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We study a particle on a ring in presence of various dissipative environments. We develop and solve a
variational scheme assuming low-frequency dominance. Our solution produces a renormalization-group �RG�
transformation to all orders in the inverse dissipation strength and, in particular, reproduces known two-loop
results. Our RG leads to a weak dissipation parameter, for which a weak-coupling expansion for the position
correlation function shows a 1 /�2 decay in imaginary time.
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I. INTRODUCTION

The problem of interference and dephasing in presence of
dissipative environments is of significance for a variety of
experimental systems and a fundamental theoretical issue.
The experimental systems include mesoscopic rings embed-
ded on various surfaces where Aharonov-Bohm �AB� oscil-
lations can be measured1,2 and the related problem of deco-
herence at low temperatures.3 A different type of
experimental systems are cold atom traps created by atom
chips.4–6 The atom chip that produces a magnetic or electric
trap for the cold atoms necessarily also produces noise. Our
problem is then relevant for evaluating the interference am-
plitude of the cold atoms in presence of such noise.

As an efficient tool for monitoring the effect of the envi-
ronment we follow a suggestion by Guinea7 to find the AB
oscillation amplitude as function of the radius R of the ring;
for free particles of mass M this amplitude is the mean level
spacing �1 /MR2. Two types of environments were sug-
gested to lead to an anomalous suppression, i.e., a stronger
decrease in the oscillation amplitude than 1 /R2: a Caldeira-
Leggett �CL� bath as well as a charge-metal �CM� system,
i.e., a charge on the ring interacting with a dirty metal envi-
ronment. The CL system is of further interest since it can be
mapped to the Coulomb-blockade problem8,9 as well as to
quantum dots at a distance from metallic gates.10 The Cou-
lomb box problem is of further recent interest in view of data
on the quantization of the charge relaxation resistance11,12

and related theoretical developments.13–15

The CL system has been extensively investigated by in-
stanton methods,16–18 by renormalization-group �RG�
methods,7,8 by a boundary field theory19 and by Monte Carlo
�MC� methods.8,9,18,20 All methods show that the effective
mass, defined as B /R2, of the particle increases exponentially
with the dissipation strength �, i.e., B���e�2�, with differ-
ences in the exponent �. In second-order RG �=−1 �Ref. 8�
while instanton methods give either16 �=−2 or17 �=−3; the
boundary field theory with MC gives �=−2. A variational
approach21 indicated a nonperturbative regime at strong �.
Since �=�R2, where � is a friction coefficient, a length scale
� /�� is identified;7 this scale is a candidate for a dephasing
length.

The CM system was investigated by RG methods7 finding
B�R2+�� with ���1 nonuniversal while MC data22 shows
���1.8. Further MC simulations show that in fact ��=0, at

least for weak coupling.23 We study also a dipole-metal
�DM� system, i.e., an electric dipole on a ring coupled to a
dirty metal environment. This system can be realized by ex-
periments on cold Rydberg atoms.24

In the present work, extending our previous report25 we
solve these systems by a variational method, assuming low-
frequency dominance. We find that the variational method
defines an RG scheme to all orders, reproducing a known RG
equation8 to two loops in the CL system. In the CM and DM
systems, for either a charge or a dipole, we find that the
effective mass remains B /R2�R0 for large R, as for free
particles. Our RG leads to a weak-coupling dissipation pa-
rameter. The resulting action yields a weak-coupling expan-
sion for the position correlation function, showing a 1 /�2

decay in imaginary time. This decay is generic to all finite R
systems and indicates dephasing of an excited state. In the
limit R→� the correlation probes degenerate states, how-
ever, the position correlation function does not decay in this
limit, i.e., no dephasing.

In Sec. II we present the models. In Sec. III we define our
variational method and show that the effective mass B of the
m=0 sector determines the curvature �2E0 /��x

2 �0, where E0
is the ground-state energy and �x is the flux through the ring;
this curvature is a measure of the Aharonov-Bohm oscilla-
tion amplitude. In Sec. IV we simplify the variational equa-
tion by assuming low-frequency dominance or equivalently
logarithmic dominance. In Sec. V we show that this method
is equivalent to an RG scheme and, in particular, reproduces
the known RG equation to second order in the CL system. In
general the variational equation contains terms to all orders
and is therefore expected to be superior to a second-order RG
expansion. In Sec. VI we present explicit solutions for the
CL and DM systems, as well as for a general case. Finally in
Sec. VII we study the weak-coupling expansion showing a
1 /�2 decay for the position correlation function.

II. MODEL

In this section we derive the effective action in presence
of a dissipative environment in terms of the angle 	m���,
where � is an imaginary time. The index m specifies the
winding number so that

	m��� = 	��� + 2�m�/
 , �1�

where 	�0�=	�
� has periodic boundary condition and 
 is
the inverse temperature �
→� below�. In presence of an
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external flux �x the partition sum has the form

Z = �
m
� D	e2�im�x−S1		m
−Sint		m
. �2�

As shown by Guinea,7 the form of such an action in presence
of a general dissipative bath the effective action can be writ-
ten in terms of a kernel K�	���−	����� that is periodic and
allows in general a Fourier expansion

S1		
 = �
0




d�
MR2

2

 �	

��
�2

,

Sint		
 = ��
0


 �
0




d�d��
�2T2K�	��� − 	�����

sin2��T�� − ����

= ��
n

an�
0


 �
0




d�d��
�2T2 sin2	n�	��� − 	�����/2


sin2��T�� − ����

�3�

and an depends on the type of bath. At �→�� �or at high
frequencies �� one can expand the sin2�¯ � in Eq. �3� and
then Sint→ 1

4��nann2�d�����	m����2, identifying a dissipa-
tive system.

We consider now three types of environments and identify
the coefficients an. First is the CL environment. It has har-
monic oscillators coupled linearly to the particle’s coordi-
nate. The effective action is well known26 for nonconfined
coordinate R���,

Sint
CL = �� � d�d��

�2T2�R��� − R�����2

sin2��T�� − ����
, �4�

where � is the dissipation parameter. When the particle is
confined to a ring R���=R�cos 	��� , sin 	���� the action be-
comes of the form of Eq. �3� with a single coefficient a1=1
and �=�R2.

Consider next the CM environment. It consists of a dirty
metal that is characterized by its conductivity � and diffusion
constant D. The particle on the ring has a charge e and re-
sponds to the Coulomb potential of the metal V�R��� ,��. The
metal is assumed to be a Gaussian environment so that the
interaction term �in imaginary time� of the partition sum can
be averaged to obtain22

Zint = �e−i�0

V�R���,��d�� � e−Sint �5�

and with �q��d3q / �2��3,

Sint =
1

2
e2�V�R���,��V�R����,����

=
1

2
e2T�

n
�

q

4�

q2
�i��n�,q�
eiq·�R���−R�����−i�n��−���, �6�

where the propagator of the scalar potential27 is given in
terms of the dielectric function 
�i��n� ,q� with �n=2�nT the
Matsubara frequencies. At low frequencies and momenta

�� ,q�=1+ 4��

−i�+Dq2 , valid at q�1 /�, where � is the mean-
free path. Hence 1 /
�i��n� ,q�����n�+Dq2� /4��; the Dq2

term yields an R��� independent constant while

�
n

��n�e−i�n� =
− �T

sin2��T��
, �7�

hence with kF the Fermi wave vector and r=R /� the charge
coupled to a dirty metal has

� =
3

8kF
2�2 ,

K�z� = 1 − �4r2 sin2�z/2� + 1�−1/2. �8�

For r�1, an� 2
�r ln�r /n� for 1�n�r and an�0 for n�r.

This model reduces to the CL one at r�1, where a1 single an
survives.

A third realization of the action corresponds to the DM
environment. Consider a particle with an electric dipole,
whose direction is perpendicular to the ring, interacting with
a metal. For the electric field Ez=�zV− 1

c �tAz, the Az propa-
gator involves27 �
�i��n� ,q��n

2+Dq2�−1, which for q�0 can
be expanded in �n

2, hence it has no dissipative term ���n�;
we keep then just the �zV term. The interaction with the
fluctuating electric field E�r ,�� is p�0


Ez�R��� ,��d�. A
Gaussian average on the metallic environment then yields

Sint =
1

2
p2�

�
�

��
��zV�R���,���zV�R����,����

=
1

2
p2T�

n
�

q

4�qz
2

q2
�i��n�,q�
eiq·�R���−R�����−i�n��−���. �9�

Therefore

� =
3

8kF
2�2

p2

e2�2 ,

K�z� = 1 − 
4r2 sin2 z

2
+ 1�−3/2

. �10�

Hence, for large r, an� 1
r �1− n2

r2 � for n�r and an�0 other-
wise. Finally we note that a topological flux �x can be real-
ized for an electric dipole.28

III. VARIATIONAL METHOD

The partition sum can be rewritten by using the Poisson
sum �mg�m�=�K�g���exp�2�iK��d� so that

Z=�
K
�

−�

�

d��D	e2�i��K+�x�−2�2MR2�2/
−S1		���
−Sint		���+2���/



= �
K
�

−�

�

d�e2�i��K+�x�−2�2MR2�2/
Z�. �11�

The variational method for Z� finds the best Gaussian
approximation, i.e.,

S0 =
1

2

�
�n

G−1��n��	��n��2 �12�

so that the free energy F in Z�=e−
F has the variational form
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Fvar = 
F0 + �S − S0�0 =
1

2

�
�n

	− ln G��n� + �MR2�n
2 − G−1��n��G��n�
 + �Sint�0, �13�

where �¯ �0 is an average with respect to exp�−S0� and F0 is the free energy corresponding to S0. Since

2�sin2	n�	��� − 	���� + 2���� − ���/
�/2
�0 = 1 − cos�2�n��� − ���/
�exp	− n2���	���� − 	����2��0/2


= 1 − cos�2�n��� − ���/
�exp�− n2T�
�n

G��n��1 − cos��n���� , �14�

the interaction term becomes

�Sint�0 = 
��
n

an�
0


 d�

2�2	1 − cos�2�n��/
�e−n2T�
�

G����1−cos�����
 . �15�

The variational equation �Fvar /�G��n�=0 is then

G−1��� = MR2�2 + 2��
n

ann2�
0




d�
1 − cos����

�2 cos�2�n��/
�e−n2��d�1/2��G��1��1−cos��1���. �16�

When the limit 
→� is taken a cutoff �c may be introduced
to control the short-time behavior so that the � integral be-
comes �1/�c

� . This cutoff represents a high-frequency limit of
the bath degrees of freedom. Alternatively, the mass term
serves also as a cutoff since it leads to convergence of the
d�1 integral in the exponent of Eq. �16�.

In the following we will study the variational equation
with �=0. To justify this, we show now that the effective
mass B of the �=0 system is indeed what is needed to find
the Aharonov-Bohm oscillation amplitude at T→0. The ef-
fective mass is defined by G−1���=B�2 in the limit �→0
and is identified from Eq. �16� at 
→� as

B = MR2 +
1

2
��

n

ann2�
0

�

d�e−n2��d�/2��G����1−cos�����.

�17�

Form �11� implies that the fluctuations ��2��
, hence the
factor cos�2�n�� /
�→1+O�1 /
� in Eq. �16� and the effec-
tive mass B is � independent. It is also necessary to check
that the � integrals converge: indeed at �→�,

�
0

�

d�G����1 − cos����� � �2�
0

1/� d�

2B
+ �

1/�

�

d�G���

� �/B ,

hence a factor e−n2�/B assures the convergence of the � inte-
grals.

The Aharonov-Bohm oscillation amplitude is usually
measured8,9 by the curvature of the free energy at �x=0;
since at �=0 we have �G��� /��=0 �from parity in �, see
Eq. �16�, and from analyticity in �� and �Fvar /�G=0 �the
variational condition� we obtain from Eqs. �13�, �15�, and
�17�,

� �2
Fvar

��2 �
0

=� �2
�Sint�0

��2 �
0

=
4�2



�B − MR2� . �18�

The effect of Z� in the partition sum Eq. �11� is therefore to
replace the factor 2�2MR2�2 /
 by 2�2B�2 /
, i.e., the re-
sponse to an external flux is that of a free particle with a
mass renormalized to B. Higher-order terms produce only
subdominant behavior in 1 /
, e.g., one expects a �4 /
3

term. Our task is therefore to study the �=0 system and find
this renormalized mass.

IV. VARIATIONAL EQUATION

Before studying the full equation, it is instructive to study
its perturbative regime. The lowest order is obtained by ne-
glecting the exponent in Eq. �16�, leading to

G−1��� = MR2�2 + ����
n

ann2 � � �c. �19�

This identifies the cutoff �c below which dissipative term
dominates

�c =

���
n

ann2

MR2 . �20�

Consider next ���c but still ln��c /���1. The next order
in perturbation is obtained by using Eq. �19� in the exponent
in Eq. �16� and expanding this exponent,
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G−1��� = ����
n

ann2�1 −
n2

�2��
m

amm2
ln

�c

� �
= ����

n

ann2�1 −
1

��
ln

�c

�
� ln��c/�� � 1,

�21�

where the mass term is ignored for ���c and � is a geo-
metric parameter defined by

� =

�2
�
n

ann2�2

�
n

ann4
. �22�

The sums in Eq. �22� can be evaluated for each model from
the second and fourth derivatives of K�z� at z=0, leading to

� = �2 CL

=
2�2r4

r2 + 9r4 CM

=
6�2r4

r2 + 15r4 DM. �23�

A significant perturbative regime is possible for ���1.
This strong dissipation condition can apply to the CL model
if R is large, though one needs to make sure that the CL
model is still valid in that case. For the CM or DM models �
is bounded by a number �1 so that ��1 is needed. For
usual dirty metals kF��1 so that for charge coupling with
Eq. �8� the condition is not satisfied, unless the particle on
the ring has a charge e��e. On the other hand, the dipole
case may have a large � in Eq. �10� for large dipoles, e.g., in
Rydberg atoms. In the following we use form �21� as a
boundary condition for the full variational solution.

We proceed now to variational equation, that includes the
significant range of ���c. It is convenient to study a de-
rivative of Eq. �16�,

d

d�
G−1���

= 2��
n

ann2�
0

�

d�
sin����

�
e−n2��d�1/2��G��1��1−cos��1���.

�24�

The bare mass M serves to define �c and then the MR2�2

term in Eq. �16� is neglected at ���c. If � is sufficiently
small then sin���� can be expanded leading to a �� term.
We therefore assume the form

G−1 = f��� �0 � � � �c,

G−1 = B�2 � � �0. �25�

The solution for f��� needs to satisfy boundary conditions,
whose � dependence is determined by the perturbative ex-
pansion, Eq. �21�,

f��c� = ��c��
n

ann2,

f���c� = ���
n

ann2 · ���� ���� = 1 +
1

��
+ O�1/�2� ,

f���c� = ��
n

ann2 ·
C���

�c
C��� =

1

�
+ O�1/�� . �26�

We proceed to simplify Eq. �24�. For ���0 the oscillat-
ing sin���� in Eq. �24� leads to a cutoff ��1 /�1�, to be
determined by matching to the perturbative regime. Hence

f���� = 2���
n

ann2�
0

1/�1�

d�e−n2�0
�c�d�1/2��G��1��1−cos��1���.

�27�

The range ��c

� involves G−1���=MR2�2 and contributes
�1 / �MR2�c�= ����nann2�−1 which is neglected for ��1.
The � integration is dominated by ��1 /�1�, hence 1
−cos �1��1−cos��1 /�1�� is replaced by �1

2 /2�2�1
2 for

�1�� and by 1 for �1��. This rough separation is to be
justified by our main assumption that ��

�cd�1 / f��1� domi-
nates this integral due to the low frequency decrease in
f��1�. The terms from �0��1��, as well as those from
�1��0, can be neglected if

1

B�0
,

1

�2�
�0

� �1
2d�1

f��1�
� �

�

�c d�1

f��1�
condition�i� .

�28�

Note that the second term on the left near �0 is �1 /B�0
while near �c it is �1 /� and negligible for large �. We are
interested in nonperturbative contributions, i.e., the range
ln �c /��1 and, in particular, at �=�0. In terms of �2
=1 /� we obtain

f���� = 2���
n

ann2�
�1�

� d�2

�2
2 e−n2��2�2

�c d�1/�f��1�, �29�

where as above, the precise location of the �2� cutoff should
not be significant. The �2 integration is dominated by its
lower cutoff �1� so we expect that the exponent can be
taken out of the integration with the replacement �2�2
→�1�2�. More precisely, taking a derivative of Eq. �29�
leads to

f���� = ��̃�����
n

ann2e−n2��
�cd�1/�f��1� + �f���� �30�

and �1=2 / ���̃� and �1�2=1 are chosen. The coefficient
�̃��� is to be determined by the boundary condition �26�.

To further simply the equation we assume now

f���� �
f����

�
condition�ii� , �31�

leading to our main equation for f���,
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f���� = �������
n

ann2e−n2��
�cd�1/�f��1�. �32�

The coefficient here is ����, consistent with Eq. �26�. Below
we actually find that condition �ii� is not always satisfied and
then we return to solve Eq. �30� instead of Eq. �32�.

Finally, consider ���0. Equation �24� has then on the
left d

d�G−1���=2B� while on the right it has the requested
�� form, except for a term where

I1 = 2���
n

ann2�
1/�0

1/�1�

d� exp�−
n2

� ��0

�0 1 − cos �1�

B�1
2 d�1

+ �
�0

�c d�1

f��1��� . �33�

Since ��1 /�0 dominates, �0
�0�1

−2�1−cos �1��d�1��� /2,
hence

I1 = 4�B��
n

an�e−n2/2B�0 − e−n2/2B�1��e−n2��0

�cd�1/�f��1�.

�34�

The essential singularity in � is negligible for ���0 when

B�0 � 1 condition�iii� . �35�

The remaining term at ���0 identifies B and leads to a
matching condition of the form f���0�=��B�0. Continuity
of derivatives yields ��=2, though we expect that the precise
value of �� will not be significant.

This completes the derivation of the equations for B and
f���. Equation �30� and �32� is to be solved with the bound-
ary conditions in Eq. �26� �in case of Eq. �32� only the first
two conditions are needed�. Furthermore, the matching con-
ditions at �0 are

f��0� = B�0
2,

f���0� = ��B�0 �� � 2. �36�

V. RG PROCEDURE

We present here an approximate solution of the varia-
tional equations by an RG method, which in some case �the
CL case, see below� should be very close to exact. The idea
is that an ���c can serve as a new cutoff provided that the
coupling � is renormalized into �̄���. The boundary condi-
tion �26� become therefore

f��� = ���̄����
n

ann2,

f���� = ��̄����
n

ann2 · ���̄���� ,

f���� = ��
n

ann2 ·
C��̄����

�
. �37�

The number of needed equations depends on the order of the
differential equation for f���, e.g., for Eq. �32� only the first

two equations in Eq. �37� are needed. The functions
���� ,C��� are known as an expansion in 1 /�. As we find
below, these functions can be determined explicitly by the
variational equations.

Taking a derivative of the first equation in Eq. �37� yields
a recursion relation for �̄���,

�
d�̄���

d�
= �̄���	���̄���� − 1
 . �38�

Hence the boundary condition function ���� determines the
flow of the renormalized �̄���, i.e., it generates the RG flow
to all orders for which ���� is known. In particular, the flow
terminates when ���c�=1, i.e., �c is a fixed point.

Before proceeding to solve for ����, we show that the RG
is equivalent to a solution of the form f���=�g�K�����, so
that all the � dependence is included in the function K���,
i.e., the function g�x� itself is � independent. This property is
exact for our variational equation for the CL system �see
below and Appendix B�. For other systems the scaling func-
tion needs to be identified separately as, e.g., done in Sec.
VI C for the CM system.

The first boundary condition from Eq. �26� is g�K����c�
=���nann2, hence K�����cg��K����c�=��nann2. The sec-
ond boundary condition is then

f���c� = g�K����c� + K����cg��K����c�

= �� +
K���
K�������

n

ann2 = �������
n

ann2 ⇒ ����

= 1 +
K���

�K����
. �39�

In g�K����� one can vary either � or � with identical
effects if K����=K��̄�����c �see also Appendix B� which
by d /d� yields

K���̄����
d�̄���

d�
�c = K��� = K��̄����

�c

�
�40�

and with Eq. �39� the flow, Eq. �38�, is reproduced. We note
also that the scaling functions ���� ,C���, Eq. �37�, can also
be determined by rewriting the differential equation for g�x�
in terms of y�g�=x�g�g��x�g�� and its derivatives. This is
possible under fairly general conditions, e.g., that g�x� is
monotonic and that the differential equation for g�x� is ho-
mogenous �i.e., contains only xng�n��x� terms�.

So far the RG flow was determined, in general, without a
necessity to identify the relevant differential equation. We
proceed to show that the differential equation for f��� deter-
mines the function ���� completely and therefore also the
flow of �̄���. Consider Eq. �32� that leads to

f���c� = ���

�
n

ann4

�f��c�
= ��

�
n

ann2

��c
. �41�

Differentiation of the second equation in Eq. �37� leads to
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f���� = ������
d�̄

d�
�

n

ann2, �42�

where �����= d
d� �������. Equating the last equation at �c

with Eq. �41� leads, in terms of �=−ln �, to

�d�

d�
�

�c

= −
�

������
= −

1

�
−

1

�2�
+ O�1/�2� . �43�

To obtain the expansion we use the perturbative form of � in
Eq. �26�. Remarkably, result �43� is precisely the two-loop
RG result For the CL system8 �with g=�2� /2 in the nota-
tions or Ref. 8 and �=�2 for the CL system�. Note that the
same perturbative form in Eq. �38� yields only the first term
1 /�.

Comparing Eqs. �38� and �43� yields

� = 1 +
1

��� − 1 + ��2d�

d�

. �44�

This relation generates a large � expansion with the leading
form �=1+ ����−1+O���−2, consistent with the perturbation
expansion Eq. �26�. It is remarkable that the perturbation
expansion allows for an asymptotic expansion of Eq. �44�,
i.e., a different form of ���� in Eq. �26� would not allow
such an expansion.

Figure 1 shows the solution of this equation with the exact
analytic solution given in Appendix A. Note the turning
point at �=1, 1 / ����=0.742. This corresponds to a fixed
point at �c, i.e., if this point is reached at a frequency �a then
at ���a �̄���=�c remains constant and f���=��c�. This
behavior is in fact inconsistent with the assumed form �24�.
Another difficulty is that continuity of f���0� / f��0�
=���̄��0��=�� needs ���̄��0���2, which is not achieved in
Fig. 1.

In the next section we evaluate f��� itself and show that
the solution based on Eq. �32� does not satisfy criterion �ii�
below some low frequency �b��a. In the latter range one
needs to address Eq. �30�. We note that the �f���� term in
Eq. �30� is small at the initial range of �, e.g., at �c it is
O�1 /�� relative to the f���� term. Therefore, to be consistent
with the terms neglected due to the criteria �i�, we need to
start with Eq. �32�, and only at the frequency ��b we shift to
Eq. �30�.

We proceed to study the RG form of Eq. �30�. Taking a
derivative of the second equation in Eq. �37� at �=�c yields

C��� = ������ − 1������. �45�

Equation �30� taken at �c yields �̃���=����−C��� /�. Next
we evaluate f���c� in two ways: first, by taking a derivative
of Eq. �30� that leads to f���c�=−��̃����nann2 / ���c

2�. Sec-
ond, by taking a derivative of the third equation in Eq. �37�.
Equating these two forms leads to, finally,

���� −
C���

�
= �	C��� − C���������� − 1�
 . �46�

Together with Eq. �45� this is a second-order differential
equation for ����. We solve this equation by matching at
some � to the solution of Eq. �44�, as shown in Fig. 2.
Curiously, Eq. �46� has an exact solution �=1+1 / ����
which gives the one-loop solution in Eq. �43�. As mentioned
above, we apply Eq. �30� only below some low frequency
��0, to be studied in the next section i.e., �=1+ 1

�� does not
have then the proper boundary conditions.

VI. SOLUTIONS FOR VARIOUS SYSTEMS

We present now explicit solutions for f��� and study the
validity criteria. We start with the mathematically simplest
case, the CL system.

A. Caldeira-Leggett system

Considering Eq. �32� we obtain by differentiating

f���� =
f����
�f���

, �47�

which upon integration yields

FIG. 1. Solution of Eq. �44� for the scaling function � as func-
tion of ��. The branch at ��1 is not accessible with the initial
values of Eq. �26�. Note that �=�2 for the CL system.

1.0 1.5 2.0

ΑΚ

Π2

2.0

2.5

3.0

Η

FIG. 2. �Color online� Solution of Eq. �46�, upper line, for the
scaling function � as function of ��. The initial values for this
solution are taken from a point on the solution of Eq. �44�, lower
line.
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f���� = �−1 ln�Kf���� , �48�

where K is an integration constant. Further integration yields

li�Kf���� = �−1K�� − �a� + li�Kf��a�� , �49�

where at �a, �̄��� reaches the fixed point of Eq. �44�, i.e.,
�̄��a�=�c, anticipating that this equation is not valid all the
way to �a; here li�x�=�0

x dx�
ln x�

is the log integral function. K is
determined by the �c values

f���c� = ��� = �−1 ln�Kf��c�� �50�

so that

Kf��c� = e��2� � 1 �51�

and from f��c�=���c we have

K =
e�2��

���c
. �52�

Equation �48� at �=�a yields

Kf��a� = e���B�a. �53�

For B and �a we need to solve the coupled equations

�
e���B�a

e��2� dz

ln z
=

K

�
��c − �a� ,

KB�a
2 = e���B�a. �54�

An explicit solution requires an asymptotic expansion of
li�x�, which is provided by our RG method. As discussed in
Sec. V, the solution has the form f���=�g�K�� such that
g�x� is � independent. Equations �40� and �52� then yield
f���=���̄���, where �̄��� the solution of

K� =
e�2�̄������̄����

��̄���
. �55�

Inverting this relation we find

f��� = ���̄��� =
�

��
ln���̄���K��

=
�

��
ln�K�

��
ln���̄���K��� =

�

��
ln�K�

��
ln
K�

��
. . .��

�56�

and at least two ln embeddings are needed for a large �
solution, i.e.,

f��� =
�

�
ln�K�

�
ln

K�

�
� + O� �

ln�K��� . �57�

The boundary condition at �a is K�a=e���B�a /B�a so
that g�K�a�=B�a becomes

g
 e���B�a

B�a
� = B�a. �58�

This equation does not involve the large parameter �, hence
B�a�1, K�a�1, and the effective mass at scale �a is

B �
1

�a
�

e�2�

��c
. �59�

We note that Eq. �55� implies that �̄��a�=O�1�, i.e., in the
vicinity of the fixed point �c=0.14.

We check now the conditions �i�–�iii� for � near �a. For
condition �i� we use Eq. �32� at �=�a, where f���a�
=����̄��a���̄��a�=O�1�, hence

�
�a

�c d�1

�f��1�
� ln � . �60�

Hence the condition �i� is satisfied only for ln ��1. The
condition �ii� corresponds to �f����=�f���� /�f���
� f����, hence �f��� /�=�2�̄����1. At �a this condition
fails.

We consider therefore the previous solution as valid only
down to a frequency �b to be determined below. At ���b
we use the more complete Eq. �30�. As seen in Fig. 2, below
�b the slope ���� increases rapidly toward the value ���2
which determines �0. A numerical fit to Fig. 2 and use of Eq.
�38� yields a weak � dependence, i.e., �0��b /�x with x
�0.2. Neglecting this effect, we identify �0��b and check
the various conditions. Consider first

�
�b

�c d�1

f��1�
= − � ln

f���b�
��

= � ln
�

�̄��b����̄��b��
.

Since B�0� f��b� /�b=��̄��b�, condition �i� is satisfied for
any choice of �b such that �̄��b��1, e.g., �̄��b�=�� with
��1,

�0 �
��c

�̄��b�
e−�2�+�2�̄��b�

with � ,���̄��b���1; since ��1 �̄��b��� and �0��c and
provides a huge range where Eq. �32� is valid.

Consider next condition �ii�,

�bf���b�
f���b�

=
�b

�f��b�
=

1

��̄��b�
� 1,

which is also satisfied when �̄��b��1; condition �iii� is also
obvious from B�0���̄��b�. Finally we find

B �
��2�

��c
e�2�−�2��

. �61�

The choice of the exponent � is a balance for allowing a
maximal range for Eq. �32�, which neglects the terms in the
three conditions on equal footing, and the necessity of satis-
fying the conditions. We expect then ��1. We note that
result �61� is closer to the Monte Carlo form20 B
�e�2� /�2�c than Eq. �59� above.
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B. Study of the general case

We present here an analysis of the general case using the
asymptotic expansion in the parameter ��. Define the func-
tion

F�x� = ����
n

ann2e−n2x/� �62�

so that Eq. �32� becomes

f���� = F��
�

�c

d�1/f��1�� . �63�

The boundary condition for this first-order equation is
f��c�=��c�n�nn2 while the condition f���c�=F�0� follows
from the equation itself. We now generate a second-order
equation

d

d�
F−1�f����� =

− 1

f���
. �64�

Multiplying by f���� and integrating yields

− H�f����� + H�f���c�� = �
�

�c

f���1�
d

d�1
F−1�f���1��d�1

= − ln
f��c�
f���

. �65�

Hence in term of the function H�y�=�F−1�y�F�x�dx, deter-
mined up to one integration constant, one obtains

H�f����� = − ln�Kf���� ,

K =
e−H�f���c��

f��c�
. �66�

For the Caldeira-Leggett system one can choose H�f�����=
−�f����, i.e., a �-independent function, which leads to the
solution in the previous section. In the general case however
the function H�y� depends explicitly on �, in the form
H�y�=�h�y /��, where h is the reciprocal function of F /�.
Hence it is not strictly possible to look for a solution of the
form f���=�g�K�� with a � independent g. Explicit inte-
gration of Eq. �66� is then required with proper matching,
Eq. �25�, at frequency �0 but this will not be attempted here
in full generality. For H�y� a power law however, one can
redefine a scaling function as shown in the next section.

Instead we will follow an approximate method which is
consistent with the one-loop RG �see also Appendix C�. The
idea is to determine the integration constant K by an expan-
sion near �c where

y = F�x� = ����
n

ann2 − ��x�
n

ann4.

This identifies F−1�y� and the function H is then, to first
order in f����− f���c�,

H�f����� = −
f���c�f����

���
n

ann4
.

Using the boundary condition and Eq. �66�,

K =
e���

���c�
n

ann2
. �67�

We can now rederive the RG Eq. �44� by a solution of the
form f���=�g�K�� such that g�x� does not depend explicitly
on �. At x=K�c we have

g�x� = ���
n

ann2,

xg��x� =
K���
K����

��
n

ann2 �68�

so that f���c�=����nann2 becomes Eq. �44�.
The reasoning below Eq. �55� can now be repeated so that

f��� is generated by repeated ln embeddings. For the effec-
tive mass B we need the boundary condition at �0, i.e.,
H�f���0��=H���B�0�=−ln�KB�0

2� and g�K�0�=B�0 which
yield an equation for the product B�0,

g
 e−H���B�0�

B�0
� = B�0. �69�

The relation g�K�0�=B�0 determines then �0 and hence,
finally, B. Before reaching �0, at ���0, we expect the modi-
fication as discussed in the CL system �previous section�,
leading to a change in the exponent �.

C. Charge-metal system

In this system we define a mean-free path l, Fermi wave
vector kF, and then7,22 the Fourier expansion is identified by

�1 −
1

�4r2 sin2�z/2� + 1
� = �

n

an�1 − cos nz�/2. �70�

Hence an� 2
�r ln�r /n� for 1�n�r, where r=R / l while an

�0 otherwise. Applying d2 /dz2 and d4 /dz4 at z=0 we get
�nann2=2r2 and �nann4=2r2+18r4.

We show first that the dependence of the effective mass
on the radius is B�R2 when R→�, as for a free particle. We
rely here on the proof of Sec. III, within the variational
method, that the effective mass can be found from �=0 in
Eq. �11�. The action has then the form

Sint		0
 = �
n=1

n=r

�1/r�ln�r/n�S̄	n	0���
 → − �
0

1

dx ln xS̄	x	̄0���
 ,

where S̄ is a functional of 	0���, the latter is rescaled as

	̄0���=r	0���. The action �including the free term S1� is then

r independent and therefore the effective mass for �	̄0����2 is
r independent, which after unscaling yields B�r2.

We proceed to study the variational solution at large r and
large �. While realistic metals have ��1, this study supple-
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ments MC studies,23 done at small �. In the region x�� and
in the large r limit, the function F�x� takes the form,

F�x� = r2F̃�r2x�, F̃�y� � 2����
0

1

dz ln�1/z�z2e−z2y/�

�71�

with F̃�0�=2��� and F̃�y��2�5/2��y−3/2 for large y=r2x.
For even larger values of x��, i.e., y�r2� the function
behaves as in the CL regime F�x�= 2���e

r e−x/�.
It is useful to define the rescaled function via f���

=r2 f̃��� so that in regime x�� the variational equation be-
comes, for ���c,

f̃���� = F̃��
�

�c d�1

f̃��1�
� , �72�

which is now independent of r. It can be solved, in principle,
and assuming that the matching frequency �0 occurs in this

region x�� we get B=r2B̃ with r-independent conditions

f̃��0�= B̃�0
2 and f̃���0�=��B̃�0, for �0 and B̃. Hence �0 and

B̃ are r independent in the large r limit �they depend on ��
and we recover that B�r2.

Note that in the regime of large y we can use the
asymptotic form and the Eq. �66� can then be integrated as

H� f̃����� = − 2��2����2/3� f̃�����1/3 = − ln�Kf̃���� ,

�73�

where K is an �-dependent integration constant. We note that
a scaling function can be defined via

f̄��� = �2����2 f̃��� = �g�K̄�� ,

where K̄=K / �2����2. g�x� satisfies ��g�x�+xg��x��
=ln3�xg�x��, hence g�x� is � independent, except through its

argument K̄.
If Eq. �73� is used to identify the matching point, Eq. �36�,

at �a then

KB̃�a
2 = e��B̃�a�2����2/3,

g� 1

�2����2B̃�a

e��B̃�a�2����2/3� = �2����2B̃�a �74�

so that

�2����2B̃�a = O�1� . �75�

As we show momentarily, this analysis fails near �a as con-
ditions �i� and �ii� fail. As in the CL case, we define �b
��a��b��c� so that below �b the corrected Eq. �30� is
applied and then we expect �0��b.

Alternatively, we can use a scaling form for f̄��� as in Eq.

�37�, i.e., f̄���=2���̄��� , f̄����=2���̄������̄����.
Hence Eq. �73� becomes

K̄� =
1

��̄���
e	�2�̄������̄����
1/3

, �76�

which, at �=�c, identifies K=e2�2�� / �2���c�. Matching at
�0��b and using Eq. �72�,

1

B̃�0

�
�2����2

2��̄��b�
. �77�

Note that replacing �b→�a recovers Eq. �75�, confirming
that �̄��a�=O�1�.

For condition �i� we need

�
�b

�c d�1

f̃��1�
=

��2����2

	2��̄������̄����
2/3 �
1

B̃�0

, �78�

which is satisfied if �̄��b��1; clearly at �a this condition
fails. For condition �ii�, by a derivative of Eq. �72�, we obtain

�bf���b�
f���b�

=
3

2

	��̄��b����̄��b��
2/3

2�2�̄��b�
� ��̄��b��−1/2 � 1,

which is also satisfied when �̄����1. Finally, condition �iii�
is satisfied since B�r2.

To obtain the effective mass B, Eq. �76� leads to

�b =
��c�2����2

�̄��b�
e−2�2��+�2�4�̄��b��1/3

,

where K from Eq. �69� is used and �=2�2 /9 at r�1. As in
the CL case, we choose �̄������ with ��1 so that �b
��c, providing a large integration regime for Eq. �32�. Fi-
nally, the effective mass is

B̃ =
2��̄2��b�

�2����4��c
e2�2��−��2�̄��b��1/3

�
1

�2��3�5�c
e2�2�.

�79�

It is easy to see that the condition that the frequency �0
belongs to the scale-invariant regime and not in the CL re-
gime is x��, i.e.,

�r2 � �
�0

�c d�

f̃���
, �80�

the right-hand side �rhs� which can be determined from the
solution, depends only on � and not on r, hence this sets a
minimum radius as a condition.

VII. CORRELATION FUNCTION

A. Small � perturbation theory

Independently of the variational method it is also useful to
consider the straight small � perturbation theory of the ac-
tion, Eq. �11�. We consider first the effect of the � integration
in Eq. �11�. Perturbation expansion in � leads in general to a
� dependence of the form e2�i��̃/
, where �̃ is a linear com-
bination of the various time variables �i in the expansion.
The � integral is then
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�
K
�

−�

�

d�e2�i��K+�x�−2�2MR2�2/
+2�i��̃/


= �
K

e−
�K + �x + �̃/
�2/�2MR2�. �81�

We expect that the various �i integrations converge so that at

→� the limit �̃ /
�K+�x can be taken and then the sum
is dominated by K=0 when ��x��

1
2 . We show this explicitly

for the first order below.
For �x=0 and 
=� of Eq. �11� we can therefore consider

Z�=0. Here we compute the correlation function of cos 	 or-

der by order in �. The zeroth order is obtained from the
free-particle action S1, Eq. �3�, and given by

�cos�	��� − 	�0���0 = exp�− �
−�

+� d�

2�
�1 − cos�����

1

MR2�2�
= exp
−

1

2
�M���� , �82�

where we have defined �M = 1
MR2 . To perform the expansion

we take the 
→� limit in the time integrals since these are
found to be convergent while we keep 
 in the � depen-
dence. For �x=0 we will rewrite the interaction in Eq. �11�,

Sint = −
1

2
��

n�1
an�

−�

� �
−�

+�

d�d��
cos	n�	��� − 	���� + 2����1 − �2�/
�
 − 1

�� − ���2
. �83�

The first-order correction is obtained from the connected average using Eq. �81�,

�cos�	��� − 	�0���1 =
�

2 �
n�1

an�
�1

�
�2

SK��,�1 − �2�
1

��1 − �2�2 �ei�	���−	�0�+n	��1�−n	��2���0,c

=
�

2
a1�

�1

�
�2

SK��,�1 − �2�
e−�M/2����+��1−�2��

��1 − �2�2 �e�M/2���−�1�+��2�−��1�−��−�2�� − 1� ,

where SK�� ,x�=�Ke−
�K + �� + x� / 
�2/�2MR2�. As we find the inte-
grals are indeed convergent so that 
→� can be taken and
SK�� ,x�→1. We have discarded exponentially decaying
terms in � such as produced by n�1. It is important to note
that the starting integral is convergent for �1��2. To see that
one can symmetrize in �1 ,�2 the term in parenthesis: expan-
sion for �1��2 then yields an additional ��1−�2�2 term. This
is a general property for all connected averages: the small
time apparent singularity is absent. Indeed, expanding the
cosine in the vertex, Eq. �83�, and contracting the two fields
with times external to the vertex yields �	��1�	��� correla-
tions, which are always bounded in the action S1.

Although integral �D3� is tedious to compute, its large �
behavior is easily extracted. It is clear that, assuming a Wick
decoupling for the ei	 factors, then the exponential decay of
each two-point correlator fixes the value of 	1→0 and of
	2→�, leading to a 1 /�2 form. To be more precise, the mass
term forces the variables �1=0+O�1 /�M� and �2=�
+O�1 /�M�, i.e., this is the region which dominates the inte-
gral in Eq. �D3� at large ��1 /�M. Integration is then easy in

that region and amounts to replace exp�− 1
2�M��1��

→ 4
�M

���1� and exp�− 1
2�M��2−���→ 4

�M
���2−��. Note that

since the result is only a function of �M� the large � limit is
the same as the large �M limit at fixed �. This yields

�cos�	��� − 	�0���1 � �a1
8

�M
2 �2 �84�

at large �. The amplitude is confirmed by the detailed calcu-
lation of the integral given in Appendix D, as well as by a
numerical check.

We note that this 1 /�2 decay is in general agreement with
the constraints derived in Ref. 30 for the long-range XY
model, very similar to our CL model I. There it was shown
that for strictly ferromagnetic long—range interactions the
spin correlation cannot decay slower than the interaction. For
the DM model, the 1 /�2 has a a1�1 /r coefficient, hence it
vanishes in the r→� limit.

The second-order correction can be written as

�cos�	��� − 	�0���2 =
�2

8 �
n�1

an �
n��1

an��
�1

¯�
�4

�ei�	���−	�0�+n	��1�−n	��2�+n�	��3�−n�	��4���c

��1 − �2�2��3 − �4�2 . �85�

At large � the main contribution comes from �2��, �3�0,
and �1��4 �and one deduced by exchange 1, 2 with 3, 4� and
yields

�cos�	��� − 	�0���2 � 8�2a1
2 1

�M
3 �

�1

1

��1 − ��2�1
2 . �86�
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This integral looks divergent at small times but it is meant to
be regularized for �1 near zero by the region �2��, �3��1
��4�0 in the above integral �85�. This mainly replaces the
1 /�1

2 factor by a ��cos�	��1�−	�0���1 factor regular at �1
=0. Similarly, the singularity at �1=� is smoothed by proper
integration of Eq. �85� in the region �2��1��4��, �3�0.
Since it is regularized at small times on times of order
�1 /�M the above integral behaves as

�cos�	��� − 	�0���2 � 8�2a1
2 A

�M
2 �2 . �87�

To compute the coefficient A we need to perform carefully
the integrals in the small time regularization region. The
question of universality of this amplitude is discussed in Ap-
pendix E. We will not attempt that here but simply note that
there is no large time divergence in the above integral, i.e.,
the coefficient A is finite and does not contain any log diver-
gence.

B. Large � behavior via matching

Let us now estimate the correlation function in the large �
limit and we restrict to CL for simplicity. For � not too large
we can just use the straight large � perturbation theory,

�cos�	��� − 	�0��� = exp�− �
−�c

�c d�

2�
�1 − cos�����

1

������
�

1

��c��1/�2�
, �88�

which presumably is valid only for ln��c����2�. For larger
time one needs to consider renormalization of the dissipa-
tion. We use the analysis of the previous sections. For large �
we expect that we can use the fixed point action which is of
form �3� with renormalized parameters, i.e., near �c
=1 / �0.742�� and with the mass M replaced by the renormal-
ized mass B /R2 with B=B���. To get an estimate of the
correlation function at large �, we can now use the above
result �84� for the small coupling expansion replacing � by
�� and �M by 1 /B��� �according to Eq. �61��. Since �� is not
strictly small this will only provide an estimate. One gets,
keeping the dominant exponential term,

�cos�	��� − 	�0��� �
e2�2�

��c��2 , �89�

which we expect to be valid for ln��c����2�+O�ln ��.
Equation �89� matches Eq. �88� at ln �c���2�.

VIII. DISCUSSION

We have studied two types of environments: �i� the CL
system with relevance to small rings, r�1, or to the Cou-
lomb box problem and �ii� the dirty metal environment, that
can couple to either a charge �CM system� or an electric
dipole �DM system�, with relevance to experiments on cold
Rydberg atoms.24

For the CL system, the variational method was shown to
be equivalent to an RG scheme, reproducing the known two-

loop result.8 Our method provides an expansion to all orders
in 1 /� and leads to the renormalized mass Eq. �61�, which is
close to the result of the boundary field theory19 and the MC
data.20

At small � we find a regular expansion without ln diver-
gences up to second order, i.e., the RG 
 function for �
seems to vanish perturbatively. Since we know that the RG
flow of � at large � is toward smaller values of �, there
seems to be three main possible scenarios: �i� the flow to-
ward small � becomes much slower, either exponentially due
to some putative nonperturbative corrections, or to some
higher order in �, �ii� there is a line of fixed points for �
��c with some termination point �c, and �iii� there is a
infinite set of fixed points at small alpha with accumulation
at zero, or �iv� a one parameter RG is consistent only above
a fixed point.29

In fact the result �cos�	����cos�	�0����1 /�2 is a robust
one, relating to a theorem on an XY model on a lattice.30

This result is derived in first order in � is remarkable. For
large � one should use the scaling to small � and then use
the former result.

For the dirty metal problem we show that at large r the
whole action scales with r2, leading an r-independent effec-
tive mass B /R2. Furthermore, we find a scaling form for
large r and large � that leads to the renormalized mass, Eq.
�79�. For the CM system ��1 from Eq. �8�, yet for the DM
system a large � may be realized in Eq. �10� if the dipole has
p�e�, i.e., the extension of the Rydberg atom needs to be
��. The large � solution is useful also as a complement to
the small � MC data 23 at �=0.19, showing saturation of the
effective mass with r. Therefore, the claims for an
r-dependent mass22 are in contrast with both weak and strong
� results. We note also that the result to first order
�cos�	����cos�	�0����a1 /�2 vanishes as a1� 1

r →0 suggest-
ing that the nonlinearities associated with � become weaker
in the large r limit. We believe that the correspondence of the
variational method with the scaling forms is a useful and
instructive guide for studies of large variety of nonlinear sys-
tems.
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APPENDIX A: THE � parameter

We solve here Eq. �44� for ����. We change variable to
x=1 /� and then to y�x�=��x� /x,

���x� = −
��x�

����x� − 1�
+

��x�
x

, �A1�
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y��x� = −
y�x�

��xy�x� − 1�
, �A2�

therefore,

− �
xy�x� − 1

y�x�
=

1

y��x�
= x��y� , �A3�

x��y� + �x�y� =
�

y
. �A4�

A general solution of the homogenous part is x=C1e−�y while
for a solution to the full equation substitute x=A�y�e−�y so
that A��y�=�e�y /y, hence

A�y� = �� e�y

y
dy = � Ei��y� + C2, �A5�

x�y� = �C1 + C2�e−�y + � Ei��y�e−�y , �A6�

where Ei is the exponential integral function, with the
asymptotic expansion

Ei�z� =
ez

z
�1 +

1

z
+

2!

z2 + ¯� z → � . �A7�

The boundary condition gives at x→0,

x =
1

y
+

1

�y2 + Ce−�y + ¯ , �A8�

y =
1

x
+

1

�
+

C

x2e−�/x + ¯ , �A9�

��x� = xy�x� = 1 +
x

�
+

C

x
e−�/x, �A10�

where C=C1+C2. Comparison with Eq. �6� shows that C
=0, a remarkable result. The solution is then

1 = �� Ei�����e−���. �A11�

This result is plotted in Fig. 1 for � as function of 1 / ����.

APPENDIX B: THE LOG INTEGRAL

We present here the mathematical result, i.e., solving the
log integral by using RG and deriving an asymptotic solu-
tion. Consider the equation

f̃��y� =
1

�
ln�K̃ f̃�y�� �B1�

with the boundary condition f̃�1�=��. This is the equation
for the CL system, Eq. �48�, in the text, defining f���
=�c f̃�� /�c�. The constant K̃ is parametrized as

K̃ = e�2��/��

so that f̃��1�=���. In general, we expect that any pair �� ,��
will produce a solution f̃�y�.

We rewrite the solution in the form

f̃�y� = yg
 e�2��

��
y� �B2�

so that the boundary condition at y=1 is

g�K̃���� = �� . �B3�

Imagine now a varying boundary condition � and that the
function g does not depend explicitly on �; this implies that
���� must be chosen in a specific way. Equation �B1� can be
written as

g�x� + xg��x� =
1

�
ln�xg�x�� , �B4�

where x= K̃y. Taking a derivative of Eq. �B3� yields

�dK̃ /d��g��K̃�=� so that Eq. �B4� at x= K̃ yields

� +
K̃���

K̃����
=

1

�2 ln�K̃������ = ����� �B5�

leading to a differential equation for ����,

� = 1 +
K̃���

�K̃����
= 1 +

1

�2�� − 1 + �2�2d�

d�

. �B6�

Integrating this equation from any initial values �� ,�� yields
a function ����; the full solution at y�1 is then obtained as

f̃�y�=�y�̄�y�, where the function �̄�y� is determined by the

choice K̃��̄�y��= K̃���y. Indeed one then has

f�y� = yg�K̃y� = yg	K̃��̄�y��
 = �y�̄�y� .

Therefore one needs to invert the algebraic relation

K̃��̄�y��= K̃���y to find f̃�y�, leading to a form like Eq. �56�.
In general, however, Eq. �B6� is not easier than the original
Eq. �B1�, except for the initial values ��=� , �=1� which
allow an asymptotic expansion with large �. That our physi-
cal system satisfies this special tuning is most remarkable.

APPENDIX C: INTEGRATION OF RG

It is instructive to study the one-loop RG of the dirty
metal system and compare with the variational solution.
Consider then the RG equations,7 which can also be read off
from Eq. �21�,

d�n

d�
= −

n2�n

�2�
n

�nn2
�C1�

with defined �n=�an. Let us consider the function F�x� of
Eq. �62� setting �=1 there. It becomes now � dependent with

dF��x�
d�

=
F���x�
F��0�

. �C2�

Change to the variable
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F��0�
�

��
=

�

��
�C3�

so that

� �

��
−

�

�x
�F��x� = 0, �C4�

which has the solution

F�����x� = F��0��x + ����� �C5�

and with �=�0
�d� /�F��0� we have the general solution

F��0� = F0��
0

� d��

F���0�� . �C6�

Note that it has some formal similarity to the variational Eq.
�63� if we define �=−ln � /�c. We proceed to study the dirty
metal case with F�=F��0�,

F� =
2�5/2�

r ��
0

� d��

F��
�−3/2

. �C7�

Hence by differentiating

−
2

3

2�5/2�

r
�2/3�F�/��

F�
2/3 = 1. �C8�

Therefore,

2
2�5/2�

r
�2/3

�F�=0
1/3 − F�

1/3� = � = ln
�c

�c
R� , �C9�

where �c
R is a renormalized cutoff. RG terminates at F�=1

�F0=2��r2, hence

2
2�5/2�

r
�2/3

�2��r2�1/3 = ln
�c

�c
R� . �C10�

Since powers of r cancel �c��c
R, i.e., the frequency at

which the RG is stopped is independent of r, a conclusion
also obtained in the text.

APPENDIX D: CALCULATION OF AN INTEGRAL

The integral given in the text, upon rescaling �M�→� is
computed as

1

2
�

�1

�
�2

e−1/2����+��1−�2��

��1 − �2�2 �e�M/2���−�1�+��2�−��1�−��−�2�� − 1�

=
1

2
e−���/2��

−�

−�/2

dx
ex

x2 ��1 − x − �/2��e� − 1� − ��

+ �
−�/2

0

dx
ex

x2 �e−2x�1 + �/2 + x� + x − �/2 − 1�

+ �
0

�/2

dx
e−x

x2 ��1 − e−2x��1 − �/2 + x� − 2x� + �
�/2

�

dx
e−x

x2 ��1 − e−���1 − x + �/2� − ���
=

1

4
e−2�
− e3�/2�3� − 4�Ei
−

3�

2
� − e�/2�e2�� + � + 4�Ei
−

�

2
� + e3�/2���Ei
 �

2
� + log�27�� + 8 − log�81�� − 4e2� − 4�

�D1�

=
1

4
�2�− 2 log��� − 2� + 1 + log�4�� + O�t3�, � � 1 �D2�

=
8

�2 +
384

�4 + O��e−�/2�, � � 1. �D3�

APPENDIX E: STRUCTURE OF HIGHER ORDERS IN
SMALL � perturbation

The discussion of the first- and second-order corrections
in the text suggested that the large time behavior of the in-
tegrals could be obtained from a Wick theorem on the ei	

fields with a �-function correlator, e.g., the structure of the
second-order correction, Eq. �85�, at large time is an integral
dominated by �2��, �3�0, and �1��4, i.e., by the region
such that the charges in ein	��i� should compensate. This was
found to generically lead to 1 /�2 decay. A question is then
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whether the amplitude of this decay can be obtained to all
orders using this property, and how does it depend on the
details of the short time cutoff.

Let us first consider a toy model with the same property. It
is a Gaussian theory of partition sum �Dz���e−S �for an
=�n1�,

S =
�M

4
�

�

z���z���� −
1

2
��

�,��
z���g�� − ���z����� , �E1�

where z��� plays the role of ei	��� and g����1 /�2 at large �.
Being a Gaussian variable it reproduces, for �=0 the propa-
gator �z���z������0=4�M

−1���−���. There is thus some simi-
larities in the perturbation expansion in � with the original
model. Here however it is immediate to obtain

�z�z��
� � = G�� − ���, G��� =

4

�M − 2�g���
. �E2�

Let us consider two examples for the short-time cutoff func-
tion in Eq. �E1�. �i� g���=��Me−���/�M corresponds to a
Lorentzian g���=1 / ��M

−2+�2�. The coefficient of G���
�A /�2 at large � is obtained from the expansion G���
=G�0�−�A���+¯ and reads A=8� / ��1−2����M

2 � by ex-

panding Eq. �E2�, �ii� g���=−����e−�2/�M
2

which gives A
=8� /�M

2 , i.e., only a first-order contribution, all higher or-
ders being zero.

The above example shows that the amplitude A can de-
pend on the short-time cutoff beyond leading order. In that
case it was however easily calculable by convolutions. To

check whether one can indeed predict the 1 /�2 coefficient
more generally, let us consider now the following general
discrete XY model of partition sum,

Z = �
i
�

0

2� d	i

2�
exp
�

k,l
gkle

i�	k−	l�� �E3�

setting gkk=0 for convenience. A calculation using MATH-
EMATICA then gives, for x�0 �here x , p ,q belong to an arbi-
trary lattice�,

�ei�	x−	0�� = g0x + �
p

g0pgpx + �
p,q�0,x

g0pgpqgqx −
1

2
gx0g0x

2

�E4�

+ �
p�q�r�p�0,x

gxpgpqgqrgrx − �
p�0,x

gx0g0xg0pgpx

−
1

2 �
p�0,x

�g0pgxpgpx
2 + gp0gpxg0p

2 + g0x
2 gxpg0p� + O�g5� .

�E5�

Taking as an example a one-dimensional chain with dis-
crete � values, and g���=g��−����1 / ��−���2 at large �−��,
one sees that up to order O�g3� �included� the structure cap-
tured by model, Eq. �E1�, is correct to predict the coefficient
of the 1 /�2 decay of �ei�	�−	0��. Indeed, up to that order, the
1 /�2 decay can be obtained from the convolution of the g
kernel. However some new terms arise at order g4 which are
not of the above form and do contribute to the 1 /�2 decay
and the calculation of A becomes more complicated than in
model, Eq. �E1�.
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