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PACS 73.20.Mf – Collective excitations (including excitons, polarons, plasmons and other
charge-density excitations)

PACS 68.35.Fx – Diffusion; interface formation

Abstract – Metal surfaces with disorder or with nanostructure modifications are studied, allowing
for a localized charge layer (CL) in addition to continuous charges (CC) in the bulk, both charges
having a compressional or diffusive nonlocal response. The notorious problem of “additional
boundary conditions” is resolved with the help of a Boltzmann equation that involves the scattering
between the two charge types. Depending on the strength of this scattering, the oscillating charges
can be dominantly CC or CL; the surface plasmon (SP) resonance acquires then a relatively small
linewidth, in agreement with a large set of data. With a few parameters our model describes a
large variety of SP dispersions corresponding to observed data.

Copyright c© EPLA, 2012

Introduction. – Collective electronic excitations in
metal surfaces covered with adsorbates or nanostruc-
tures are of significant recent interest. Surface plasmons
(SP) are an efficient tool for characterizing such surfaces
[1,2] and can be used as sensitive chemical sensors and
biosensors [3]. A considerable amount of data on the
dispersion of SPs has been accumulated [4–16] on a vari-
ety of metal surfaces, clean, sputtered, or covered with
thin films. These composite surfaces indicate the neces-
sity of distinguishing between two types of charge carri-
ers: continuous charges (CC) extending throughout the
bulk and a charge layer (CL) of carriers localized at the
surface. In fact, photoemission data on some of these
surfaces reveals the existence of quantum well states at
the surface [17]. The two charge types are relevant also for
pure metals: in alkali metals the charge extends beyond
the neutralizing ions, forming a distinct layer [6,7]. In
Ag a two-component s-d electron system with different
surface and bulk charges has been put forward to explain
the SP dispersion [18]. In some cases a distinct surface
band is formed [2], e.g. as in Be(0001), showing an acoustic
plasmon [19]. Further motivation for a two-type charge
model comes from studies of the anomalous heating of
cold ions observed in miniaturized Paul traps, that invoke
surface charge fluctuations on the metallic electrodes
[20–24].
Most information about the SP dispersion ω(k) is avail-

able in the non-retarded range ωp/c� k� kF where k
is the momentum parallel to the surface, ωp is the bulk
plasma frequency, c the speed of light, and kF the Fermi

momentum. In this range, the dispersion is parameter-
ized as ω(k) =A+Bk+Ck2 and the limiting value A=
ωp/
√
2 is well known (assuming unit background permit-

tivity) [25]. Considerable insight is gained by Feibelman’s
sum rule [26] relating the slope B to the centroid of the
oscillating charge density profile δn(z):

B =− ωp
2
√
2

∫
dz z δn(z)∫
dz δn(z)

. (1)

Here the medium is located in the half-space z � 0, the
onset of the dielectric function due to bulk ions is at z = 0
and δn(z) is constant along the surface (k→ 0). Hence
the SP dispersion is negative (B < 0) if the oscillating
charge is dominantly located outside the metal (z > 0)
as in alkali metals [6,7], while B > 0 if the oscillating
charge is dominantly inside. In some cases the coefficient
B is small and the quadratic term Ck2 dominates the
dispersion [4,14,16], even at the lowest measurable k. From
eq. (1), B = 0 is a strong indication for a charge excitation
that is highly localized at the surface, z = 0.
In the present work we consider a nonlocal electro-

dynamic model including both CC and CL, which for
small k involves diffusive (or compressional) terms, simi-
lar to hydrodynamic models [1,2]. The presence of two
types of charges leads to the situation that the bound-
ary conditions of Maxwell’s equations are not sufficient to
solve the problem. The problem has been originally identi-
fied by Pekar [27], with a variety of “additional boundary
conditions” (ABC) proposed over the years [28–31], and
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Table 1: Data on SP dispersion ω=A+Bk+Ck2 and linewidth Γ at small k. The coefficients A,B,C are given by the
corresponding references, with “–” indicating a coefficient that was assumed to be zero for the fit. All cases with |B|>Ck1
or |B|< 0.1Ck1 are shown with a relatively small Γ (momentum scale k1 = 1 Å−1). The last two entries show cases where
0.1Ck1 < |B|<Ck1 with a large Γ.

Ref. Sample A (eV) B (eV · Å) C (eV · Å2) Γ (eV)

[6] K 2.73 −0.95 0.09 0.3
[4] Ag(110) k ‖ [001] 3.76 – 3.68 0.11
[4] Ag(110) k ‖ [11̄0] 3.86 – 1.46 0.18
[4] Ag(111) 3.69 – 4.17 0.06
[9] 0.05ML O/Ag(001) 3.71 – 3.1 ∼ 0.3
[9] 0.1ML O/Ag(001) 3.70 1.1 −0.9 ∼ 0.3
[9] 0.15ML O2/Ag(001) 3.69 0.86 −0.1 ∼ 0.3
[11] Ag(001) 3.71 1.45 – 0.15
[13] Cu(111) 1.18 −0.72 – 0.2
[14] 10ML Ag/Ni(111) 3.75 – 1.57 ∼ 0.1
[16] sputtered 22ML Ag/Cu(111) 3.76 −0.08 2.50 0.18
[7] Mg(0001) 7.38 −3.023 9.78 1.2
[10] Al(111) 10.86 −3.1 7.7 2.3

compared with experimental data [30]. In ref. [32], a model
with two charge types, similar to ours, was considered and
an ABC was proposed by arguing that the energy current
is conserved across a boundary. It is known, however, from
ABC studies [27–31] that microscopic information must
be used, i.e. Maxwell’s equations by themselves are insuf-
ficient.
We address here the ABC problem by solving a Boltz-

mann equation, allowing for impurity scattering in the
bulk as well as surface scattering that mixes CC and CL.
Note also that the CL allows charge conservation to hold
even if the bulk current perpendicular to the surface is
locally finite, representing deviations from specular reflec-
tion. In this sense the localized charge is a measure of
diffuse scattering or disorder at the surface: the scattered
bulk current becomes a surface current which is allowed
to diffuse along the surface. A key point of our model
are the transition rates between the two types of charges
that provide a restoring force (plasma oscillation) and
damping for the combined charge oscillations. By allow-
ing for bulk and surface impurity scattering, our approach
complements traditional band structure theories [1,2] and
provides a unified framework for analyzing SP dispersion
and linewidth. The resulting requations involve a few para-
meters of the poorly known CL and of the surface-bulk
charge scattering. We start with discussing the qualitative
effect of the surface scattering and then derive the actual
SP dispersion, showing a variety of forms corresponding
to experimental data.

Qualitative features. – Our model implies that the
surface scattering that mixes CC and CL enhances the
SP linewidth Γ. Hence Γ is relatively small if the charge
response is dominantly CC (large positive slope, B >Ck1
with k1 = 1 Å

−1 being a typical large momentum) or
dominantly CL (large negative slope, B <−Ck1, or small
slope, |B|< 0.1Ck1). Table 1 shows all the corresponding

cases that we are aware of, confirming this trend for small
damping. Cases where 0.1Ck1 < |B|<Ck1 may or may
not correspond to dominant CC or CL and a detailed fit
of ω(k) and Γ(k) is needed to determine the parameters.

The model and nonlocal electrodynamics. – We
proceed to define the charges and currents of the model.
The bulk medium is located in z < 0, and the surface layer
in 0< z < d. We write ρ(r, t) and ρs(r, t), respectively, for
the charge density in the two regions. We expand the
current response, considering small charge gradients

1

τ
j+ ∂tj=

ω2p

4π
E− c2b∇ρ, z < 0,

1

τs
js+ ∂tjs =

ω2s
4π
E− c2s∇ρs, 0< z < d.

(2)

The equilibrium charge density provides restoring forces
ω2p/4π and ω

2
s/4π in the bulk and surface regions, where

ωp,s are the corresponding plasma frequencies if the
CC/CL were decoupled. The bulk and surface compress-
ibilities are expressed in terms of the sound velocities
cb,s, respectively, while c

2
bτ and c

2
sτs are the corresponding

diffusion coefficients.
In the following, we consider a time and space depen-

dence ei(kx−ωt) and suppress this exponential factor. Equa-
tion (2) then becomes an ordinary differential equation
for ρ(k, z, ω) and ρs(k, z, ω) etc. The ω-argument will be
dropped for simplicity. The damping terms (1/τ, 1/τs) are
omitted for brevity and are easily restored by multiplying
the bulk (surface) parameters ω2p and c

2
b (ω

2
s and c

2
s) with

the factor 1+ i/(ωτ) (1+ i/(ωτs)), respectively.
An important realization of a surface layer is the case

of a charge spill-out, as in the alkali metals [6,7,10].
In this case, the CL is further away from the restoring
force provided by the equilibrium situation. Hence the
equilibrium charge, when averaged over the CL thickness
d in the oscillating state, is reduced and the restoring force
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is weak, ωs <ωp. Note that even with ωs = 0, there is
eventually a restoring force via coupling to the bulk so
that ω(k→ 0) = ωp/

√
2. We also note that when ωs = 0,

Feibelman’s sum rule eq. (1) [26] is still valid with z = 0
as origin, since the charges at z > 0 respond only in a
nonlocal way via the gradient ∇ρs which affects higher
order O(k2) terms. When ωs �= 0, e.g. for nanostructures
with their own ions and equilibrium charge density, the
sum rule (1) is modified such that

B =
ωp

2
√
2

[
−
∫
dz z δn(z)∫
dz δn(z)

+
ω2sd

ω2p

]
, (3)

adding a positive term to the slope.
In the Fourier representation introduced above, charge

conservation determines the charge profiles as

z < 0: [ω2p − c2b∂2z + c2bk2−ω2]ρ(k, z) = 0
⇒ ρ(k, z) = ρ0(k) evbz, (4)

0< z < d: [ω2s − c2s∂2z + c2sk2−ω2]ρs(k, z) = 0
⇒ ρs(k, z) = γ0(k) cosh vsz+ γ1(k) sinh vsz.

The inverse decay lengths vb and vs for the bulk and
surface charges are

vb =
1

cb

√
ω2p + c

2
bk
2−ω2,

vs =
1

cs

√
ω2s + c

2
sk
2−ω2.

(5)

Current conservation at z = d yields (ω2s/4π)Ez(k, d)−
c2s∂zρs(k, d) = 0, while at z = 0,

−iωjinz ≡
ω2p

4π
Ez(k, 0

−)− c2b∂zρ(k, 0−)

=
ω2s
4π
Ez(k, 0

+)− c2s∂zρs(k, 0+), (6)

where 0± denotes the limit z→±0.
Maxwell’s equation determines the longitudinal compo-

nents of E in terms of the charges, however the trans-
verse components require four unknowns: two amplitudes
for upward and downward propagation in the layer, and
one amplitude each in bulk (z < 0) and in vacuum (z > d).
Together with the amplitudes ρ0, γ0, γ1 for the charge
density, we have seven unknowns. Each interface provides
three relations (the matching of Ez, ∂zEz and jz), hence
one boundary condition is missing. The necessity for an
additional boundary condition (ABC) has a long history
and occurs when more than one material mode is present,
for example the γ0, γ1 modes of eq. (4) [28–31]. Therefore
a microscopic input is needed to provide the ABC.
Before developing the ABC, we discuss some general

properties of the CC+CL system. At very small paral-
lel momentum, k� ωp/c∼ 2 · 10−3 Å−1, the SP disper-
sion approaches the light dispersion ω(k)→ ck. While this
range can be optically probed [33], most of the data is

found by electron energy loss spectroscopy at higher k
values. Therefore, we focus on the non-retarded region
ωp/c� k, formally taking c→∞. Since the limit ω(k→
0) = ωp/

√
2 is a bulk property, we expect that the parame-

ter ωs has a small effect. In fact, the numerical solutions
shown below confirm this for ωs � 0.3ωp and k� 0.4ωp/cb.
Hence we display the result for ωs = 0, which has a rela-
tively simple form:

c2b
ω2p
ρ0(k)

[
vb+

ω2vb−ω2pk
ω2−ω2p

]
=

c2s
ω2
γ0(k)

[
k

(
e−kd

cosh vsd
− 1
)
− vs

(
2
ω2

ω2p
− 1
)
tanh(vsd)

]
,

(7)

where the ABC is needed to fix the ratio ρ0(k)/γ0(k). For
a CC system (γ0 = 0) we recover the well known [1,2,25]
SP dispersion ω2 = 12ω

2
p +ω

2
pk/2vb with a dominant linear

dispersion at small k, i.e.

CC: ω(k) =
ωp√
2
+
cbk

2
+O(k2). (8)

For the CL system (ρ0 = 0), we obtain to lowest order
as d→ 0 a purely quadratic dispersion ω2 = 12ω2p + c2sk2,
featuring the surface speed of sound cs. Keeping d finite,
and expanding for small k, we get

CL: ω(k) =
ωp√
2
− csk
2
tan(d̄/2)+O(k2), (9)

where d̄= ωpd/(
√
2cs). Note the negative slope, consistent

with the charge being outside the bulk ions (at z > 0) [26].
The divergence at tan d̄/2 =∞ corresponds to a reso-
nant multimode response [6,7,10,34], which may appear
at higher frequencies if the thickness d is large enough.
Indeed, for ωs = 0 as assumed here, we find that this corre-

sponds to a vanishing total layer charge,
∫ d
0
dz ρs(k, z) = 0:

these are surface dipoles or higher multipoles. They have
been observed in alkali metals [6,7,10] where the charge
response outside the bulk is significant. These modes,
having larger linewidths, are not considered in the solu-
tions below.
We note also that in order to get an acoustic plasmon

solution [2,19] with ω(k)→ 0 as k→ 0, one would require
in eq. (7) γ0d→−ρ0/vb corresponding to opposite signs
of the total bulk (ρ0/vb) and total surface (γ0d) charges.
A specific ABC is then needed to achieve acoustic plas-
mons [2]. Our model allows for surface scattering between
the two types of charges, a distinct situation.

Additional boundary condition via Boltzmann
equation. – We proceed to derive the ABC by using
a Boltzmann transport equation for the charge response
[35,36]. This approach is known to be notoriously difficult
when matching conditions at an interface are involved [36].
We have adopted an alternative approach and consider a
bulk half-space terminated by a two-dimensional surface
sheet that represents the charge integrated over the layer
0< z < d. The matching conditions are then replaced by
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surface scattering that mixes bulk and surface charges. At
equilibrium, the bulk electron distribution per phase space
d2xdz d3p/(2π�)3 is f0(x, z,p), while the surface distri-
bution per phase space d2xd2q/(2π�)2 is f0s (x,q). The
surface charge sheet involves only the lateral coordinates
x= (x, y) and a two-dimensional momentum q. We note
that this phase space description is possible even if the
surface states are localized, by working with the Wigner
transform [37,38]. In response to a weak electric field, the
distributions become f0+ f, f0s + fs, with f, fs� 1. The
transition probability due to bulk impurity scattering per
d3pdt from state p to p′ is W (p′,p). Within the Born
approximation, or more generally in the presence of time
reversal and space inversion, we haveW (p,p′) =W (p′,p).
To first order in f and E, with a bulk velocity v(p)

[∂t+v(p) ·∇]f(x, z,p)+ eE ·∇pf0(x, z,p) =∫
p′
W (p′,p)[f(x, z,p′)− f(x, z,p)] (10)

using the shorthand
∫
p′ =
∫
d3p′/(2π�)3. At the surface we

have a scattering cross-section W ′(q′,q) between surface
states, as well as scattering of bulk states with pz > 0 into
the surface (Ws(q,p)) and scattering of surface states
back into bulk states with pz < 0 (Ws(p,q)). As in the
bulk, we assume W ′(q′,q) =W ′(q,q′). For Ws(q,p) we
can assume reflection symmetry only in x, y as well as time
reversal, henceWs(q,p) =Ws(−q,−p̂) =Ws(p̂,q), where
p̂≡ (px, py,−pz). Boltzmann’s equation, to first order in
E, f , and fs becomes, with a surface velocity u(q)

[∂t+u(q) ·∇]fs(x,q)+ eE ·∇qf0s (x,q) =∫
q′
W ′(q′,q)[fs(x,q′)− fs(x,q)]

+

∫
p,pz>0

Ws(q,p) {f(x, 0,p)− fs(x,q)

+ f0s (x,q)[f(x, 0, p̂)− f(x, 0,p)]
}
. (11)

Note that unlike the bulk equation (10), f0s does not
cancel. The final ingredient is a matching condition:
the total flux with velocity ±vz is matched with the
probability of scattering in or out of surface states. Taking
vz > 0 and considering the Ws(q,p) symmetries,

vz[f(x, 0,p)− f(x, 0, p̂)] =∫
q

Ws(q,p){f(x, 0,p)− fs(x,q)

+f0s (x,q)[f(x, 0, p̂)− f(x, 0,p)]}. (12)

This relation assumes specular reflection in the absence
of surface states, while the latter produce nonspecular
reflection in each vz channel. Integrating eq. (12) over
d3p, pz > 0 yields the total current incoming into the
surface, jinz (x), and by comparing with eq. (11) integrated
over d2q, we get charge conservation at the surface

∂tρ̄s(x)+∇ · js(x) = jinz (x), (13)

where ρ̄s(x) =
∫
q
fs(x,q), js(x) =

∫
q
u(q)fs(x,q).

To solve the transport problem, we make the P1 approx-
imation, i.e., on spatial scales large compared to the mean
free path, only the weakest angular dependence in the
momentum variable is maintained [39]. We therefore use
the following expansion:

f(x, z,p) = ρ(x, z)f (1)(p)+
∑
ik

ji(x, z)vk(p)g
(1)
ik (p),

fs(x,q) = ρ̄s(x)f
(1)
s (q)+ js(x) ·u(q)g(1)s (q),

(14)

where p, q denote the modulus of the vectors p, q. The
reduced symmetry of the surface allows for a diagonal

tensor with elements g
(1)
xx (p) = g

(1)
yy (p) �= g(1)zz (p). For elastic

scattering, we expect the dependence on p, q to be
localized near the corresponding Fermi surface, if the
latter is well defined (the surface states may be spatially
localized).
Integrating the v or u moment of eqs. (10), (11)

yields eq. (2), identifying the plasma frequency as ω2p =

4πe2
∫
p
∂vi
∂pi
f0(x, z,p) (assuming diagonal response) which

becomes ω2p = 4πne
2/m∗ for a parabolic dispersion with

an effective mass m∗. Similarly ω2s = 4πnse2/m∗d, where
n, ns are equilibrium bulk and surface densities, respec-
tively. The v or u moments of eqs. (10), (11) yield the
sound velocity c2b =

∫
p
v2i f

(1)(p) and similarly for c2s, and
also identify the bulk and surface relaxation times

1

τ
=

∫
p,p′
W (p′,p)v2i (p)g

(1)
ii (p),

1

τs
=

∫
q,q′
W ′(q′,q)u2i (q)g

(1)
s (q) (15)

+

∫
p,pz>0

∫
q

Ws(q,p)u
2
i (q)g

(1)
s (q),

where 1/τ may in principle be anisotropic. We also note
that the vx moment of eq. (12) requires in the expansion
(14) of the momentum distribution a quadrupole term
f(x, z,p)∼ vxvz. This term contributes to shear viscosity
at the surface. It is of higher order in velocities, however,
and does not affect the vz moments that we discuss now.
Taking the vz moment of the matching condition (12),

we encounter the following integrals:∫
p

|vz|3g(1)zz (p)≡ α1,∫
p,pz>0

∫
q

Ws(q,p)vz[ρ(x, 0)f
(1)(p)+ vzjz(x, 0)g

(1)
zz (p)]≡

α2ρ(x, 0)+α3jz(x, 0), (16)∫
p,pz>0

∫
q

Ws(q,p)vzf
(1)
s (q)≡ α4,∫

p,pz>0

∫
q

Ws(q,p)2v
2
zg
(1)
zz (p) f

0
s (x,q)≡ α5.

Note that the difference α3−α5 involves an integral over
1− 2f0s (x,q), which vanishes if the surface states have an
electron-hole symmetry.
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Fig. 1: (Colour on-line) Left: surface plasmon dispersion relation ω(k) for different values of the surface scattering parameter α
in eq. (17): α= 0.1 (thin blue lines), α= 1 (dashed red lines) and α= 10 (thick green lines). Upper lines starting at ωp/

√
2: real

part; lower lines: imaginary part ×(−1). Other parameters: ωs = 0, cs/cb = 1, ωpτ = 10, ωpτs = 10, τ ′ =∞ and d̃= ωpd/cb = 3.5.
Right: effects of a nonzero restoring force in the surface layer (plasma frequency ωs): ωs = 0 (thin blue curves), ωs/ωp = 0.5
(dashed red curves) and ωs/ωp = 0.9 (thick green curves). The upper curves are the real part and the lower ones are the
imaginary part ×(−5). The other parameters are cs/cb =

√
3, ωpτ = 10, ωpτs = 10, τ

′ωp = 1, α= 0.1 and d̃= 7.

Putting everything together, the vz moment of eq. (12)
becomes the ABC

jinz (x) = αcbρ0(x)−
ρ̄s(x)

τ ′
, (17)

αcb =
α2

α1+α3−α5 , (18)

1

τ ′
=

α4

α1+α3−α5 . (19)

The two coefficients on the rhs can be interpreted as a
probability of a bulk carrier getting trapped in a surface
state (coefficient α) and a desorption rate back into the
bulk (rate 1/τ ′).
Solutions for the dispersion relation. – To make

contact with the electromagnetic calculation, we identify
ρ̄s with the charge density averaged over the layer 0< z <
d, i.e., integrating eq. (2), we get ρ̄s(k) = [γ0(k) sinh vsd−
γ1(k)(1− cosh vsd)]/vs. When the boundary condition for
the electric field Ez and eq. (6) for the current j

in
z flowing

into the layer, are combined with the ABC (17), one gets a
linear system for the charge amplitudes ρ0(k), γ0(k), γ1(k).
For the interesting case ωs = 0, this becomes

αcbρ0(k) =

[
i
c2sk

2−ω2
ω

+
1

τ ′

]
tanh vsd

vs
γ0(k) (20)

and with eq. (7) yields the SP dispersion

cb
vb(2ω

2−ω2p)−ω2pk
ω2−ω2p

=
iα

ω

c2sω
2
p

ω2− c2sk2+ iω/τ ′

×
[
vsk(

e−kd

sinh vsd
− 1

tanh vsd
)− v2s(2

ω2

ω2p
− 1)
]
. (21)

The parameter α thus measures the relative importance
of the CC and CL amplitudes. For α� 1, the dispersion
corresponds to a CC oscillation, eq. (8), while for α
 1
the dispersion is dominated by the CL, eq. (9). We recall

that a large value of α is facilitated when electron-hole
symmetry holds (α3 = α5 in eq. (18)).
We display in fig. 1 numerical solutions for the SP

dispersion. On the left the effect of the CC/CL mixing
parameter α is shown: the linewidth is relatively small for
α= 0.1 (dominant CC) or α= 10 (dominant CL), while it
is much larger for α= 1 corresponding to strong CC/CL
mixing. This figure is for d̃= ωpd/cb = 3.5 demonstrating
also a negative initial slope when the CL is significant, i.e.
α= 1, 10. When d is smaller, maintaining α> 1, the linear
term is suppressed (eq. (1)) and the dispersion becomes
purely parabolic, as observed in some cases [4,9,14].
Figure 1 (right) demonstrates the effect of ωs and the
possibility of generating a local minimum in Γ(k), as
observed in some cases [10,12]. This situation is facilitated
by ωs ≈ ωp and τ ′ωp = 1, d̃= 7. The effect of ωs on the real
part is to increase the linear term in k, as discussed in
eq. (3).

Discussion. – We developed here a general scheme
for solving the SP dispersion at low k, allowing for two
charge types, CC and CL, both with nonlocal diffusive
response. The scheme uses classical conductivity and
diffusion constants, that in principle can be derived from
a quantum theory with a full interacting band structure.
It is thus restricted to the response at small momenta
k� kF , corresponding to the range of the experimental
data on SP dispersion. For simplicity, we have assumed
that the dielectric function has no resonance in this range,
i.e., interband transitions at k= 0 occur above the plasma
frequency. We have solved the notorious ABC problem
by a Boltzmann equation that allows for CC/CL surface
scattering. The resulting dispersion is consistent with a
large variety of data accumulated on pure metals (where
the CL corresponds to the spill-out charge), on sputtered
systems, disordered surfaces, quantum well surface states,
all leading to distinct electron states in a surface layer.
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We discuss now the role of the most significant para-
meters: surface mixing α, layer thickness d, surface restor-
ing force ω2s , and how they correspond to observed data.
Consider first the surface mixing: when it is weak (small
or large α), it leads to a relatively small linewidth as in
the first eleven lines of table 1. Weak surface mixing corre-
sponds also to dominant CC or CL which is realized, e.g.,
when the dispersion is dominantly linear or quadratic, as
indeed in those eleven lines. Cases in which the linear and
quadratic terms are comparable may (last two lines of
table 1) or may not lead to a large linewidth. In the latter
case a detailed fit is necessary, and is also demonstrated
in fig. 1 (left).
The layer thickness d allows for a negative linear

dispersion, as seen in many metals (table 1). When d→
0 and CL dominates (α
 1), the dispersion is purely
quadratic, as indeed seen in several cases [4,9,14].
The surface restoring force ωs is expected to be small,
ωs <ωp, in the case of alkali metals where the spill-out
charge is further away from the equilibrium charges. In
other cases, a large ωs shows the peculiar feature of a
minimum in Γ(k), as demonstrated in fig. 1 (right). This
minimum, as for Al(111) [10] and Ag on Si(111) [12],
has been discussed in terms of specific band structures.
Our approach is an alternative description in terms of the
charge distribution. With a few parameters our model is
thus able to describe SP dispersion and linewidth on a
large variety of metals and surfaces, as seen over the last
decades.
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