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We study the Aharonov-Bohm oscillations of a charged particle on a ring of radius R coupled to a dirty metal
environment. With Monte Carlo methods we evaluate the curvature of these oscillations which has the form
1 /M�R2, where M� is an effective mass. We find that at low temperatures T the curvature approaches at large
R� l an R independent M��M, where l is the mean free path in the metal. This behavior is also consistent
with perturbation theory in the particle–metal coupling parameter. At finite temperature T we identify dephas-
ing lengths that scale as T−1 at R� l and as T−1/4 at R� l.
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I. INTRODUCTION

The problem of interference in presence of a dissipative
environment is fundamental for a variety of experimental
systems. Interference has been monitored by Aharonov-
Bohm �AB� oscillations in mesoscopic rings1–3 or in quan-
tum Hall edge states4 in presence of noise from gates or other
metal surfaces. Cold atoms trapped by an atom chip are sen-
sitive to the noise produced by the chip.5–7 In particular giant
Rydberg atoms are studied8 whose huge electric dipole is
highly susceptible to such noise.

An efficient tool for monitoring the effect of the environ-
ment, as proposed by Guinea,9 is to consider a particle on a
ring interacting with an environment and to find its AB os-
cillation amplitude as function of the radius R of the ring.
This amplitude is measured by the curvature10–12 of the
ground-state energy E0 at external flux �x=0, i.e., 1 /M�R2

=�2E0 /��x
2�0, defining an effective mass M�. For free par-

ticles of mass M this curvature is the mean level spacing
1 /MR2. The particle can be coupled to a variety of environ-
ments with three systems of particular interest: �i� a
Caledeira-Legget �CL� bath,9 �ii� a charged particle in a dirty
metal environment,9,13 and �iii� a particle with an electric
dipole in a dirty metal environment.14 System �i� has been
studied with a large variety of methods, all showing that the
AB amplitude is exponentially suppressed �e−�2�R2

, i.e., a
new length scale �1 /�� is generated by the coupling � to
the environment.9 System �ii� has been studied by renormal-
ization group �RG� methods9,15 finding M��R	 with a small
	; a Monte Carlo �MC� numerical method gave13 	=1.8 at
sufficiently large R, while a variational scheme14 gave 	=0.
System �iii� was also studied within the variational scheme,14

leading to 	=0 as well.
In the present work we use MC methods to analyze

mostly system �ii�. We find that the energy cutoff used in a
previous study13 is insufficient and a higher cutoff 
c is
needed. In particular we find that at large R� l the effective
mass M� is R independent, i.e., 	=0, where � is the mean
free path in the metal. For R�� we also find that at tempera-
ture T the data scales as TR, identifying a length scale �1 /T.
For R� l the system reduces to a CL one with a �T−1/4

length scale.
At finite T one can use perturbative formulations16,17 for

dephasing that are equivalent to a Fermi’s golden rule. This

approach was recently reconsidered18 via a perturbative
treatment of the purity of a reduced density matrix illuminat-
ing a few subtleties of these formulations. Furthermore, the
revised formulation18 has been applied to the ring+dirty
metal environment problem leading to the same T depen-
dences of the dephasing lengths as are found in the present
MC study. This establishes an intriguing connection between
equilibrium and nonequilibrium length scales.

II. MODEL

The time-dependent angular position �m��� of a particle
on the ring has in general a winding number m so that
�m���=����+2�mT�, where ��0�=��1 /T� has periodic
boundary condition. In presence of an external flux �x �in
units of the flux quantum hc /e� the partition sum has the
form,

Z = �
m

e2�im�x� D�e−S�m�
,

S�m� =
1

2
MR2�

0

1/T � ��

��
+ 2�mT	2

d�

+ �
0

1/T �
0

1/T �2T2K
���� − ����� + 2�mT�� − ����
sin2 �T�� − ���

,

�1�

where the effect of environments, in each of the three cases,
is9,13,14

Case �i� K�z� = sin2 z/2,  = �R2,

Case �ii� = 1 − �4r2 sin2 z

2
+ 1−1/2

,  =
3

8kF
2 l2 ,

Case �iii� = 1 − �4r2 sin2 z

2
+ 1−3/2

,  =
p2

e2l2

3

8kF
2 l2 .

�2�

Case �i� is the CL system, where � is the coupling to a
harmonic oscillator bath; case �ii� is a charge coupled to a
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dirty metal, where kF is the Fermi wave vector, l is the mean
free path in the metal, and r=R / l; case �iii� is an electric
dipole of strength p coupled to a dirty metal.

We note that the forms �ii� and �iii� are based13,14 on a
wave vector and frequency-dependent dielectric function for
the metal of the form ��q ,
�=1+4�� / �−i
+Dq2� valid at
q�1 /�, where � is the conductivity and D is the diffusion
constant of the metal. The q integrals are cut off by q
�1 /�, hence the forms �ii� and �iii� are valid at r�1. We
will use below these forms also at r�1 since they represent
qualitatively the decrease in K�z� with r. Furthermore, at r
→0 the form �ii� reduces to that of the CL model �i� with
CL=2r2.

We also note that in model �ii� �1 for relevant metals.
However, model �iii� allows for a large  since the dipole
parameter p can be large, as, e.g., in the Rydberg atoms.8

We are interested in the effect of the environment on the
visibility of quantum interference as measured by the par-
ticle. As a measure of this visibility we consider the curva-
ture of the Aharonov-Bohm oscillations,

1

M��T�R2 = � �2F

��x
2�

�x=0

, �3�

where F=−T ln Z. It is useful to consider a free particle 
=0, for which

� M

M��T�
	

=0
= 2�2t�

m

m2e−�2m2t��
m

e−�2m2t � f�t� ,

�4�

where t=2MR2T. This identifies the thermal length LT

�1 /�MT.
In the interacting system a high-energy cutoff can be iden-

tified by considering �→�� �corresponding to high frequen-
cies 
� so that the expansion of K�z� and the Fourier trans-
form yield

S�m� →
1

2
� d


2�

MR2
2 + 2�K��0��
�����
��2

+ �2�m�2�1

2
MR2T + K��0� . �5�

The term linear in �
� is typical for dissipative systems; i.e.,
the environment induces dissipation on the particle. The cut-
off 
c is now identified when the kinetic �
2 and ��
�
interaction terms are comparable, i.e.,


c =
2�K��0�

MR2 . �6�

This 
c replaces a possibly higher environment cutoff since
significant renormalizations start only below 
c where the
linear �
� dispersion leads to ln 
 terms in perturbation
theory and to the need for either RG treatment or an equiva-
lent variational scheme.14 Note that K��0�= 1

2 ,r2 ,3r2 in the
three models above; hence 
c=�� /M in case �i�, while 
c
� /Ml2 in cases �ii� and �iii�.

III. MONTE CARLO PROCEDURE

For the MC numerical method we need to discretize the
time axis into a Trotter number NT of segments; i.e., the time
interval of each segment is ��=1 / �TNT�. The discrete action
is

S�m� =
1

2

MR2NTT + K��0���

n
��n+1 − �n +

2�m

NT
	2

+
�2

NT
2 �

n�n�

K
�n − �n� + 2�m�n − n��/NT�

sin2
��n − n��/NT�
. �7�

The 1
2K��0� term comes from the n=n� interaction term by

expanding K�z� around z=0. A key issue in our MC study is
the choice of energy cutoff 1 /�� and the corresponding Trot-
ter number NT=1 / �T���. The correct choice is such that the
free kinetic term dominates over the single n=n� interaction
term, i.e., NT�
c /T, with 
c from Eq. �6�. Hence ��
�1 /
c corresponds to the cutoff 
c as identified by RG or
variational methods. A previous MC study on the charge
problem13 has chosen NT in the range 1 / t–4 / t, i.e., an en-
ergy cutoff of �1 /MR2. For large r this cutoff is much
smaller than 
c and is therefore insufficient.

Equations �1� and �3� identify 1 /M��T�R2

=2�2T�m2���x=0 so that the MC evaluates the fluctuations in
winding number �m2� at external flux �x=0. The procedure
is to start with some m, update �n at a time position n to �n�,
and accept or reject the change according to the MC rule
with probability exp
S�m���n�−S�m���n���. After the NT points
are successively updated, the winding number is shifted to
m�=m�1 and the shift is accepted or rejected with the prob-
ability exp
S�m���n�−S�m����n��. An update of �n is done ran-
domly with a step size that produces an acceptance ratio of
about 50%.11

The inset in Fig. 1 shows the NT dependence of M /M� for
the charge problem with r=5, t=0.2, and =0.019. A choice
for NT in the range 1 / t−4 / t is clearly insufficient; saturation
sets in around NT�100, which is of order of 
c /T=30. In
the following we choose our NT, in the charge problem, to be
NT=40r2 / t=10
c / ��T�, i.e., NT=95 for the inset param-
eters. For the dipole case, where 
c is three times higher, we
choose NT=120r2 / t=10
c / ��T�. Figure 1 shows that for
r=5, t=0.2, and =0.02 �red squares� saturation indeed sets
in near NT=300.

This high value of NT restricts realistic MC studies. We
have noticed, however, that this high NT is necessary only in
the vicinity of n=n� in the double sum of Eq. �7� where the
summand is rapidly varying. Hence the double sum is taken
over all points only in the vicinity of the singularity, i.e., for
�n−n���0.03NT. For points that are further separated we
coarse grain the sum with fewer points, corresponding to an
effective NT=1 / t.

The results of this procedure are shown by the green
circles in Fig. 1 and are in agreement with the full calcula-
tion that includes all NT points. The double sum has then
�0.5�10−3NT

2 +0.5t−2 terms, much less than the 1
2NT

2 terms
of the full calculation. We also show data where the double
sum is coarse grained at all points, including those near n
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=n�, by blue triangles. Here the double sum has only 1
2 t−2

terms; this data has significant deviations from the full cal-
culation.

We proceed to discuss our error estimates. At low tem-
peratures we evaluate �m2�, and the average involves typi-
cally many values of m. To estimate errors we evaluate the
correlation function for a given run and deduce a correlation
length �. We discard the initial 104 MC iterations and then
evaluate the standard deviation � of the average data; the
error is then19 ��2�+1. We typically find a short correlation
length of a few units and run it until an error of �2% is
achieved. The number of iterations is then ��1–2��105 and
in some cases up to 106, where each iteration is an update of
NT values of the �n.

At high temperatures t�1, where M /M��10−3, the prob-
ability of m�0 becomes extremely small so that only m
= �1 determine the outcome.11 Hence we evaluate �m2�
=2�e�S1−S0��0, averaging with e−S0. In this method we find a
rather long correlation length of �103. Yet there is no need
to vary m, and a 2% accuracy can be achieved after
��1–2��105 iterations.

IV. MC RESULTS

We present here our data for the dirty metal, system �ii�.
In Fig. 2 we show our data for =0.019 at low temperatures,
t�0.3; we note saturation at t�0.2. In Fig. 3 we collect the
limiting low t values of our data for various alpha, typically
achieved at t�0.1–0.01. The data is limited to Trotter num-
bers NT=40r2 / t�9000.

We compare in Fig. 3 the data with results of perturbation
theory �Appendix�. The perturbation is formally first order in
; however, it should be valid also for large  and small r

such that x�2, where at t=0 we define x=M��t=0� /M. The
perturbation curves are a good fit to the data for r�1, while
at r�1 and small  the fit is qualitatively good in the sense
that saturation is achieved at large r. We have also attempted
to fit these data by a scaling function of the form x=1
+r2−cg�rc�, which is consistent with the r→0 form of the
perturbation expansion. In particular, this form with c=2
would scale onto the CL system at r→0 and →�. How-
ever, we could not find a satisfactory fit even for the small
r�2 regime.

Our data shows for the lowest =0.019 and for r�3 that
M /M� reaches saturation with M /M��0.9, almost indepen-
dent of r. The data at r=20 �shown in Fig. 2� is consistent
with this saturation although it is not shown in Fig. 3 to keep
a convenient scale. In view of this saturation at 3�r�20 we
expect it to persist at higher r. In terms of M��r	, our data

FIG. 1. �Color online� Trotter number dependence of the effec-
tive mass for the dipole case with r=5, t=0.2, and =0.02 using �i�
all NT points in the double sum 
Eq. �7��—red squares. �ii� For
points �n−n���0.03NT sum is coarse grained �see text�—green
circles. �iii� the whole sum is coarse grained—blue triangles. Inset:
The charge case with r=5, t=0.2, and =0.019 using all NT points
in the sums.

FIG. 2. �Color online� AB curvature as function of reduced tem-
perature with =0.019. All r�3 vlaues fit the renormalized form
0.9f�t /0.9�—the lower curve. At r�1 the data approaches f�t� of a
free particles—the upper curve.

FIG. 3. �Color online� t=0 limiting values of x=M��t=0� /M for
various . The full lines are results of perturbation expansion
�Appendix�.
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shows that 	�0.05 and is consistent with 	=0. We note that
with our revised values of NT we were not able to reach a
saturation regime at larger  �see Fig. 3�.

Our result shows that the AB curvature �1 /R2 is the same
as for free particles, i.e., the ground state has no anomaly, at
least for weak =0.019. Furthermore, Fig. 2 shows that M�

determines the finite temperature behavior, as long as T
�
c. Thus if we replace M→M�=M /0.9 in Eq. �4�, we
obtain the lower curve 0.9f�t /0.9� in Fig. 2, which is a good
fit to the data. The thermal length is then LT�1 /�M�T.

In Fig. 4 we show our r�3 data up to t=2. The data falls
in between two lines, 0.9f�t /0.9� and f�t�. The lower curve
0.9f�t /0.9� corresponds to the renormalized system and fits
data with T�
c, i.e., t�4�r2. For a fixed t as r decreases
T approaches 
c and the data approaches the upper curve,
which is the unrenormalized free particle form f�t�.

We therefore parametrize our data by a function x�r , t�
such that M /M�= f�tx� /x. In this way we avoid the obvious t
dependence associated with mass renormalization and focus
on additional temperature effects. In Fig. 5 we show that for
r�1 the data for x�t ,r� scales with t /r. Since t�TR2 the
scaling parameter is �TR, identifying a length scale �1 /T.
A dephasing length scale has been recently derived in a non-
equilibrium study,18 which for r�1 indeed scales with 1 /T.
We propose therefore that the additional T dependence em-
bedded in our variable x�t ,r� is related to the dephasing of
the nonequilibrium situation.

We note that the perturbation expansion yields for r�1,

M

M�
= 1 – 4 + O�t

r
ln r	, r � 1. �8�

While the dependence on t /r is consistent with Fig. 5 �up to
a ln r factor�, we note that the t /r form in perturbation form
�8� is valid only at t�1 and r�10. Hence the observed
scaling �Fig. 5� with t /r up to t�1 and at 3�r�20 is an
unexpected feature.

In Fig. 6 we show that for r�1 the data scales as tr2. At
tr2�0.04 both x�t ,r� and x�0,r� are close to one and the
errors in 1 /x�t ,r�−1 /x�0,r� are too large to draw a conclu-
sion in this regime. The same difficulty is with all data of
small , hence Fig. 6 shows only =0.2,1. At tr2�0.04 the
data in Fig. 6 supports a tr2 scaling. Since t�TR2 this im-
plies a length scale �T−1/4. We note again that similar de-
pendence for a dephasing length was found for r�1 in the
nonequilibrium study.18

For r�1 we can use the perturbation result Eq. �A12�,

M

M�
= 1 – 2�

n

an + 4tr2. r � 1. �9�

This shows the r2 scaling at tr2�1. It is remarkable that
our data in Fig. 6 supports r2 scaling up to rather high
temperatures of t�1.

FIG. 4. �Color online� AB curvature including high temperatures
with =0.019. All data fall in between the upper line f�t� and the
lower line 0.9f�t /0.9�.

FIG. 5. �Color online� Scaling of the x variable in M /M�

= f�tx� /x for r�1 cases with =0.019 and =0.057.

FIG. 6. �Color online� Scaling of the variable 1
x�t,r� − 1

x�0,r� for
r�1 cases with =0.2 and =1.
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As noted above, the r dependence of K�z� is reliable only
at r�1 where the low q ,
 form of ��q ,
� can be used or at
r�1, which is the CL limit. In fact, for a general ��q ,
� one
can expand the response in R and obtain that the leading term
is K�z��R2, i.e., the CL form. We conclude then that at both
small and large r, where K�z� is reliable, the T-dependent
length scale of the equilibrium observable M� /M can be
identified with a dephasing length.

V. DISCUSSION

The possible dependence of M��r� at T=0 has been of
interest as a mean of monitoring anomalies in the ground
state9,13 of metals. Previous studies proposed M��r	 with
either9,15 a small 	 or,13 	=1.8, or14 	=0. Instanton-based
arguments suggested13 a M��r� dependence for r�1.

With our revised values of NT we were able to reach a
reasonably large r only for weak coupling, =0.019. For this
coupling we observe saturation at 3�r�20. Although we
cannot strictly rule out 	�0 at higher r, we find it highly
unlikely that an r dependence will reappear at r�20. We
propose then that 	=0 at =0.019, implying 	=0 at all  �if
larger  would show a 	�0 it would imply an unlikely
singular line in the  ,r plane�. We propose then that 	=0 for
all  at r�1 and that the effect of the environment is a mass
renormalization, in agreement with the variational study.14

We have found temperature-dependent length scales. For
r�1 we find T−1, while for r�1 we find T−1/4. We note that
the same T dependence was found for dephasing lengths in a
nonequilibrium study based on the purity of a reduced den-
sity matrix18 for the dirty metal situation. A dephasing length
was deduced18 by comparing a dephasing rate with a mean
level separation as a condition for coherence. It is remarkable
that the agreement in these dephasing lengths is obtained in
both regimes, r�1 and r�1, where the form of Eq. �2� case
�ii� is valid for a dirty metal environment; the r�1 form is
also valid for other realizations of a CL environment. We
have therefore the intriguing observation that equilibrium
scales can identify nonequilibrium dephasing length scales.

ACKNOWLEDGMENTS

We thank C. Herrero for his valuable help with the nu-
merical code. We also appreciate useful discussions with A.
Aharony, A. Altshuler, D. Cohen, Y. Gefen, A. Golub, D.
Golubev, I. Gornyi, F. Guinea, Y. Imry, A. Mirlin, D. Polya-
kov, and A. D. Zaikin. This research was supported by the
Deutsch-Israelische Projektkooperation �DIP� and by the Is-
rael Science Foundation founded by the Israel Academy of
Sciences and Humanities.

APPENDIX: PERTURBATION EXPANSION

Consider the action of a particle on a ring in presence of a
dissipative environment and a flux �x through the ring 
Eq.
�1�� with the dirty metal environment,

K�z� = 1 − �4r2 sin2 z

2
+ 1−1/2

= �
n=1

�

an sin2�1

2
nz	 ,

�A1�

 =
3

8kF
2 l2 .

For a low T expansion it is efficient to perform a duality
transformation using the Poisson sum,

�
m

g�m� = �
−�

�

d��
p

e2�i�pg��� , �A2�

where the sums m , p run on all integers. Hence Eq. �1� be-
comes

Z = Z1�
−�

�

d��
p

e2�i��p+�x�−�2t�2

� �1 − �
n

an�
0

�

d��
0

�

d��
�2T2

2 sin2
�T�� − ����

�„1 − cos
2�nT��� − �����cos�n
���� − ��������0… ,

�A3�

where t=2MR2T, �=1 /T, Z1=�D� exp�−S1����, and the
�. . .�0 average is taken with respect to exp�−S1�, where

S1��� = �
0

�

d�
1

2
MR2� ��

��
	2

. �A4�

For a Gaussian average we have

�cos�n
���� − ��������0 = exp�−
1

2
n2�
���� − ������2�0�

= exp�−
n2

�2�



����
��2�0

�
1 − cos 
�� − �����
= exp�−

2n2

�2t
�



1 − cos 
�� − ���

2 

= e−n2��−���/�t, �A5�

where ����= 1
��
e−i
���
� and 
 are the Matsubara frequen-

cies, where 
=2�T� integer.
For periodic functions we can change integration vari-

ables to �1=�−��, �2= 1
2 ��+��� with �d�2=� and ��1� in Eq.

�A5� is chosen in the range �−� /2,� /2� to allow for period-
icity and continuity at �1=0; hence,

Z = Z1�
−�

�

d��
p

e2�i��p+�x�−�2t�2

� �1 − ��
n

an�
−�/2

�/2 �2T2

2 sin2��T��

�
1 − cos�2�nT���e−n2���/�t�� . �A6�

Integrating � we obtain
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Z � �
p
�e−
�p + �x�2/t� − ��

n

an�
0

�/2

�2T2sin2��T��

��e−
�p + �x�2/t� −
1

2
e−
�p + �x − nT��2/t�−
n2���/�t�

−
1

2
e−
�p + �x + nT��2/t�−
n2���/�t�	

� �
p

e−
�p + �x�2/t��1 −
�F

T
	 , �A7�

where the correction to the free energy �F is

�F = �
p

e−
�p + �x�2/t�

�
p�

e−
�p� + �x�2/t��
n

an

��
0

�/2 �2T2

sin2��T���1 −
1

2
e2n�T/t���p+�x�−n2�T2/t��2−n2�T/t��

−
1

2
e−2n�T/t���p+�x�−n2�T2/t��2−n2�T/t�� , �A8�

where actually T
t =1 /2MR2. At small � there are �d� /� inte-

grals and therefore a cutoff 1 /
c is needed. At low tempera-
tures t�1 one can retain only p= p�=0 and then the cutoff is
not needed, as found below. Hence for t�1,

�F = �
n

an�
0

�/2 �2T2

sin2��T��

�
1 − e−n2�T2/t��2−n2�T/t�� cosh�2n��xT/t��

+ O�e−1/t ln 
cT� . �A9�

The effective mass M� is defined in terms of the curvature so
that the first-order correction is

�
1

M�R2 = � �2�F

��x
2 �

0

= − �
n

an�
0

�/2 �2T2

sin2��T��
�2n�T/t�2

�e−n2�T2/t��2−n2�T/t��. �A10�

Note that there is no divergence at �=0. The dominant inte-
gration range is �� t /Tn2 so that the first term in the expo-
nent can be expanded. Keeping terms to order t2 we obtain in
terms of x=�n2 /2MR2,

�
M

M� = − 2�
n

an�
0

� �1 +
�2t2

3n4 x2 −
t

n2x2

+
t2

2n4x4 + . . .	e−xdx

= − 2�
n

an�1 −
2t

n2 + �2�2

3
+ 12	 t2

n4 + . . . .

�A11�

Hence to first order in t

M

M�
= 1 – 2�

n

an + 4t�
n

an

n2 . �A12�

At t=0 this result is consistent with Eq. 9 of Ref. 13.
The following sum rules are useful for evaluating these

sums. Integrating Eq. �A1� �0
�dz we obtain

�
n=1

�

an = 2 −
2

�
�

0

� dz

�4r2 sin2 1
2z + 1

. �A13�

Fourier transform of Eq. �A1�,

an =
− 4

�
�

0

� �1 −
1

�4r2 sin2 1
2z + 1

	cos nzdz , �A14�

and performing the n summation, we obtain

�
n=1

�
an

n2 =
4

�
�

0

� 1

�4r2 sin2 1
2z + 1

��2

6
−

�z

2
+

z2

4
	dz .

�A15�
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