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Shot noise in a Majorana fermion chain
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We calculate the shot noise power in a junction of a network of Majorana bound states (MBSs) with a normal
metal. These Majorana bound states are on the borders of alternating ferromagnetic and superconducting regions
at the quantum spin Hall insulator edge. We analyze different realizations of MBS networks including a few
isolated ones and those in a chain allowing for the limits of weak and strong tunneling. The conductance and the
shot noise are considerably stronger than those of a weakly coupled normal-superconducting junction, which is
a hallmark of the MBS. We find that the Fano factor is quantized, F = 2, when one MBS member of a pair is
coupled to the lead; however, if both MBS members are coupled F' is noninteger.
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Introduction. Recently discovered topological materials
in combination with a superconductor can host Majorana
fermions.'” Interest in such quasiparticles is due to the
possibility of non-Abelian statistics which they satisfy.!” The
most accessible cases are the Majorana bound states (MBSs) at
the one-dimensional edge of a quantum spin Hall insulator.'"-1?
Two Majorana fermions can form the usual Dirac fermion.
However, to detect a state of a Majorana fermion that has no
definite charge requires nonlocal measurements. It has been
suggested'>!* that a tunneling probe can detect the presence of
MBSs. While the tunneling probe is a local measurement it can
detect interference effects between various MBSs. Recently an
array of alternating ferromagnetic (FM) and superconducting
(SC) regions at the quantum spin Hall (QSH) edge was
considered.'>!® This array may appear due to local density
fluctuations at random FM/SC boundaries that host MBSs. The
tunneling characteristics (conductance and tunneling current)
were calculated for a network of coupled Majorana fermions.
Both isolated'® and random chain'> cases were analyzed.

In the present work we show how Majorana fermions can
be detected by shot noise measurements. We note that previous
shot noise evaluations®’ have focused on two leads coupled to
two MBSs at distinct locations. The experimental search for
a MBS focuses on using a scanning tunneling microscope'’
(STM) which was successful in demonstrating chiral spin
states. Experimentally it will be much easier to work with
a single STM, rather than with two correlated STMs. In our
work we focus on the case of a single lead, derive a general
expression for an arbitrary configuration of MBSs, and allow
for MBS interactions. With a few examples we show that the
shot noise is a sensitive probe of the MBS configuration.

The Hamiltonian. We consider the tunneling between a
normal metal lead and a realization of a one-dimensional
Majorana chain.'>!>1%18 The coupled Majorana state network
is described by the Hamiltonian

i
Hy = 3 Zl‘ijm/j, (1)
ij

where y; are operators for the ith Majorana fermion, satisfying
Vi = y;, yf =1, and ¢;; are elements of an antisymmetric
matrix 7 for the coupling between the i, j MBSs. Disorder may
be introduced as random nearest-neighbor coupling. The y;
can be written as a Bogoliubov transformation for the quasi-
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particles in the superconductor composed of creation W/ (x)
and annihilation W, (x) operators of electrons at position x
and with spin o. The coefficients f, ;(x) in this transformation
are the eigenvalues of the Bogoliubov—de Gennes Hamiltonian
with zero energy. The general form is

Vi = Ea/dX[fn,i(x)%(X) + £ 0w (o). @

The tunneling between the normal metal electrode and the
superconductor is givenby Hy = Y, [ dx[tk(x)c,ta W, (x) +
H.c.]. Below we consider the energy gap A of the super-
conductor as the biggest energy scale in the problem. Then
for a small applied voltage eV < A only the zero-energy
Majorana operator projection of the total quasiparticle operator
in the superconductor is important.!>%29 Thus the tunneling
Hamiltonian and the current operator in Nambu space become

1 .
Hr = 3 Zg(o)fzviyi + H.c., 3

1

I = %ZE(O)\Z% +Hec =iel, )

1

where c(0) = (cT,cl,cI, — c})T corresponds to the normal
lead electron operator at x = 0. The coupling between the
normal lead and Majorana states is given by a vector in
Nambu space, Vi = (fri,fr.i.f i — fi)", where fo; =
f dx fs i (x)tr(x) describe the interaction of MBSs with the lead
electrons and we assumed a weak momentum dependence of
matrix element #; for tunneling to the lead. The Pauli r matrices
acton the (¢, f5,;) and (c] ; f1;) blocks. The total Hamiltonian
in addition to parts (1) and (3) includes the lead contribution,
which we take at voltage bias V. We write below the action
for the lead in the rotated Keldysh basis:

1 2 14
Siead = E/dtzkckgk 'e, )

where g, ! is the inverse Green’s function for electrons in the
lead. For further use we introduce the Green’s function (GF)
of the lead integrated over momentum g = % Y &k, which has

the following form:
R 5K
-_ (8 &
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Here all entries are 4 x 4 diagonal matrices in Nambu
space. In the energy representation each of them has
the form gf4 = FIN(0) diag(1,1,1,1) and igX = N(0)
diag[tanh *52= e (1,1,0,0) 4 tanh <%= ‘”+ev £r£2(0,0,1,1)], where N(0)
is the electron density of states 1n the normal metal lead.
To calculate the noise we need to find the effective action
as a function of a quantum source. This quantum source
consists of the current operator (J) multiplied by source
fields A = diag(X;, — A,) on the standard (1,2) time Keldysh
contour. We obtain a combined source-tunneling contribution
to the action:

1 AA A
‘g:_zfm§:mmm@+JM%%

+ Vi (ro, — [2)e0)]. )

Here the Pauli matrix o, relates quantum operators [Majorana
¥; = (¥i1,¥i2) and lead fermions] on the two time contours
(1,2). T is the unit matrix. Integrating out the lead electron
operators and performing a rotation in the Keldysh space in a
similar way as we did to obtain Eqgs. (5) and (6), we arrive at a
simple representation of S;. Keeping only the quantum source

Ag = (A1 — A2)/2, we arrive at
S, = —n/dt Z [yi,f/j(rzax
i,j
—I1)3(rT + T2 ) V;y;1, 8)
where ¥, = (.7 = (Vi + 2. 710 — v2i)T/+/2. We also

notice a subtlety. The fermion GFs are written in two repre-
sentations: one, usually used, has the form of Eq. (6); the other
is similar to that for boson fields.'” Due to the self-conjugacy
condition the Keldysh GF for Majorana fermions preserves the
form of the boson GF:!”

GX G*®
G = ( GA 0 ) . ©)
The Majorana fermion action follows from Eq. (1) to zero
order in tunneling to the lead,

l ’ _ oy
SM=§/ﬁmmmmFG@mwﬁm; (10)
here the inverse matrix GF is

[GE]™" = Llia, —2if). (11)

The total GF follows immediately if we add the zero-source-
part contribution of S toG,"

G '=G,' -22Vio gV, (12)

which can be used to verify the form (9). The effective action
with the source term becomes

1
&ﬁ=§/mww”+gumw, (13)

O(hy) = 2nVI[1,(Ag8 — 0:80:Ag) + AgG0ohg1V.  (14)

The partition function for calculations of transport and noise is
a function of the quantum field A,: Z(A,) = f Dy expli Sefr]
and InZ(A,) = Trin[1 + GQ(A,)]. Taking the variation of
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InZ as A, — 0, we get expressions for the average current
and the noise power:

eSan e 6

I = doTr[G
2n 8hg ~2n Sk (GO,
(15)
, 1 82
S,(tty=——————InZ.
2 8hq(1)8A, (1)

Before presenting explicit formulas we discuss the approxi-
mations which are used: (a) We consider the tunneling element
fio as spin independent. (b) When (12) is inverted we neglect
off-diagonal ﬁa f_,{, terms that involve oscillations which
vanish upon averaging over large spacings between MBSs.!®
(c) We take the wideband limit, ignoring the momentum
dependence of V;. Thus we have I'jj = 47 N(0) f?Sij. (d) We
also consider A > T'j;. We proceed now to take explicitly
the trace in Keldysh and Nambu spaces, leading to general
expressions for the current and the total zero-frequency noise
power S, = S1 + S>:

1= doTr(T'ImGR) tanh— — tanh
2h 2T
2¢2 R 1 , @ , @
Si=— JdoTr('ImG™)| 1 — tanh® — + tanh” — | |,
h 2 2T 2T
62 2
S, = m / dwTr(TReGRTReG* )(tanh ﬁ — tanh ﬁ)
(16)

Here wy = w £+ eV, ImG® = (G® — G*)/(2i) and ReG¥ =
(GR 4+ G*)/2. The term S; mainly contributes to the thermal
part of the noise power. In the limit of zero temperature
(T —0), S = 0. The S, term for V > T — 0 defines the
shot noise, which is the total noise in this temperature limit:

8e?

Sshor = == doTr(T'ReGRTReGF). 17)

0

Isolated Majorana states. For a single Majorana state
the matrix 7 = 0 and G® = G¥ = 2/(w + 2iT"). First let us
consider the zero-bias conductance in the limit 7 > eV — 0.
In this case S, corresponds to thermal noise. Directly by
calculating the current (16) or with the help of the fluctuation

fas; = o, we obtain the linear conductance

2¢2 (T\? [ dx
G=7<7>/o [+ (L) 2 (8
x2 + (%) ] cosh® x

The nonlinear conductance (V # 0) at zero temperature is
given as'®

_ 262 412
h (eV)2 4412

while for the shot noise of a single Majorana state we obtain

the form
2¢VT
nSi 2 ) (0
2 (eV)?* 4 4I?
More complicated formulas for S, follow when two MBSs

couple via a tunneling element ¢ and couplings I';;,"; to the
lead. In comparison, the well-known Andreev contribution to

19)
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FIG. 1. (Color online) Upper panels: Conductance (dashed or
dot-dashed line) and shot noise (full lines). Upper left for a single
MBS, upper right for two MBSs with ¢t = I"; upper lines (dot-dashed
and thick lines) for I';; = 2I'5, = I' and lower lines (dashed and thin
lines) for I';; = I',I'5; = 0. Lower panels four MBSs: Lower left,
conductance for weak t;, = 0.1I" (dashed line) and strong t;, = I
(full line); all #; ;, are equal and only the first MBS is coupled to the
lead. Lower right, the corresponding shot noise. The conductance G
is presented in units of ¢/ h and the shot noise power S in units of
2I'e?/ h.

the noise of a normal-superconductor (NS) junction®' is of
order
4¢3V (T
S~ — ] . 21)
h A

This is much weaker then (20) or the other MBS networks by
the factor of (I'/A)? <« 1.

Figure 1 presents the conductance and shot noise power
as functions of U = eV/T for different realizations. With
two coupled Majoranas the shot noise shows clear steps in
its voltage dependence. They corresponds to the peaks in
conductance at eV = £2¢. Therefore a measurement of the

20F~.

FIG. 2. (Color online) Fano factor F' for a double MBS corre-
sponding to the upper right panel of Fig. 1. The dot-dashed curve
shows F(V) when only the first MBS is coupled to the lead, while
the solid line stands for case when both MBSs couple to the lead:
FH =TI and F22 = F/2
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FIG. 3. (Color online) Conductance (dashed curve) and shot noise
(solid line) for tunneling into a homogeneous infinite Majorana chain
as a function of U = eV//T fort = 0.1T.

noise can detect Majorana fermions. If one of the links is
weak, finx < £, the noise loses its structure (lower right panel
in Fig. 1) and becomes similar to the case of a single Majorana
(upper left panel in Fig. 1). In this case the sharp drop of
conductance at voltage eV — 0 can be smeared by a small
temperature.

The Fano factor is defined as the ratio F' = Sgpo/2¢1. For
the NS junction F(V — 0) = 2 reflecting the transmission
of cooper pairs through the superconductor. The Fano factor
corresponding to the upper right panel of Fig. 1 (two MBSs)
is plotted in Fig. 2. The zero -bias value of the Fano factor
F(V = 0) = 2 does not depend on the value of ¢ # 0 and is
the same integer for four MBSs, the case in the lower left panel
of Fig. 1. However, when the second Majorana state interacts
with the normal lead, i.e., I'yp # 0, F(V = 0) is noninteger and
decreasing, as shown by the solid line in Fig. 2. In contrast,
with an odd number of MBSs F(V — 0) = 0.

Considering next the case of an infinite homogeneous chain,
where all near-neighbor couplings are identical, #; ;| = ¢, the
Green’s functions can be easily found.'® The calculations of
the shot noise are performed for ¢/ I' = 0.1 and compared with
conductance in Fig. 3.

I I I I I
0.5 1 1.5 2 2.5

FIG. 4. (Color online) The shot noise power as a function of a
double logarithmic voltage. The behavior of the noise power has
similar sharp variations as the current (Ref. 15).

153415-3



BRIEF REPORTS

Disordered case: Isolated Majorana pairs. We consider
next the case of a semi-infinite MBS chain with a random
t;.i+1 and only the first MBS coupled to the lead, I';; ~ é; 1.
This system can be mapped to a system of independent
MBS pairs'> by using the analysis methods of the quantum
Ising spin chain.”>?* The key ingredient is to isolate the
strongest bond at each decimation. The MBS pairs have an
effective hopping €"** ~ e (having a typical weight),
leading to peaks of conductance at eV = ¢, with weights
I'2 ~ exp[—8Tpe™/?]; Ty is a starting logarithmic flow pa-
rameter chosen here as I’y = 0.1. For a given voltage the
contribution to the noise is from pairs with €™ > eV,
resulting in jumps at €, = eV. We estimate the averaged
current and shot noise using our formulas (16), (17). The
relevant frequencies w < €,"** are selected by a Fermi function
f=1/{1 +expl(w — €,)/8]} with small § and we approx-
imate G = [w — eV +i8']"! with a small §'. We perform
calculations for n < 6. Figure 4 presents the shot noise as
a function of a double-logarithmic voltage dependence (the
voltage is measured in units of I'). S,, and the average current
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J show similar behavior, although the jumps are of different
heights.

Conclusion. We apply the standard Keldysh technique to
calculate the shot noise power of a Majorana chain interacting
with a normal lead. We find that the shot noise has markedly
distinct forms for different numbers of MBSs and for long
ordered or disordered chains. We show that for weak coupling
to the lead the shot noise and the conductance are much
stronger than in the corresponding SN junction. We calculate
the Fano factor and show that its value crucially depends on
whether even or odd numbers of MBSs are involved. The
Fano factor is similar in magnitude to that in the SN case,
in particular F(V — 0) = 2 for even numbers of MBSs and
if only one MBS is coupled to the lead; however, in the less
likely case when more than one MBS is coupled to the lead
(Fig. 2) F(0) is noninteger.
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