (z)+Fsourceu (z), (12)

where || denotes the x, y components and (∇×h) is
evaluated at r= u(z). Here Fsourceu (z) is proportional to
the source Ai while Felasu (z) is the intrinsic elastic force
which is independent of Ai. Felasu (z) is found from the 1st
term of (10) and is evaluated by linearizing in u(z′)−u0,
Taylor expanding u(z)−u(z′), integrating z′ and keeping
only terms that diverge as ξ→ 0,

Felasu (z)→ φ20
(4πλ)2

{
−∂u
∂z

∫
kdk

ρ
eρz +

∂2u

∂z2

∫
kdk

ρ2

}
.

(13)
The first term diverges at z = 0 as 1/ξ which is the upper
limit on the k integration. The use of this upper limit is
a qualitative description and is valid only for ln ξ terms,
where a change in the ξ coefficient is a relatively small
correction. To be consistent with the starting eq. (2) we
must eliminate the large 1/ξ force and impose a boundary
condition

∂u

∂z

∣∣∣∣
z=0

= 0. (14)

We note that that the sign of this force pushes the vortex
towards (14), i.e., the latter is stable. This boundary
condition has the intuitive interpretation that the current
∼ φ02π∇φ−A (eq. (4)) near the vortex core is dominated by∇φ, which in turn is perpendicular to the vortex direction
(eq. (3)). Since this current must be parallel to the surface
at z = 0 eq. (14) follows. In fact this argument provides
an exact proof in the context of He II [14] (where A is
indeed absent). Our derivation of (14) extends this proof
to superconductors (for large κ) as it includes the full A
and allows for reflections from the surface. For κ that is
not large one has to go beyond the phase only description
of eq. (2) and use coupled phase-amplitude equations [21].
The 2nd term of (13) is ∼ lnκ and in the following we take

it as the dominant term in the elastic force. The result is
then the well-known elastic coefficient for bending of the
flux line due to change in its length [21]

Felasu (z) =
φ20
(4πλ)2

lnκ
∂2u

∂z2
. (15)

The external source contribution to the force is found
from the 2nd term of (10) and in terms of the source m it
becomes

Fsourceu (z) =
φ0

λ2c

∫
k

eik·u0+ρz−kz0
ik

ρ+ k
[(ik̂+ ẑ) ·m)].

(16)
The dynamics are dominated by a friction term η ∂u

∂t

where η can be estimated from the Bardeen-Stephen (BS)
result [22], η= φ20/(2πξ

2c2ρn), where ρn is the resistivity
of the normal state. Finally we add a pinning term
α[u(z)−u0] that attempts to fix the vortex at the location
u0, i.e., a columnar defect. For this strong pinning case one
can estimate α as the condensation energy density, hence
defining α= 12 ᾱφ

2
0/(4πξλ)

2 strong pinning has ᾱ≈ 1. The
equation of motion is then

φ20
(4πλ)2

lnκ
∂2u

∂z2
+ iωηu−α(u−u0) =−Fsourceu . (17)

The boundary conditions are (14) and u→ u0 at z→−∞.
The solution is, defining Fsourceu (z) =

∫
k
Fke

ρz,

u(z)−u0 = −(4πλ)
2

φ20 lnκ

∫
k

Fk

ρ2− 1/l2 (e
ρz − ρlez/l), (18)

where 1
l2
= α−iωη
φ20 lnκ

(4πλ)2, analogous to the Campbell

length [23] for systems with finite vortex spacing (� λ).
Response. – The response is identified from eq. (11),

expansion in u(z)−u0 and the solution (18). The angular
integrations in eqs. (11), (18) can be done analytically,
leading to a double integral on k, k′ that is evaluated
numerically. The relative significance of the friction and
pinning is controlled by the ratio

ωη

α
=
16πλ2ω

c2ᾱρn
, (19)

where the BS friction [22] is used. For typical parameters
of magnetic traps and type-II superconductors we use λ≈
100 nm, ω≈ 1MHz and ρnω≈ 10−12, hence we estimate
the ratio (19) as 10−5/ᾱ. Therefore, unless pinning is very
weak we can expand in this ratio, leading to a response
linear in ωη. The response has then the form

Im α
(1)
ij =

4ωη

λ3α lnκ

×



Φzz(u0, z0) Φzu(u0, z0) 0

Φuz(u0, z0) Φuu(u0, z0) 0

0 0 Φz×u(u0, z0)


 ,

(20)
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Fig. 1: (Colour on-line) Noise components as function of z0, u0, plotted for z0/λ> 0.1. Parameters are ᾱ= 0.1, κ= 100. Note
that Φzu changes sign and Φuu has a minimum, both at z

2
0 ≈ 2u20, while Φzz(0, u0) = φzu(0, u0) = 0.

where the Cartesian axes are chosen in the directions of
ẑ,u0, ẑ×u0. We note that there are two finite off-diagonal
terms Φuz(u0, z0) =Φzu(u0, z0), that are equal as required
by Onsager’s reciprocity theorem. We show the 4 compo-
nents of the noise Φij(u0, z0) in fig. 1. We note that
an mz dipole placed above a vortex (i.e., u0 = 0) does
not produce a force on the vortex hence Φzz(0, z0) = 0
(vanishing as ∼ u20) and Φzu(0, z0) = 0 (vanishing as
∼ |u0|). Furthermore, Φuu(u0, z0) has a minimum and
Φzu(u0, z0) changes sign, both at z

2
0 = 2u

2
0 at large z0, u0

while for small z0 this continues at a somewhat smaller
z0/u0 ratio. For z

2
0 +u

2
0� λ2 we find

Φzz = f(α)
9(z0u0)

2

(z20 +u
2
0)
5
,

Φuu = f(α)
(z20 − 2u20)2
(z20 +u

2
0)
5
,

Φzu = f(α)
3z0u0(z

2
0 − 2u20)

(z20 +u
2
0)
5
,

Φz×u = f(α)
1

(z20 +u
2
0)
3
,

f(α) =
λ6

2(1+
√
α̃)4

[
1+4α̃√
α̃
+4+ α̃

]
, (21)

Fig. 2: (Colour on-line) Dependence of noise on the pinning
strength α for z0 = u0 = 0.8λ and κ= 100, where ᾱ=
2α(4πξλ)2/φ20. The 4 curves correspond to the 4 noise compo-
nents as ordered in the inset.

where α̃= ᾱκ2/ lnκ. Hence all Φij(u0, z0) decay rapidly
beyond λ, with asymptotic forms Φij(u0, z0)∼ z−σ0 , with
σ= 8, 7, 6, 6 for the zz, zu, uu and z×u components,
respectively.
For not too weak pinning, ᾱ� lnκ/κ2, we have in

eq. (21) f(α)→ λ6

2ᾱκ2 lnκ, and Φij ∼ 1/α, hence Im α(1)ij ∼
1/α2. Figure 2 shows the α dependence at an intermediate
scale, displaying a somewhat stronger decrease with α.
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Fig. 3: (Colour on-line) Ratio of the two noise eigenvalues in
the (z0, u0)-plane. Parameters are ᾱ= 0.1, κ= 100.

Fig. 4: (Colour on-line) Direction of the eigenvector with mini-
mum magnetic fluctuations (full lines). The white insertions
are the directions for which there is no force on the vortex at
z = 0. Parameters are ᾱ= 0.1, κ= 100.

The response in the z -u plane can be diagonalized
leading to fig. 3 with the ratio of upper and lower
eigenvalues. We find that the magnetic noise is reduced
by at least a 102 in the direction of the eigenvector with
the lower eigenvalue. This direction is shown in fig. 4 by
the thick blue lines. We find that these directions correlate
well with the direction of m such that the source (16)
vanishes at z = 0. The latter directions are shown as the
inner white lines in fig. 4. We note that for z20 +u

2
0� λ2

the lower eigenvalue of eq. (21) actually vanishes and its
eigenvector in the (z0, u0) plane is ∼ [2u20− z20 , 3z0u0], in
agreement with fig. 4.
To appreciate the scale, we note that for a normal metal

the response is (for z < δ) Imαnzz =
πω

2z0c2ρn
hence the ratio

is (similar for other components)

Imα
(1)
z,z

Imαnz,z
=
128π

ᾱ lnκ
Φzz(u0, z0)

z0

λ
. (22)

For z0 ≈ λ and ᾱ≈ 1 the overall magnitude, as seen in
fig. 1, is comparable to that of a normal metal. Hence
at short scales z0, u0 � λ the vortex fluctuations lead to

relatively low noise only in the special directions . At large
distance z0� λ the noise decreases rapidly as z−σ0 with
σ= 6− 8 (eq. (21)) for the various components, while the
normal metal’s noise decreases as 1/z0. Hence in the range
λ	 z0	 δ the vortex noise is considerably less than that
of the normal metal.
Finally we consider the case α= 0 corresponding to

weak pinning α	 ηω. This case can correspond to weak
pinning from point defects, such that the persistence
length of the vortex [24] Lc�L (and L� λ for our
solution to hold). In this case the vortex elasticity over-
comes the pinning and the vortex remains essentially
straight in equilibrium. We define a dimensionless parame-

ter ( 4πλ
2

φ0
)2 ηω2 lnκ = η̄ω which with the BS friction, κ= 10

2

and typical parameters as above is ≈ 10−2. For small
η̄ω we find that the response has the form Imα

(2)
ij =

φ0
λ5
√
2ωη lnκ

Φ̄ij(u0, z0) where Φ̄ij(u0, z0) is η independent.

In eq. (17) η provides a restoring force, hence a diver-
gence ∼ 1/√η as η→ 0. Therefore, for a given α and as η
is reduced, in the first range α	 ηω the noise increases,
becomes maximal at α≈ ηω, then in the regime α� ηω
the noise decreases as Imα

(1)
ij ∼ ωη/α2 and finally vanishes

at η→ 0.
Diagonalizing Φ̄ij leads to an eigenvalue λ− = 0 with

an eigenvector which is very close to that of the strong
pinning case in fig. 4. We find that Φ̄ij and Φij have a
very similar z0, u0 dependence. In particular for z

2
0 +u

2
0�

λ2 we find that Φ̄ij is given by eq. (21), except for
the replacement f(α)→ λ6. Hence, comparison with the
strong pinning case yields

Im α
(2)
ij

Im α
(1)
ij

=
ᾱπ
√
2κ2

(2η̄ω)3/2 lnκ

Φ̄ij(u0, z0)

Φij(u0, z0)
→ πᾱ2κ4

(η̄ω)3/2 ln2 κ
,

(23)

where the limit corresponds to z20 +u
2
0� λ2. For ᾱ not too

small this ratio is large, in particular due to the κ4 factor,

originating from Im α
(1)
ij ∼ 1/α2.

Conclusions. – We present here a systematic treat-
ment for a vortex response to an external field. We apply
our results to the problem of dephasing and spin flip in
cold atom traps. The single vortex provides an efficient
tool for trapping cold atoms [11–13], hence the significance
of evaluating the fluctuation effects.
To achieve a single vortex situation in equilibrium

one needs that the vortex spacing be sufficiently large
compared with z0; since we aim at z0 ≈ λ the spacing
should be larger than λ, i.e., an induction field smaller
than the first critical field. Non-equilibrium prepara-
tion for isolated vortices is also possible via a remnant
state [13].
The single vortex in our system breaks translational

symmetry, hence the reflection from the surface is not
specular and off-diagonal elements appear in the response
matrix. Due to these elements, there is a special (z0, u0)
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dependent direction, for which the fluctuations are consid-
erably reduced.
For a trapping static field in the n̂ direction, the

magnetic fluctuations ∼ Imαii measure the fluctuations
in the energy difference of two trapped magnetic sublevels
with i in the n̂ direction, leading to dephasing [9,10]. By
choosing n̂ parallel to that of the minimum noise, fig. 4,
dephasing will be considerably reduced. In contrast, the sf
rate depends on field fluctuations perpendicular to n̂, i.e.,
the directions in

∑
i of eq. (1). Hence by choosing the trap

direction perpendicular to those in fig. 4 the sf rate will
be reduced by a factor ≈ 2.
We find that strong pinning, e.g., as from a columnar

defect, is significant for reducing magnetic noise. Further-
more, we find a strong decay at z0 >λ of the magnetic
fluctuations∼ z−σ0 , with σ= 6− 8 for various noise compo-
nents, eq. (21). The regime λ	 z0	 δ is a regime where
the vortex static field B is still significant for trapping
[18], i.e. Bz ∼ 1/z20 , Bu ∼ 1/z30 . Hence in this regime the
magnetic fluctuations are significantly reduced, allowing
for efficient trapping with low dephasing and spin flip
rates.
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