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Abstract
The motion of a particle in a ring of length L is influenced by a dirty metal
environment whose fluctuations are characterized by a short correlation distance
� � L. We analyze the induced decoherence process, and compare the results
with those obtained in the opposing Caldeira–Leggett limit (� � L). A proper
definition of the dephasing factor that does not depend on a vague semiclassical
picture is employed. Some recent Monte Carlo results about the effect of finite
temperatures on ‘mass renormalization’ in this system are illuminated.

PACS numbers: 03.65.−w, 03.65.Yz, 73.23.−b

1. Introduction

What is dephasing of a particle that has an energy E if it is subject to a fluctuating environment
that has a temperature T? In particular what is dephasing close to equilibrium (E ∼ T ), and
what happens in the limit T → 0? This question has fascinated the mesoscopic community
during the last two decades [1–7]. Our purpose is to study this question within the framework
of linear response theory for a general characterization of the environment. In the Caldeira–
Leggett (CL) framework [8, 9]1, the effect of the environment is characterized by a friction
coefficient η and by a temperature T. But, more generally [10–12], it has been emphasized that
the proper way to characterize the environment is by its form factor S̃(q, ω). The form factor
contains information on both the temporal and the spatial aspects of the fluctuations, and in
particular one can extract from it not only T and η, but also the spatial correlations. Typically
(but not always) these spatial correlations can be characterized by a correlation distance �.

So now we ask the refined question: given S̃(q, ω), what is dephasing? But first we have
to say what do we mean by dephasing. In [10, 11] the CL approach has been generalized.
Namely, it has been realized that an environment with a given S̃(q, ω) can be modeled as
a set of harmonic oscillators. Then it is possible to apply the Feynman–Vernon formalism
in order to trace them out. Using a semiclassical point of view, the propagator is expressed

1 We emphasize here the Ohmic CL model, which is of relevance in the present context as a limiting case for a dirty
metal environment. Obviously in general one may consider non-Ohmic models, where memory kernels are involved
while the notion of a friction constant η becomes ill defined.
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as a sum over pairs of classical trajectories. One observes that after time t, the interference
contribution (from the off-diagonal terms in the double sum) is suppressed by a factor Pϕ .
This factor is interpreted as a dephasing factor, and its expression can be cast into the form
Pϕ = exp(−F(t)) with

F(t) =
∫

dq

∫
dω

2π
S̃(q, ω)P̃ (−q,−ω; t)t, (1)

where the dq integration measure depends on the dimensionality. In the semiclassical
treatment, S̃(q, ω) would be the symmetrized form factor of the environment and P̃ (q, ω; t)

would be the classical symmetric power spectrum of the motion. There are some subtleties in
the definition of P̃ (q, ω; t) that we are going to discuss later on. In particular, we note that
P̃ (q, ω; t) may have weak dependence on t because a finite time interval is considered.

It has been further argued in [12] that due to inherent limitations of the semiclassical
(stationary phase) approximation, the physically correct procedure is to use the non-
symmetrized quantum versions of S̃(q, ω) and P̃ (q, ω; t). This point has been further
discussed in [13]. However, a proper derivation of equation (1), that does not rely on the
semiclassical framework, has not been introduced. One objective of the present paper is to
extend the derivation of the above formula beyond the semiclassical context.

It is important to realize that equation (1) is capable of reproducing all the established
results about dephasing in normal metals, including the high temperature ∝T dependence of
the dephasing time, the low temperature ∝T 3/2 dependence in the case of a diffusive particle
and the ∝T 2 dependence in the ballistic regime. At finite temperatures there is a finite time
scale h̄/T that allows the approximation F(t) ≈ �ϕt , and hence the notion of the dephasing
rate �ϕ is well defined. In the limit T → 0, we always have �ϕ → 0. This, however, does not
exclude the sub-exponential (power law) decay of Pϕ .

Indeed, it is well known [6] that for a Brownian particle with CL environment the function
F(t) grows as log(t) at zero temperature, implying sub-exponential dephasing at T = 0. It
is a common misconception that equation (1) with non-symmetrized spectral functions fails
to reproduce this log(t) spreading. We shall dwell on this point later on in this paper.
Furthermore, we shall study whether similar sub-diffusive behavior can be found for general
S̃(q, ω).

During the last decade, the study of a particle in a ring has become a paradigm for the
study of ground state anomalies. [14–18]. Besides being a prototype problem that possibly
can be realized as a mesoscopic electronic device, it is also of relevance to experiments with
particles that are trapped above an ‘atom chip’ device [19–21], where noise is induced by
nearby metal surfaces. Significant progress has been achieved in analyzing the equilibrium
properties of this prototype system, in particular the dependence of the ground state energy
on the Aharonov Bohm flux through the ring. The derivations of the dephasing factor using
equation (1) for the ring problem is a major objective of the present paper. In this context, there
is a growing understanding that the study of dephasing is intimately connected with the study
of mass renormalization at low temperatures. We believe that our results shed new light on
some recent findings [22] that have been obtained using Monte Carlo data for the temperature
dependence of the mass-renormalization effect.

The outline of this paper is as follows. In sections 2 and 3 we characterize the environment
by the power spectrum of its fluctuations, and then in sections 4–6 we derive the formula for
the dephasing factor. This formula is applied in sections 7 and 8 to the calculation of the
dephasing of a particle of mass M in a ring of length L. The results depend crucially on the
correlation distance � of the fluctuating environment. They shed light on some new findings
regarding mass renormalization in this system as explained in section 9. It is conjectured that
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the mass-renormalization effect involves a measure for coherence. Some further discussion
of the theoretical framework is presented in section 10.

2. The characterization of a fluctuating field

We regard the environment as a fluctuating field U(x, t). See appendix A for more details on
its Hamiltonian modeling. The fluctuations of the environment are characterized by a form
factor:

S̃(q, ω) =
∫ ∫

[〈Û(x, t)Û(0, 0)〉] eiωt−iqx dt dx, (2)

where the expectation value assumes that the bath is in a stationary state of its unperturbed
Hamiltonian. The force operator is formally defined as F = −U ′(x, t), where the derivative
is taken with respect to x. The force–force correlation function is obtained via double
differentiation of the correlation function. In particular, the local power spectrum of the
fluctuating force is

S̃(ω) =
∫

dq

2π
q2S̃(q, ω). (3)

An Ohmic environment is characterized by

S̃ohmic(ω) = 2h̄ηω

1 − e−h̄ω/T
for |ω| < ωc. (4)

The friction coefficient characterizes the response of the environment to an x variation (‘force
proportional to velocity’). Accordingly, it is given by the Kubo formula:

η = lim
ω→0

1

2h̄ω
[S̃(ω) − S̃(−ω)] = S̃(ω = 0)

2T
. (5)

For a strictly Ohmic bath, the friction coefficient is frequency independent and the first
equality holds for any ω < ωc (no need to take a limit). The generalization of the above
to three dimensions is straightforward. The position coordinate becomes x = (x, y, z) and
accordingly q should be replaced by q = (qx, qy, qz), with integration measure d3q/(2π)3. In
the definition of S̃(ω), q2 should be replaced by q2

x or optionally by q2/3. The simplest type
of environment is known as the CL model, where the particle interacts with long wavelength
modes. The associated form factor is

S̃Caldeira–Leggett(q, ω) = S̃ohmic(ω) × 3
(2π)3δ3(q)

q2
. (6)

Another case of interest is the interaction with a dirty metal (appendix B) for which

S̃Dirtymetal(q, ω) ≈ S̃ohmic(ω) × 4π�3

q2
for |q| � 1

�
, (7)

where the friction coefficient can be expressed in terms of the conductivity:

η = e2

σ
× 1

4π�3
. (8)

In the latter context, it is customary to define a dimensionless friction coefficient as follows:

α = 1

2π
η�2 = e2

8π2σ�
= 3

8(kF �)2
. (9)

The motion of a classical Brownian particle of mass M under the influence of such a fluctuating
environment is characterized by a damping rate

γ = η

M
= 2πα

M�2
. (10)
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3. The fluctuations within a ring

In the present paper, we consider a particle in a ring of radius L/(2π). We assume that
S̃(q, ω) = S̃ohmic(ω)w̃(q) is factorizable, as in the examples of equations (6) and (7). Since
the motion is confined to one dimension, it is natural to expand the spatial correlations along
the rings in Fourier series:∫

d3q

(2π)3
w̃(q) eiq·[R(θ2)−R(θ1)] =

∞∑
m=−∞

wm eim(θ2−θ1). (11)

Accordingly, using equation (2) with x = (L/2π)θ we get

S̃(q, ω) = S̃ohmic(ω) ×
∞∑

m=−∞
wm2πδ(q − qm), (12)

where the discrete modes are

qm = 2π

L
m, m = 0,±1,±2, . . . . (13)

By convention, we want η to be the friction coefficient. Therefore, S̃(ω) as defined by
equation (3) should equal S̃ohmic(ω) of equation (4). This implies the following sum rule:

∞∑
m=−∞

wmq2
m = 1. (14)

In general, we have ∼(L/�) fluctuating modes; each has the weight wn ∼ �3/L. In
appendix C, we show that for a CL bath we have only one fluctuating mode (|m| = 1)

with

wm = 1

2

(
L

2π

)2

(15)

while in the case of a dirty metal with short-range correlated fluctuations we have
M = (L/(2π))/� � 1 fluctuating modes with weights

wm ≈ �2

2π
× 1

M
ln

(
M
|m|

)
for |m| < M. (16)

In both cases, we ignore the m = 0 mode for a reason which is explained in the following
section. It is important to realize that the CL model can formally be regarded as a special limit
of a dirty metal environment with � � L. In the latter case, the weight of the |m| > 1 modes
is smaller by powers of L/� (appendix C).

4. The dephasing factor

The dephasing factor Pϕ is a number within [0, 1] that characterizes the suppression of
coherence. Its popular definition is based on a semiclassical picture. Using the Feynman–
Vernon formalism, the propagator is expressed as a sum over pairs of classical trajectories.
One observes that after time t, the interference contribution (from the off-diagonal terms in
the double sum) is suppressed by a factor

Pϕ(t) = |〈U [xA]χ |U [xB]χ〉| = e−SN [xA,xB ], (17)
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where χ is the preparation of the bath2. In order not to complicate the notations, the canonical
average over χ states is implicit. The unitary operator U [x] generates the evolution of
the bath given that the particle goes along the trajectory x(t). The action SN [xA, xB ] is
a double time integral. Using manipulation as in [11, 12], one obtains equation (1) with
the symmetrized version of S̃(q, ω) and the symmetric classical version of P̃ (q, ω). This
semiclassical expression is definitely wrong for short-range scattering at low temperatures
[12], because it does not reflect that closed channels cannot be excited. This problem with
the semiclassical (stationary phase) approximation is well known in the theory of inelastic
scattering. One way to overcome this limitation is to refine the definition of the dephasing
factor using a semiclassically inspired ‘scattering’ point of view as in appendix D. However,
it is clear that such a refinement makes the concept of dephasing too vague.

We propose here a natural definition for the dephasing factor that is related to the purity
trace(ρ2) of the reduced probability matrix. The notion of purity is very old, but in recent
years it has become very popular due to the interest in quantum computation [23]. Given that
the state of the system including the environment is �pn, where p and n label the basis states
of the particle and the bath respectively, the purity is given by

Pϕ(t) =
√

trace
(
ρ2

sys

) =
√

trace
(
ρ2

env

) =

 ∑

p′p′′n′n′′
�p′n′�∗

p′′n′�p′′n′′�∗
p′n′′




1/2

. (18)

Assuming a factorized initial preparation as in the conventional Feynman–Vernon formalism,
we propose the loss of purity (Pϕ < 1) as a measure for decoherence. A standard reservation
applies: initial transients during which the system gets ‘dressed’ by the environment should
be ignored as these reflect renormalizations due to the interactions with the high frequency
modes. Other choices of initial state might involve different transients, while the later slow
approach to equilibrium should be independent of these transients. In any case the reasoning
here is not much different from the usual ideology of the Fermi golden rule, which is used
with similar restrictions to calculate transition rates between levels.

Writing the initial preparation as �(0)
pn = δp,p0δn,n0 , and using leading order perturbation

theory, we can relate Pϕ to the probabilities Pt(p, n|p0, n0) = |�pn|2 to have a transition from
the state |p0, n0〉 to the state |p, n〉 after time t. The derivation is detailed in appendix E. One
obtains the result

Pϕ(t) = Pt(p0, n0|p0, n0) + Pt(p �= p0, n0|p0, n0) + Pt(p0, n �= n0|p0, n0), (19)

in agreement with the semiclassically inspired point of view of appendix D. The notation
p �= p0 or n �= n0 implies a summation

∑
p �=p0

or
∑

n�=n0
, respectively. In the following

section we shall discuss the actual calculation of Pt(p, n|p0, n0), using the Fermi golden rule
(FGR). Thus we deduce that within the FGR framework, the purity is simply the probability
that either the system or the bath does not make a transition. The first term in equation (19) is
just the survival probability of the preparation Psurvival = Pt(p0, n0|p0, n0). The importance
of the two other terms can be demonstrated using simple examples. For an environment that
consists of static scatterers we have Psurvival < 1 but Pϕ = 1, thanks to the second term. For
a particle in a ring that interacts with a q = 0 environmental mode Psurvival < 1 but Pϕ = 1,
thanks to the third term. Using

∑
p,n Pt (p, n|p0, n0) = 1, we obtain the optional expression

pϕ = 1 − Pϕ =
∑
p �=p0

∑
n�=n0

Pt(p, n|p0, n0). (20)

2 The implicit assumption of an initial factorized state is of course problematic [24, 25]. In most cases, it implies an
unpleasant transient that should be ignored. We further discuss the significance of the long time decay later in this
section after equation (18) and in the summary.
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In the problem that we consider in this paper, we can calculate Pϕ using a dq dω integral as
in equation (1). In many examples the ω = 0 transitions have zero measure, and therefore Pϕ

is practically the same as Pt(p0, n0|p0, n0). Otherwise, one has to be careful in eliminating
those transitions that do not contribute to the dephasing process. Anticipating the application
of equation (1) for the calculation of the dephasing for a particle in a ring, the integration over
q becomes a summation over qm, and the m = 0 component should be excluded.

5. Dephasing at finite temperatures

The interaction between the particle (x̂) and the environment can be written as in appendix A:

V =
∫

dx ρ̂(x)Û(x), (21)

where ρ̂(x) = δ(x − x̂). In the Heisenberg (interaction) picture, a time index is added so we
have Û(x, t) and ρ̂(x, t). Given a preparation of the bath and of the system, we can define
S̃(q, ω) to characterize Û(x, t) and we can also define P̃ (q, ω) to characterize ρ̂(x, t). The
precise definition of the latter object is further discussed below. The survival probability of a
factorized preparation is Pϕ(t) = 1−pϕ(t), where

pϕ(t) =
∫ t

0

∫ t

0
〈V (t2)V (t1)〉 dt2 dt1

=
∫ ∫

dt1 dt2

∫ ∫
dx1 dx2〈ρ(x2, t2)U(x2, t2)ρ(x1, t1)U(x1, t1)〉

=
∫ ∫

dq

2π

dω

2π
S̃(q, ω)

∫ ∫
dt1 dt2

∫ ∫
dx1 dx2〈ρ(x2, t2)ρ(x1, t1)〉 eiq(x2−x1)−iω(t2−t1).

(22)

At finite temperatures, if recurrences due to the finite-size quantization effect can be ignored,
one can obtain as an approximation pϕ ≈ �ϕt , where �ϕ is called the dephasing rate. In the
following section, we discuss circumstances where such an approximation is not valid: the
feasibility of this approximation requires neglect of the end-point contributions to the double
time integration. By going to the variables (t1 +t2)/2 and τ = t2 − t1, one obtains the following
expression for the dephasing rate:

�ϕ =
∫ ∫

dq

2π

dω

2π
S̃(q, ω)P̃ (−q,−ω). (23)

The implied definition of P̃ (q, ω) is discussed below and further refined in the following
section. Following standard argumentation one conjectures that the long time decay of Pϕ(t)

is exponential, as in the analysis of Wigner’s decay. The similarity of equation (23) to the
semiclassical result (as discussed below equation (1)) is obvious. It is important to realize
that in the present context, the non-symmetrized quantum version of the power spectrum has
emerged. Furthermore, if we want to calculate Pϕ , and not just the survival probability of
the initial state, we have to be careful about the proper treatment of the diagonal terms as
discussed in the previous section. Accordingly, we eliminate the diagonal term from the
implied definition of the power spectrum:

P̃ (q, ω) =
∫ +∞

−∞
[〈e−iqx(τ) eiqx(0)〉 − 〈eiqx〉2] eiωτ dτ. (24)

We emphasize again that in a later section we are going to treat the time limits more carefully,
where P̃ (q, ω) will be replaced by P̃ (q, ω; t) as in equation (1). For a ballistic particle with
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Figure 1. The (q, ω) plane. The power spectrum S̃(q, ω) is distributed pre-dominantly within the
rectangular area q � (1/�) that has a high frequency absorption cutoff ωc and a lower emission
cutoff. The emission cutoff T in this illustration reflects an assumption of having T < ωc , otherwise
it would be equal to ωc too. The power spectrum P̃ (q, ω) which is associated with the ballistic
motion (left panel) or with the diffusive motion (right panel) of the particle is illustrated by the
dark region. In both cases the energy E of the particle implies a frequency cutoff, which is
analogous to T. Close to equilibrium one should take E ∼ T , but without much error we take for
low temperatures ballistic motion E ∼ 0, which is also illustrated in the left panel.

mass M and momentum p = (2ME)1/2, we have

P̃ (q, ω) = 2πδ(ω − ω(q)), (25)

where ω(q) = [(p + q)2 − p2]/(2M). The power spectrum is illustrated in figure 1. The
expectation value in equation (25) is taken for a particle with momentum p. For the ground
state p = 0 and hence ω(q) = q2/2M . In particular, for a particle on a ring equation (12)
implies ω(qm) = q2

m

/
2M . The ballistic case should be contrasted (see figure 1) with the

power spectrum of a diffusive particle:

P̃ (q, ω) = 2Dq2

ω2 + (Dq2)2
, (26)

where D is the diffusion coefficient. In the ballistic case the power spectrum is concentrated
along ω = ω(q), while in the diffusive case it spreads over the range |ω| < Dq2. In any case,∫

ω �=0
P̃ (q, ω)

dω

2π
= 1 by definition, for any q. (27)

Assuming close-to-equilibrium conditions, the expectation value in equation (24) should
reflect a thermal state with energy E ∼ T . In practice one may set E ∼ 0, though in general
one should better be careful about it; looking at figure 1 one can deduce that taking E ∼ 0, in
the problem that we are going to consider, results in an underestimation of the dephasing rate
by a

√
2 factor3.

6. Dephasing at ‘zero’ temperature

The expression for �ϕ manifestly gives a zero dephasing rate in the limit of zero temperature,
because in this limit S̃(q, ω) and P̃ (−q,−ω) have no overlap. However, this does not mean
that Pϕ does not decay. It still might have a sub-exponential decay. In order to understand this

3 Assuming that E ∼ 0, we are going to explain in section 7 that the non-negligible contribution to the integral comes
from the range |q| < qT of effective modes; only the fluctuating modes in the rectangular region of figure 1 resonate
with the particle and hence contribute. The power spectrum of the particle for E ∼ T is shifted ‘upwards’ in ω, and
consequently the effective q range becomes larger by factor

√
2 compared with the E ∼ 0 case.
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point, we first discuss a simple artificial calculation of the double time integral

pϕ(t) =
∫ t

0

∫ t

0
C(t1 − t2) dt1 dt2, (28)

where C(τ) is the symmetrized force–force correlation; its Fourier transform C̃(ω) is the
symmetrized version of S̃(ω) of equation (4). Later, in this section, we come back to the
actual calculation and discuss how equation (22) can be treated.

The approximation pϕ(t) ≈ �ϕt for the integral in equation (28) is based on the
assumption that C(τ) has short-range correlations with a non-vanishing integral. At finite T,
this assumption is indeed satisfied because S̃(ω = 0) = 2ηT is finite. But at zero temperature,
the integral over C(τ) is zero. In fact, at zero temperature, equation (4) implies that
C̃(ω) = 2η|ω| and hence C(τ) has power law tails −(η/π)/τ 2. It is important to realize
that the T = 0 behavior also prevails at finite temperatures provided T < ωc, and the time of
interest should be smaller compared with 1/T . Under such ‘T = 0’, conditions C(τ) can be
approximated by its T = 0 version. In order to see what comes out from equation (28), we
observe that

�ϕ(t) = d

dt
pϕ(t) =

∫ t

−t

C(τ ) dτ. (29)

For an Ohmic bath at ‘zero temperature’, the integral over the power law tails of C(τ) gives
�(t) ∝ 1/t ; hence the spreading is logarithmic:

pϕ(t) = 2

π
η ln(ωct) + const. (30)

It is instructive to make the same calculation in ω space. One realizes that

pϕ(t) =
∫

dω

2π
C̃(ω)

[
sin(ωt/2)

ω/2

]2

, (31)

which for C̃(ω) ∝ |ω| gives correctly the logarithmic spreading.
Without any approximation we can generalize the above treatment so as to handle

equation (22), also taking into account the non-symmetrized nature of the spectral functions.
Performing the dx1 dx2 integration, we obtain pϕ(t) = F(t) as in equation (1) where

P̃ (q, ω; t) = 1

t

∫ t

0

∫ t

0
〈e−iqx(t2) eiqx(t1)〉eiω(t2−t1) dt1 dt2. (32)

In complete analogy with the way in which the environmental fluctuations have been treated,
we express the correlator as a Fourier integral over P̃ (q, ω), and then we are able to explicitly
perform the dt1 dt2 integration. The outcome of this procedure allows us to express the result
as a convolution:

P̃ (q, ω; t) = 1

2πt

[
sin(ωt/2)

ω/2

]2

(∗)P̃ (q, ω). (33)

An optional compact way of writing the final result is

pϕ(t) =
∫

dq

∫ ∫
dω

2π

dω′

2π
S̃(q, ω)P̃ (−q,−ω′)

[
sin((ω−ω′)t/2)

(ω−ω′)/2

]2

. (34)

We note that in practical calculations or for aesthetic reasons, it is possible to make the
replacement [

sin(ωt/2)

ω/2

]2

�−→
[

(2/t)

(1/t)2 + ω2

]
× t [optional]. (35)

The more convenient Lorentzian kernel has the same normalization, the same width 1/t and
the same 2/ω2 tails. It can be regarded as arising from using ‘soft’ rather than ‘sharp’ cutoff
for the time integration.
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7. Dephasing in the presence of a dirty metal ‘T > 0’

We turn to consider a particle of mass M in a ring of length L. We assume close-to-equilibrium
conditions, so we take the energy of the particle above the ground state as E ∼ T . We
consider, in this section, temperatures T that are much larger compared with the level spacing
� ∼ (ML2)−1. This does not mean that the system is not coherent4. We further assume that
the time of interest is much longer compared with the relevant dynamical time scales, and in
particular compared with 1/T . With this assumption it is legitimate to use equation (23) to
calculate the dephasing rate �ϕ , and to treat the dω integration as if the levels of the ring form
a continuum. With the substitution of equations (12), (25), this leads to the following result:

�ϕ =
∑
m

wmS̃ohmic(−ω(qm)). (36)

Of course, one has to verify at the end of the calculation the self-consistency condition
�ϕ � min{T , ωc}. This condition would be satisfied if the system–environment coupling is
not too strong.

A graphic illustration of the (q, ω) integration domain is presented in figure 1. The T
dependence of S̃ohmic in equation (36) limits the sum to ω(qm) < T . Taking into account the
weight factors, the effective number of fluctuating modes is

Meff = L

2π
qeff ≈ min{M, qcL, qT L, }, (37)

where qc = (2Mωc)
1/2 and qT = (2MT )1/2. Note that if we had Fermi occupation it would

be qT = T/vF, while for diffusive motion it would be qT = (T /D)1/2. The dephasing rate
is obtained by summing over all the contributing modes. Each effective mode contributes
2ηT × wm to the sum. Accordingly,

�ϕ = 2ηT ×
∑

0<|qm|<qeff

wm ∼ 2ηT × w̄Meff, (38)

where the average weight is w̄ ∼ �2/M ∼ �3/L for a short-range correlated dirty metal
environment (� � L), while w̄ ∼ L2 in the opposite CL limit (� � L), as implied by
equations (16) and (15) respectively. If all the modes are effective we get �ϕ = 2ηT × �2,
while in the case of a CL environment we get the well-known result

�ϕ = 2ηT × L2 [Caldeira–Leggett]. (39)

For a fluctuating environment with a correlation distance �, equation (37) implies a crossover
temperature:

T ∗ = min

{
1

M�2
, ωc

}
. (40)

For T < T ∗ the dephasing rate depends on qT and therefore develops nonlinear dependence
on the temperature, as is illustrated in figure 2 and further discussed below. Using a field
theoretical approach [18], it is argued that the renormalized value of the high frequency cutoff
is

ωc|effective = max{γ,�}, (41)

4 As discussed in section 9, the coherence measure is �ϕ/�eff . In the regime of main interest �ϕ � T . Furthermore,
the relevant energy scale is not necessarily the level spacing; in the mesoscopic context the relevant energy scale (e.g.
the ‘Thouless energy’) is typically much larger and proportional to h̄ in contrast to the microscopic quantization scale
which is proportional to h̄dimensionality.
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Γ

T∆ T *

γ

Figure 2. Illustration of the dependence of the dephasing rate � on the temperature T. The
dephasing rate is well defined for t > (1/T ), and hence the self-consistency requirement is � � T .
This condition is demonstrated by a comparison with the dashed line. The illustration reflects
an assumption of having η�2 � 1, and therefore the crossover temperature T ∗ is equal to the
damping rate γ = η/M . The illustration further reflects an assumption of ‘large ring’ (ηL2 � 1)

for which γ � �, else the low temperature regime (� � T � T ∗) disappears. For extremely low
temperatures, such that T is smaller compared with the spacing � = 1/(ML2), the probability to
excite the system is exponentially small and the familiar two-level modeling becomes applicable.

where γ is the classical damping rate of equation (10) and � is the level spacing. The reasoning
is as follows: all the higher frequencies contribute only to mass renormalization and do not
affect the dephasing process. In more details, the significant renormalization starts only below
ωc where the linear |ω| dispersion of the dissipation term dominates and leads to ln ω terms
in perturbation theory and to the need of either the renormalization group or an equivalent
variational method [18].

We would like to remark that if we do not apply equation (41), the results that we derive
below are affected quantitatively but not qualitatively. Substitution of equation (41) into
equation (40) implies that η�2 < 1 and η�2 > 1 define distinct regimes of behavior. For a dirty
metal environment, η�2 � 1 is equivalent to α � 1, i.e. kF � � 1. For a CL environment η�2

is formally infinite, or one may say that � is effectively determined by the finite size L of the
system.

We come back to the dephasing rate calculation. In the case of a fluctuating environment
with a short correlation distance �, we see that the high temperature (T > T ∗) result is

�ϕ ≈
{
(2η�2)T if η�2 � 1
(2η�2)3/2T if η�2 � 1

[for T > T ∗], (42)

where in the η�2 � 1 expression we have identified the effective (renormalized) cutoff as
ωc = γ . The strong coupling result (η�2 � 1) cannot be trusted because the self-consistency
requirement (�ϕ � T ) is not satisfied. This is not in contradiction with the observation that
the CL result (39) is formally a special case of the strong coupling result with � �→ L. In the
latter case, the self-consistency relation becomes ηL2 � 1 irrespective of �.

In the low temperature regime, we have (be definition) q∗ = qT . Consequently the T
dependence becomes nonlinear, and we get �ϕ ≈ η�3M1/2T 3/2. The similarity of the latter
to the familiar result for a diffusive electron is misleading. In both cases qT ∝ T 1/2 but
for different reasons, and with different prefactors. For sake of completeness, we write the
precise expression which is obtained for a dirty metal environment using equation (38) with
equations (16) and (8):

�ϕ = e2

4π2σ
T qT ln

(
1

qT �

)
[for � < T < T ∗]. (43)
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Since �ϕ ∼ T 3/2 at sufficiently low T, the condition �ϕ � T is valid even for strong coupling
η�2 > 1. We also note that inclusion of a q = 0 mode in (38) would have led to �ϕ ∼ w0T .
Hence, our precise formulation in equation (45) is essential.

The crossover from the high temperature result to the low temperature result is illustrated
in figure 2. The illustration assumes η�2 � 1, which implies that the self-consistency
requirement (�ϕ � T ) is globally satisfied. It also should be realized that the low temperature
regime � � T � T ∗ exists only for a ‘large ring’ (ηL2 � 1), for which T ∗ = γ � �.
Finally, for the L < � case, the weight w±1 dominates, leading to Meff = 1 and �ϕ = 2ηL2T

as in equation (39), which for ωc < � is consistent with �ϕ < � for ηL2 < 1.

8. Dephasing in the presence of a dirty metal ‘T = 0’

We would like to discuss the ‘zero temperature’ regime. One should be very careful in
specifying the conditions of physical interest, else the problem may become trivial or of no
experimental relevance. In what follows, we assume that the dimensionless coupling between
the system and the environment (η�2 for a dirty metal or ηL2 for a CL environment) is
much smaller than unity. This means that the competing energy scales are the level spacing
� ∼ 1/(ML2) and the temperature. So the simplest definition of zero temperature is T � �

for which the system is in the ground state with an exponentially small probability to be found
in an excited state. In this regime, the mass renormalization effect can be calculated using the
second-order perturbation theory, as in the Polaron problem, or possibly using field theoretical
methods. Furthermore in this regime we can treat the dephasing problem using a ‘two level
approximation’, which is a very well-studied model [25].

The notion of ‘zero temperature’ is also applicable if T � � provided the time of interest
is short (t � 1/T ). In this regime, the power spectrum S̃(q, ω) is the same as for T = 0
within the frequency interval T � ω � ωc. Consequently, the Ohmic temporal correlations
are C(τ) ≈ −(η/π)/τ 2 within the time interval (1/ωc) � t � (1/T ). As explained in a
previous section, such correlations may imply a logarithmic growth of pϕ(t). In view of the
claim that the renormalized value of ωc is the damping rate γ , it follows that logarithmic
spreading may arise only if T � γ , which is the low temperature regime.

As discussed in a previous section, equation (34) gives a non-zero result for pϕ(t) even
at zero temperature. For the CL model, we have only q ∼ 0 fluctuating modes and we get the
expected log(t) spreading:

pϕ(t) = η

π

(
L

2π

)2

ln(ωct) [Caldeira–Leggett], (44)

where ωc is the high frequency cutoff of the temporal fluctuations. More generally, for a
particle in a ring the result can be written as a sum over all the q Fourier components:

pϕ(t) = η

π

∑
m

wm ln

(
ωc

(1/t) + ω(qm)

)
. (45)

Strictly speaking, for a finite system, the assumption T � � always breaks down in the zero
temperature limit. Still it is meaningful to formulate a condition for not having dephasing at
zero temperature irrespective of the finite size effect:

lim
L→∞

pϕ(t = ∞) � 1. (46)

Thus, the question is simply whether in the continuum limit the q summation in equation (45)
converges in its lower limit. For a fluctuating environment with a finite (short) correlation
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distance �,

pϕ ∼
∫ 1/�

0
dq η�3 ln

[
Mωc

q2

]
∼ η�2 ln

(
ωc�

2

M

)
. (47)

We conclude that for a dirty metal environment with � � L, coherence is maintained if
η�2 � 1, i.e. if kF � � 1.

It is important to note the following: in the strict Caldeira–Leggett limit (� = ∞), the
size of the ring L can be arbitrarily large; hence the Heisenberg time 1/� becomes huge, and
equation (45) leads to equation (44), which becomes an exact result. So if we consider a dirty
metal environment with long wavelength fluctuations (� � L), it looks as if we are back in
the ‘CL regime’ leading to equation (44). But this is not quite correct unless we give away
the weak coupling assumption η�2 � 1. As long as we keep α � 1 (fixed), the CL result
does not apply. This is because once � → L and ηL2 < 1 the quantization of the energy
spectrum becomes important, and the renormalized cutoff frequency (41) becomes ωc ∼ �

instead of ωc ∼ γ . Accordingly, in the latter case, the time during which the log spreading
prevails diminishes.

9. Mass renormalization

It can be shown [10] that a particle that interacts with a fluctuating ‘dirty’ environment
acquires an additional inertial (polaronic) mass. However in recent works [16–18], the mass-
renormalization concept appears in a new context. The free energy F(T ,�) of a particle in a
ring is calculated, where T is the equilibrium temperature and � is the Aharonov Bohm flux
through the ring. Then the coherence is characterized by the ‘curvature’, which is a measure
for the sensitivity to �. If the interaction with the environment is negligible, the result can be
written as

∂2F

∂�2

∣∣∣∣
�=0

= e2

M∗L2
f (M∗L2T ) (48)

with the bare mass M∗ = M . The dependence of the curvature on T merely reflects the
Boltzmann distribution of the energy. In the presence of coupling to the environment, it turns
out that M∗ > M . At T = 0, for fixed η�2 � 1, Monte Carlo data show [22] that the ratio
M∗/M is independent of the radius beyond a critical Lc. As the radius becomes smaller
than Lc, the ratio M∗/M rapidly approaches unity. In the regime of ‘large L’ the mass-
renormalization effect diminishes with the temperature and depends on the scaled variable
LT , while for ‘small L’ the ratio M∗/M grows with the temperature and depends on the
scaled variable L4T .

The natural question is whether we can shed some light on the physics behind this
observed temperature dependence of the mass renormalization factor. In particular we would
like to explain why in in one regime M∗/M is a function of LT , while in another regime it
is a function of L4T . Making the conjecture that the temperature dependence of M∗/M is
determined by dephasing, it is natural to suggest the following measure of coherence:

x(T , L) = pϕ

(
t = 1

�eff

)
= �ϕ

�eff
. (49)

Namely, it is the dephasing factor at the time t = 1/�eff , where �eff is the ‘relevant’ energy
scale. Equivalently, the condition x � 1 means that the energy levels near �eff remain sharp.
The inequality x < 1/2 can serve as a practical definition for having coherence. Either it can
be translated as a condition on the temperature or optionally it can be used in order to define
a coherence length that depends on the temperature. The conjecture is that y = M∗/M is a
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function of x. Let us calculate x using equation (38). We assume η�2 � 1, but ηL2 can be
either larger or smaller compared to unity. This is equivalent to saying that the damping rate
γ can be either larger or smaller compared with the level spacing �. Using equation (40) with
equation (41), this further implies that Meff is either larger or of order unity respectively. The
transitions that are associated with the ‘relevant’ energy levels are characterized by q ∼ qeff

and accordingly �eff ∼ Meff × (ML2)−1. Using equation (38) we deduce that the result does
not depend on Meff but only on w̄, leading to

x(T , L) = ηw̄ML2T =
{
ηM�3LT for L � �

ηML4T for L � �.
(50)

We recall that our �ϕ is valid at least for weak coupling η�2 � 1. The scaling of �ϕ with L is
consistent with Monte Carlo exponents for the coherence length L ∼ T −µ with either µ = 1
or µ = 1/4. The Monte Carlo data have not determined so far whether the transition between
the two regimes is at L ≈ � or whether it is coupling dependent.

10. Summary and discussion

In this paper, we have defined and calculated the dephasing factor Pϕ(t) for a particle in a ring
due to the fluctuations of a dirty metal environment. At finite temperature, we have calculated
the dephasing rate �ϕ . Our interest was mainly in the mesoscopic regime � � �ϕ � γ , where
interference is important (because �ϕ � γ ). Unlike the microscopic regime (�ϕ � �), which
is customary in atomic physics studies, here the question of dephasing at low temperature is
tricky both conceptually and technically.

The decoherence is induced because the system gets entangled with the environmental
modes. It should be clear that under generic circumstances, the coupling always induces
‘transitions’ that lead to system-bath entanglement. Accordingly, we have Pϕ(t) < 1 even if
‘T = 0’. This by itself does not mean ‘having dephasing’: entanglement is also associated
with the adiabatic renormalization due to the interaction with the high frequency modes. In
order to ‘have dephasing’, the loss of purity should not be just a transient; rather it should be
a progressive process.

Still even with this careful point of view, the reader may doubt whether the notion of
the ‘dephasing factor’ is really helpful in studying dephasing. After all what do we ‘really’
mean by dephasing? Possibly the ‘correct’ procedure is to study an equilibrium correlation
function C(t), and to ask whether it is damped in the t → ∞ limit. In the absence of coupling
to the environment, the Fourier transform C̃(ω) is a sum over delta functions δ(ω − �r).
Due to the coupling, the deltas are broadened into resonances with �r . This is true at any
temperature, also at ‘T = 0’. The controversy about dephasing at ‘T = 0’ is related to the
limit L → ∞. Do the resonances overlap in this limit? Do singular features of the uncoupled
system survive? For sub-Ohmic bath [25] the ratio �ϕ/�, where � is the mean level spacing,
diverges as L → ∞. But the Ohmic case is ‘marginal’ and within the framework of the FGR
it remains a constant α. So if this α is smaller compared with unity, we naively expect no
dephasing at ‘T = 0’.

The naive expectation of having no dephasing at ‘T = 0’ is not without loopholes. One
obvious loophole is the mass renormalization issue. If hypothetically the renormalized
mass and hence the density of states diverge as T → 0, it might imply dephasing at zero
temperature. The recent studies of equilibrium properties of the ring problem are aimed at
studying this question carefully, in a controlled way. For a particle that interacts with a dirty
metal environment we believe, on the basis of [18, 22], that the renormalized mass at zero
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temperature is finite. So in the case of a dirty metal environment, there is no indication for
‘dephasing at T = 0’.

Still one would like to know what happens at low, but finite temperature. As we said
previously, no doubt that the study of equilibrium properties is conceptually the best procedure.
Still, we also want to physically understand the results. Here we come back to the ‘dephasing
factor’ notion. In spite of the problems which are associated with this concept, we believe that
it is powerful enough to shed light on the physics of dephasing. Our aim in this paper was to
maximally exploit this notion, within the Fermi golden rule picture, in order to demonstrate
that it captures the correct physics of all the established results regarding dephasing. In
particular, it has provided an explanation for the T dependence of the mass renormalization
effect, and under what conditions the spatial aspect of the fluctuations is capable of suppressing
the ‘T = 0’ power law decay of coherence.
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Appendix A. Modeling of a fluctuating environment

It is customary to write the system-environment Hamiltonian as

Htotal = Hsys(x̂, p̂) + Vint(x̂, Q̂α) + Henv(Q̂α, P̂α), (A.1)

where (x̂, p̂) are the canonical coordinates of the particle and (Q̂α, P̂α) are the environmental
degrees of freedom. In the case of an interaction of a particle with a dirty metal environment
(in three dimensions),

Vint =
∫

d3x ρ̂(x)

∫
d3x ′ e2n̂(x′)

|x − x′| ≡
∫

d3x ′ ρ̂(x)Û(x), (A.2)

where the electronic density n(x) can be expressed as a function of their coordinates, while
ρ̂(x) = δ(x − x̂) is a particle-related field operator.

In order to allow a Feynman–Vernon treatment, it is more convenient to regard U(x) as
arising from the interaction with a bath of harmonic oscillators [10]. Each harmonic oscillator
is a scatterer which is characterized by its location xα and its natural frequency ωα . The
interaction of the particle with the α scatterer is Q̂αu(x̂ − xα), so we write (in one dimension)

Vint =
∑

α

cαQ̂αu(x̂ − xα) =
∫

dx ρ̂(x)Û(x), (A.3)

where cα are coupling constants, and ρ̂(x) = δ(x̂−x). In the Heisenberg (interaction) picture,
a time index is added so we have ρ̂(x, t) and Û(x, t). Accordingly, the fluctuating filed is

Û(x, t) =
∑

α

cαQ̂α(t)u(x − xα). (A.4)

As explained in [10] it is possible to postulate the interaction u(r), and the distribution of the
parameters (xα, ωα, cα), such as to obtain a fluctuating field with a physically desired S̃(q, ω).
This type of modeling is equivalent to the field-theoretical assumption of having Gaussian
fluctuations, and accordingly a linear response treatment of the environment becomes exact.
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Appendix B. The fluctuations of a dirty metal

For a metal we can use FD relation in order to relate the spati-temporal power spectrum
S̃(q, ω) to the conductivity:

S̃(q, ω) = 4πe2

q2
Im

[ −1

ε(q, ω)

]
2h̄

1 − e−h̄ω/T
, (B.1)

where

ε(q, ω) = 1 +
4πσ

−iω + Dq2
(B.2)

and

Im

[
1

ε(q, ω)

]
= − 4πσω

(Dq2 + 4πσ)2 + ω2
. (B.3)

Thus, we get

S̃(q, ω) ≈ e2

σ

1

q2

2h̄ω

1 − e−h̄ω/T
for |ω| � ωc, |q| � 1

�
(B.4)

The Ohmic behavior is cut off by the Drude collision frequency ωc, and the elastic mean free
path is � = vF/ωc, where vF is the Fermi velocity. The expression for η in equation (8) is
obtained from the Kubo formula (5).

Appendix C. Calculation of Fourier components

We are interested only in fluctuations within the ring. Therefore, we have to calculate the
Fourier components of the correlator 〈Û(x(θ2), t2)Û(x(θ1), t1)〉. For the CL model, we use
the integral ∫

d3q
3δ3(q)

q2
eiq·R = const − 1

2
R2 = const +

(
L

2π

)2

cos(θ2−θ1), (C.1)

where R = R(θ2)−R(θ1) so that |R| = |2 sin((θ2−θ1)/2)|[L/2π ]. For a dirty metal with
fluctuations within q � 1/�, we have∫

d3q

(2π)3

4π�3

q2
eiq·R = �3√

R2 + �2
= �2

[
a0 +

∞∑
m=1

am cos(m(θ2−θ1))

]
. (C.2)

Our am�=0 are half the ‘convention’ in [16]. From the Fourier transform relation it follows that∑∞
m=0 am = 1, and we also have the sum rule

∑∞
m=1 amm2 = M2 where M = (L/(2π))/�.

Disregarding the m = 0 Fourier component, the following approximation can be obtained
[16, 17] for M � 1:

am ≈ 1

πM
ln

(
M
m

)
for 0 < m < M. (C.3)

From equation (11), it follows that wm = �2am/2. We conclude that the particle in the ring
experiences a white fluctuating field that is characterized by a correlation distance �. The
fluctuating field can be reinterpreted as arising from a short-range interaction u(r) with a
uniformly distributed set of scatterers as in equation (A.4).

In the other extreme case of CL-like environment (� � L), the fluctuations of the higher
(m > 1) modes are negligible compared with the fluctuations of the lowest (m = 1) mode.
Accordingly, we say that the number of effective modes is M = 1. Using the ad hoc notation
M̄ = (L/(2π))/� � 1, the sum rule which is based on equation (C.2) implies that a1 = M̄2

while am>1 have higher powers of M̄.
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Appendix D. The dephasing factor—semiclassical perspective

For short-range scattering, if xA and xB of equation (17) are well separated, and hence interact
with different sets of oscillators, we can argue within the semiclassical framework that Pϕ is
the probability to induce an excitation in the bath (i.e. ‘to leave a trace in the environment’).
The argument is elaborated in Appendix C of [11]. This argument fails if the interfering states
are not well separated in space, but rather interact with the same oscillators. For this reason,
the definition of the dephasing factor has to be refined. One possibility is to adopt a ‘scattering’
point of view, hence treating correctly closed channels. Using sloppy notations the idea is
to define the dephasing factor in analogy with equation (17) as Pϕ = |〈U [ψA]χ |U [ψB]χ〉|,
where ψA and ψB are ingoing states of the system. This way of writing is suggestive rather
than exact. Referring to a superposition preparation of the ring, where ψA and ψB are
momentum eigenstates, it is clear that Pϕ is not necessarily the same as the probability to
induce an excitation in the bath. This is because U [ψA] and U [ψB] involve the excitation of
the same oscillators, rather than different sets of oscillators. If the factorized preparation is
|p0n0〉, then we write the evolved state in the interaction picture after time t as |(p0n0)t 〉. If
we have initially a superposition |p1〉 + |p2〉, the evolved state would be

|�〉 = |p1〉 ⊗ |χ(1)〉 + |p2〉 ⊗ |χ(2)〉 + inelastic part, (D.1)

where the so-called relative states of the bath are

χ(1)
n = 〈p1n|(p1n0)t 〉 (D.2)

χ(2)
n = 〈p2n|(p2n0)t 〉. (D.3)

The dephasing factor is

Pϕ = |〈χ(1)|χ(2)〉| = Pt(p0, n0|p0, n0) +
∑

n(�=n0)

χ(1)
n

∗
χ(2)

n , (D.4)

where we assume p1 ∼ p2 ∼ p0. It is not difficult to realize that the same approximation
implies that the second term equals Pt(p0, n �= n0|p0, n0) in agreement with equation (19).
With some further argumentation, we can justify the second term in equation (19) as well.
We note that this derivation parallels the semiclassical treatment in appendix D of [11], where
P̃ (q, ω) is defined as the difference P̃ ‖(q, ω) − P̃ ⊥(q, ω).

Appendix E. The purity-based definition of the dephasing factor

In this appendix, we explain the derivation of equation (19) from equation (18). The zero-
order term in equation (18) is the p′ = p′′ = p0, n

′ = n′′ = n0 term. It is equal to P 2
0 ,

where P0 = Pt(p0, n0|p0, n0). There are four sets of first-order terms. The sum of
p′ = p′′ = p0, n

′ = n0, n
′′ �= n0 terms is P × psys where psys = Pt(p0, n �= n0|p0, n0). Here,

n �= n0 implies a summation
∑

n�=n0
. The sum of the p′ = p′′ = p0, n

′ �= n0, n
′′ = n0 terms is

the same. There are two other sets, with either p′ �= p0 or p′′ �= p0, that give each P × penv,
where penv = Pt(p �= p0, n0|p0, n0). Summing over all the leading order contributions, we
get

Pϕ = [
P 2

0 + 2P0 × psys + 2P0 × penv + O(p2)
]1/2

(E.1)

leading to Pϕ ≈ P0 + psys + penv which is equation (19).
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