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Abstract — We consider a particle coupled to a dissipative environment and derive a perturbative
formula for the dephasing rate based on the purity of the reduced probability matrix. We apply
this formula to the problem of a particle on a ring, that interacts with a dirty-metal environment.
At low but finite temperatures we find a dephasing rate o< 7%/2, and identify dephasing lengths
for large and for small rings. These findings shed light on recent Monte Carlo data regarding the
effective mass of the particle. At zero temperature we find that spatial fluctuations suppress the

possibility of having a power law decay of coherence.

Copyright © EPLA, 2008

Introduction. — The problem of dephasing of a parti-
cle coupled to a dissipative environment at temperature
T, and in particular in the limit T"— 0 has fascinated the
mesoscopic community during the last two decades [1-7].
It has been shown [8,9] that the Caldeira-Leggett (CL)
framework [10,11] can be generalized and that the
proper way to characterize the environment is by its
form factor S (¢,w). Application of the Feynman-Vernon
formalism [8,9] and a semiclassical analysis have shown
that an interference amplitude P, decays with time as
P, = exp(—py(t)) with

po(t)=t / | Sa.) Plea.—o).

where the integration measures over the wave vector and
the frequency are d3¢q/(27)3 and dw/2m, respectively. The
interference suppression factor P, is known in the litera-
ture as the dephasing [2] or as the decoherence factor [12],
and in the present work we show that it reflects loss
of purity. In the semiclassical treatment g(q,w) is the
symmetrized form factor of the environment and P(q,w)
is the classical symmetric power spectrum of the motion.
It has been conjectured using ad hoc argumentation [13]
(see also [2,14]) that “the correct” procedure is to use
non-symmetrized spectra. One of our aims is to provide
a proper derivation for a corrected eq. (1).

During the last decade the study of a particle in a
ring coupled to a variety of environments, has become a
paradigm for the study of ground-state anomalies [15-19].
Besides being a prototype model problem it may be
realized as a mesoscopic electronic device, and it is also of

(1)

relevance to experiments with cold atoms or ions that are
trapped above an “atom chip” device [20-22], where noise
is induced by nearby metal surfaces. A significant progress
has been achieved in analyzing the equilibrium properties
of this prototype system, in particular the dependence
of the ground-state energy on the Aharonov-Bohm flux
through the ring.

In the present work we define “dephasing” as the
progressive loss of purity and find a consistent revised form
of eq. (1) that is valid beyond the semiclassical context.
We apply this result to the model of a particle on a clean
ring that interacts with a dirty-metal environment. At
finite temperature we identify the dephasing rate I', =
Py (t)/t, that vanishes at zero temperature. At T'=0 we
find that only in the CL-like limit of our model there is still
slow progressive spreading (p,(t) ~Int) which suggests
a power law decay of coherence. Our results shed new
light on recent Monte Carlo data for the temperature
dependence of mass renormalization [23].

Purity. — Our starting point is the most natural
definition for the dephasing factor as related to the purity
trace(p?) of the reduced probability matrix. The notion of
purity is very old, but in recent years it has become very
popular due to the interest in quantum computation [24].
Assume that the state of the system including the
environment is ¥,,, where p and n label the basis states
of the particle and the bath, respectively. Tracing the
environment states n defines a reduced probability matrix
[Psyslppr =2, Ypn'Vsy,, and the purity is then measured

by the dephasing factor P,=,/trace(pZs). Assuming

30001-pl



D. Cohen and B. Horovitz

a factorized initial preparation as in the conventional
Feynman-Vernon formalism, we propose the loss of purity
(P, < 1) as a measure for decoherence. A standard reser-
vation applies: initial transients during which the system
gets “dressed” by the environment should be ignored as
these reflect renormalizations due to the interactions with
the high-frequency modes. Other choices of initial state
might involve different transients, while the later slow
approach to equilibrium should be independent of these
transients. In any case, the reasoning here is not much
different from the usual ideology of the Fermi golden
rule, which is used with similar restrictions to calculate
transition rates between levels.

Consider then a factorized initial preparation \I/S;) =
Op.poOn,ng, 50 that within perturbation theory all ¥,
are small except for ¥, ,,. We can relate P, to the
probabilities P;(p, n|po,n0) = |¥pn|? to have a transition
from the state |po,no) to the state |p,n) after time t. To
leading order we find

P, = P,(po, no|po, no)
+ Z Py(p,molpo, no) +

PFPo

Z P (po,n[po, no).

n#ng

(2)

The first term in eq. (2) is just the survival probability
Piurvival of the preparation. The importance of the two
other terms can be demonstrated using simple examples:
For an environment that consists of static scatterers we
have Psyrvival <1 but P, =1 thanks to the second term.
For a particle in a ring that interacts with a ¢g=0
environmental mode Pyyrvival < 1 but P, = 1 thanks to the
third term. Using Zp,n P;(p,n|po,no) = 1 we finally obtain

Z Z Py(p;nlpo, no)-

PF#Po nF#No

3)

p<p—1

This result has the form of a Fermi golden rule (FGR),
i.e. it is the probability that both the system and the
bath make a transition. This differs from the usual FGR
treatment [2] in which terms like P;(pg,n # nolpo,no)
are included. In the problem that we consider in this
paper we can calculate P, using a dgdw integral as in
eq. (1). In many examples the w=0 transitions have
zero measure and therefore P, is practically the same
as Pi(po, no|po,no). Otherwise one has to be careful in
eliminating those transitions that do not contribute to the
dephasing process. Anticipating the application of eq. (1)
for the calculation of the dephasing for a particle in a
ring, the integration over ¢ becomes a discrete summation
where the ¢ =0 related component should be excluded. It
is implicit in the derivation of eq. (1) from eq. (3) that at
the last step a thermal average is taken over both ng and
Po, though in general one may consider non-equilibrium
preparations as well.

Dephasing formula. — We would like to apply our
revised FGR equation (3) to the general problem of a
particle at position R coupled to an environment with

electronic density n(r,t). It is implicit that the particle
also experiences an external potential that defines the
confining geometry. A Hamiltonian # of the particle in
the confined geometry defines the states and eigenstates
via Holp) = Ep|p). For definiteness we use the Coulomb
interaction, though any other interaction may be used,
hence the particle-environment interaction is

A= [
<4>

where p(r) = §(r— R(t)), with R(t) the position operator
of the particle in the Heisenberg (interaction) picture.
Our FGR with Pt(pa 7’L|p0, nO) = ‘<p7 ’I’L| f(f ‘/;ntdtl|p07 n0>|2
(using A =1 units) yields

poe
N ST [at | at| [ (polee”, ") p)plo(r',t') o)
7’5170)71(7’5710)/ / //

x (nolU(r", #") ) (| (', ') |no). (5)

The double time integral can be written as a dgdw integral
over Fourier components. For this purpose we define the
form factor of the fluctuations (as seen by the particle):

= / a?r / dr U ) U(r, ) <779 (6)

with thermal average replacing the ng state expectation
value. S(q,w) is related to the dielectric function of
the environment £(g,w) via the fluctuation dissipation
theorem

~ 4re? -1 2
S(q,w) = Im [E(Q,W)] T o—a/T" (7)

a2
In the semiclassical formulation one replaces the operator
R(t) by the classical trajectory Rci(t), and consequently
in eq. (5) the particle-related part of the integrand is
replaced by a classical two-point correlation function of the
type (f(Ra(t"))f(Ra(t))). In the quantum context the
particle-dependent part of eq. (5), after Fourier transform,
leads to the following definition for the power spectrum of
the motion:

P(q,w) :/ [<e—iq-R(~r)eiq-R(O)> _ <eiq-R>2:| T dr. (8)

Also here, at state of equilibrium, a thermal average should
replace the py state expectation value. It is important to
realize that this definition, as well as eq. (7), imply that
non-symmetrized spectral functions should be used. Our
main interest is in very low temperatures, so we set for
presentation purpose pg =0. Then we get

w) =D [Pl F|0) | 6(w — Ey).

p#0

P(q, )
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Using the above definitions for S(q,w) and P(q,w) we can
re-write

e dt/df”///w,, e

—z(u —w'") (¢

)P(—q,—w")
(10)

For practical calculations or for aesthetic reasons we
prefer to use soft rather than sharp cutoff for the time
integration. Then we get

o=t | [ Sarn
(11)

This result can be cast into the form of eq. (1) provided
P(q,w) is re-defined as the convolution of eq. (8) with
the kernel in the square brackets, which is like a time-
uncertainty broadened delta function. Equation (11) is
our revised form of eq. (1); it provides the dephasing
factor P, =exp(—p,) for a general particle-environment
interaction.

(2/1)

+ (w—w")?

) [y

Dephasing rate. — At finite temperatures, if ¢ is larger
compared with dynamically relevant time scales, and in
particular ¢ > 1/T, we can replace the square brackets in
eq. (11) by 276(w — w’). Consequently we get linear growth

o ~= 'yt with the rate

r, = / | S@w)P-a.-.

Following standard arguments one conjectures that the
long time decay is exponential, i.e. P(t) =exp(—I,t), as
in the analysis of Wigner’s decay. In terms of the dielectric
function (g, w) we obtain the following general result:

2

Our assumption ¢ > (1/T") implies that (13) can be trusted
only if I') < T which implies a weak-coupling condition
(see below).

(12)

2|(ple’r #|0)[?
ebr/T 1

(13)
p#0

Dirty metal. — So far we kept the derivation general,
without specifying either the particle states |p) or the
dielectric function e(gq,w). We consider now a parti-
cle of mass M on a ring of radius R so that Hg=
—(2M R?)719Z, where 0 is the angle variable. The particle
eigenstates are then |p,,) oce™™? with energy eigenvalues
E.=m?/(2MR?). We study the effect of low-frequency
fluctuations (|q| <1/4, |w| Sw.) due to a dirty-metal envi-
ronment for which e(q,w) =1+ 4no(—iw + Dg?) !, where
o is the conductivity, D is the diffusion constant, and /¢
is the mean free path. Below we identify the renormalized
value of the high-frequency cutoff w,. as the classical damp-
ing rate 7, = 2ra/M¢?, where the dimensionless interac-
tion strength is a=e?/(87%0f) =3/(8(krf)?) and kr is

T T T —
Y

Fig. 1: Illustration of the dependence of the dephasing rate
I" on the temperature 7. The dephasing rate is well defined
for t>(1/T), and hence the self-consistency requirement
is ' < T. This condition is demonstrated by a comparison
with the dashed line. The illustration assumes weak coupling
a <1 and large rings ar?>1 so that the energy cutoff
is v, = 2ma/ME* > A =1/MR?. For extremely low tempera-
tures, such that 7' is smaller compared with the spacing A, the
probability to excite the system is exponentially small and the
familiar two-level modeling becomes applicable.

the Fermi wave vector. We first consider the case of a large
ring with r = R/¢ > 1. Using the Fourier expansion [16,17]

¢ / o ia-(R(0)~R(6' ))4” !
a \/4r2sm 09)—}—1

m(6 —6')
1-— m 14
Z Gy SIN ( 5 (14)
with
ln Lo 1<m<r,
Am =~ { 0, otherwise, (15)
we have A
0
Ole T Bip, V2 =Zap, 16
| 00 R ) = o (16)

and therefore

Lpf27ra2am

m#0

e |Bml/we

eBm/T 1

~2raTl Z A s

0<|m|<Tegr

where 7og = min{r, (2M R*T)"Y/? (2M R?w.)"/?} is deter-
mined by the conditions m < r and F,, <T and F,, < w,.
At high temperatures, T > w, Teg IS temperature inde-
pendent and therefore I', oc T', while at low temperatures
(but still T'>1/(2M R?)) we get, as shown schematically
in fig. 1,

T, =4aTV2MET|InV2MET|~ T3 InT|.  (18)
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From these results it follows that the self-consistency
requirement I', < T, as discussed after eq. (13), is glob-
ally satisfied for any temperature if a < 1, or equivalently
if kpl > 1; in the regime of eq. (18) the constraint I, < T'
is satisfied also with stronger c. We note that if the m =0
Fourier component were included in the summation, then
the low-1" form would change to I', o< T', in contrast with
the proper result eq. (18).

Though the derivation of eq. (11) refers to the one parti-
cle problem, it turns out that the treatment of dephasing
in the many-body problem is not much different. Namely,
the effect of the “Pauli principle” in the low-temperature
Fermi sea occupation can be incorporated via an appro-
priate modification of the cutoff scheme for the spec-
tral functions involved. On the heuristic level it involves
a T-dependent momentum cutoff as in [12], while more
recently it has been formulated and established using
more advanced methods [25].

Zero temperature. — We would like to discuss the
“zero-temperature” regime. If the temperature were
extremely low, such that T < A where A~ 1/(MR?)
is the ground-state level spacing, we could treat the
problem using a “two-level approximation”, which is a
very well-studied model [12]. We do not further discuss
this regime. From here on we assume 7 > A. Thus,
we can treat the dw integration as if the levels of the
ring form a continuum. But we still can define “zero
temperature” as such for which the practical interest is in
the time interval ¢t <« 1/T, which can be extremely long.
Then one realizes that eq. (11) gives a non-zero result
even at “zero temperature”:

We

~ min ——— 19
pemad i g (19)

where w, is the high-frequency cutoff of the environmental
modes. Assuming ¢ < R we get after a transient

1/¢ 1 Mw
:::aé/ dg In {} ln[ C] ~a, 20
p%@ 0 q qe q2 ( )

where, for clarity of presentation, we converted the m
summation into a dg=(1/R)dm integral. Accordingly,
we deduce that for r>>1 coherence is maintained if
krpf> 1. This should be contrasted with the CL limit
(£ — 00) where the integral has a singular ¢~ 0 contri-
bution from the lowest fluctuating mode (m=1), and
consequently p, ~ 2ar?log(w.t), which is a well-known
expression [6,15]. But once r <1 the condition for using
our perturbation result is replaced by ar? <1, which
is an /{-independent condition. In this CL limit the
quantization of the energy spectrum is important and the
renormalized cutoff frequency becomes w.~ A instead
of w, ~ .. Accordingly, in the latter circumstances, the
time during which the log spreading prevails diminishes.

Effective mass. — It can be shown [9] that the
mass renormalization in the inertial (polaronic) sense is

AM =n/w.. However, in recent works [16-18], the mass
renormalization concept appears in a new context. The
free energy F(T,®) of a particle in a ring is calculated,
where ® is the Aharonov-Bohm flux through the ring.
Then the coherence is characterized by the “curvature”,
which is a measure for the sensitivity to ®. The curvature
can be parameterized as

0°F B €2
092 |,_,~ M'R?

f(M*R?T), (21)
where in the absence of environment M* = M is the bare
mass of the particle, and the T-dependence simply reflects
the Boltzmann distribution of the energy. In the presence
of coupling to the environment M* > M and M* depends
on both o and T'. At T =0, for fixed a < 1, Monte Carlo
data show [22] that the ratio M*/M is independent of
the radius provided r > r., where r. is a critical radius.
As the radius becomes smaller compared with r., the
ratio M*/M rapidly approaches unity. In the regime of
“large R” the mass renormalization effect diminishes with
temperature and depends on the scaled variable RT,
while for “small R” the ratio M*/M depends on the
scaled variable R*T. The natural question is whether we
can shed some light on the physics behind this observed
temperature dependence. Making the conjecture that
the temperature dependence of M*/M is determined by
dephasing it is natural to suggest the following measure of
coherence:

z(T,R) =p, (t: ! ) ~ Lo ~2naaM R*T,  (22)
Aei‘f Aeﬁ

where @ is an average value of a,,. Equation (22) describes
dephasing at time ¢ = 1/Acg, where Agg ~ rog X (M R2)7!
is the energy scale that characterizes the “effective” tran-
sitions; hence the variable x measures the level sharpness.
For a dirty metal with ¢ < R the typical value of the
Fourier components is @ ~ 1/r as implied by eq. (15). On
the other hand, for a dirty metal with ¢>> R there is only
one effective mode with @~ r2. Accordingly, we get the
RT and the R*T dependence, respectively, in agreement
with the Monte Carlo simulations. The condition < 1/2
can serve as a practical definition for having coherence. It
can be translated either as a condition on the temperature,
or optionally it can be used in order to define a coherence
length that depends on the temperature. The conjecture
is that M*/M is a function of z.

Summary. — In this paper we derive a new pertur-
bative expression for the dephasing factor P,(t) and
apply it to a particle in a ring coupled to fluctuations of
a dirty-metal environment. We find that the dephasing
rate vanishes at T'=0. We also define a coherence
criterion that identifies a dephasing length. The latter
diverges as T~ for large radius and as T~/* for small
radius, in agreement with Monte Carlo data on mass
renormalization. The renormalized mass is an equilibrium
property which affects temporal correlation functions.

30001-p4
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But we see that it reflects non-equilibrium features of the
dynamics which are expressed in the dephasing factor
calculation. We find this relation between equilibrium
and non-equilibrium scales an intriguing phenomena.
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