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Freezing transitions and the density of states of two-dimensional random Dirac Hamiltonians
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Using an exact mapping to disordered Coulomb gases, we introduce a method to study two-dimensional
Dirac fermions with quenched disorder in two dimensions that allows us to treat nonperturbative freezing
phenomena. For purely random gauge disorder it is known that the exact zero-energy eigenstate exhibits a
freezinglike transition at a threshold value of disorder o,=2. Here we compute the dynamical exponent
that characterizes the critical behavior of the density of states around zero energy, and find that it also exhibits
a phase transition. Specifically, we find th#E=0+i¢€)~ e¥?~* [and p(E)~E??*71] with z=1+¢ for &
<2 andz=8c—1 for ¢>2. For a finite system size< e~ *? we find large sample to sample fluctuations
with a typical p.(0)~L? 2. Adding a scalar random potential of small variankeas in the corresponding
guantum Hall system, yields a finite noncritiggl0)~ 6% whose scaling exponent exhibits two transitions,
one ato,/4 and the other at,, . These transitions are shown to be related to the one of a directed polymer on
a Cayley tree with random sigrier compley Boltzmann weights. Some observations are made for the strong
disorder regime relevant to describe transport in the quantum Hall system.
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[. INTRODUCTION ing of the single-layer problem in the Coulomb-gas formula-
tion with the practical aim of computing the density of states.
The critical behavior of the plateau transitions in the in-We also extend our method to the full QH problem, propos-
teger quantum Hall effediQHE) remains an appealing the- ing a approach on this venerable problem.
oretical challenge. Despite numerous attempts, a calculable We start by further restricting to the purely random
theory remains elusive. An equivalent version of the quanvector-potential disorder model, the scalar random potential
tum Hall system that is believed to capture the relevant physwill be added later on. This simpler model has been inten-
ics corresponds to two-dimensional Dirac fermions in presSively studied”®?***and is believed to be critical, with a
ence of both a random vector and a random scalar poténtialline of fixed points, and a continuously varying dynamical
Conventional perturbative methods have failed and it is beexponentiz(o) as a function of random vector-potential dis-
lieved that the problem is described by some nonperturbativerder strengthr. Some precise results exist for an exactly
strong coupling regimé? Recent works using conformal known zero-energy eigenstate that has the fogr(x)
field theory~” or nonlineare models aim at reaching this =€"®"2y, whereU(x)/2 is the primitive of the vector po-
regime® tential. It was found’ that averaged moments scale with sys-
One possible route of attack is to use the bosoriem sizel asS,|y¢(x)|*~L~ ", such that above a thresh-
representatiol?'°based on the network mod€lindeed, the  old valueo = oy, of disorderr(q) =0 for sufficiently largeg
model can be mapped exactly, via bosonization, onto a rarindicating some kind of localized behavior. Further stutlies
dom sine-Gordon model or equivalently a Coulomb gasconfirmed the existence of a transition at= oy, in the
(CG) with a specific type of disorder. Although the calcula- (Gibbs-like probability measure|y(x)|>=e"™® (equiva-
tion of the density of states, via the retarded Green’s funclently a freezing, i.e., a glass transitipms well as its rela-
tion, corresponds to considering a single CG layer, the fullions, via RG, to the directed polymer on a Cayley t/€,2®
treatment of the quantum Hall transitidhoth advanced and and found a nontrivial structure of the strong disorder phase
retarded Green’s functionrequires to study two-coupled with “quasilocalized” behavior. Interesting relations to the
Coulomb-gas layers and remains highly nontrivial in these-iouville theory, conjectured fit were reexamined and it
variables. On the other hand, there has been recent progresas found that the freezing transition can be directly dem-
in understanding disordered CG, mainly in the context ofonstrated from renormalization in the Liouville modél.
random gaug&yY modeld?~8and in particular the freezing ~ The known results about the exd&t=0 eigenstat& do
transitions that occur in these systems. Methods, such awt, however, tell anything directly about the density of
fugacity distribution renormalization groufRG)!61"1°as  states. In particular the dynamical exponent has not yet been
well as variational method$, have been developed that calculated in the strong disorder regime, and one would
seem to capture some of the nonperturbative features of trguess that it should exhibit some kind of change at the tran-
strong disorder regimes. It is thus of interest to search whagition o=oy,. A freezing in the dynamical exponent was
can be learned from these methods and to understand, irrtedeed demonstrated recerflyin a closely related model,

spective of formal technicalities, whether tbglass transi- i.e., the classical Arrhenius diffusion in the potentiglx), in
tion) physics that they describe will be part of the QHE both one and two dimension at the same valueoy, than
strong disorder physics. the E=0 eigenstate transition. In one dimension the square

In this paper we mainly focus on the detailed understandef the Dirac Hamiltonian is well known to be identical to the
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Fokker-Planck operator and there the two problems are thus Since we are also interested in the local density of states
equivalen® Thus in one dimension, if one considers a login a given sample and that this is a fluctuating quantity it is
correlatedJ (x), both problems haviglenticaldynamical ex- convenient to define the smoothed local density of states
ponents and freezing transitions given in Ref. 24. In twop(E,r) as

dimensions, as discussed below, the two differ by an addi-

tional imaginary random drift term, but still they both have (E.r)= i Im< ; 1 r>
line of fixed points and it is reasonable that they would both Pl T E—Hp—ie
undergo freezing transitions, as we find here.
In this paper we start by defining the modé&Bec. I) and 1 2 € ) 5
by showing that the density of stat¢®OS) of the Dirac T4 m“”n(r” @)

Hamiltonian can be expressed as an observable in a boson

formulation. For convenience we study the DQYE) at  whereE,, are energy eigenvalues éfy and ¢, the eigen-
energyE=0 adding a small but finite imaginary term for ~ states. Foe—0™" one recovers the standard local DOS, and
the retarded propagator, thus in effect computing a smoothel@r finite e each level is broaden by Lorentzian. The standard
DOS, and carefully study the limié—0* (Sec. ). At E DOS is then defined as the spatial average, for a system of
=0 the model becomes very similar, in the boson formulalinear sizeL

tion, to the random gaugXyY model in the phase where

vortices are relevant. The parametaslays the role of a bare (E)= iJ’ d2rp(E.r) 3)
vortex fugacity and the local DO®,.(0,r) corresponds to the Pe 2 Pel1)-

renormalized vortex fugacitg.. (r) (or the local densitythat
becomes broadly distributed when-0. We show that the ; : > € : -
order of limits e ~0 and system siz& - is significant. L in any given sample, at finite size and for smalt is
ForL—, such that the typical level spacidgE< e, we use & Series of peaks whose locations usually fluctuatg strongly
a variational scheme and show thaf(0)~ e~ with z from sample to sample. Clearly these fluctuations are
exhibiting a transition at a critical value of disorder. This is SMoothed where becomes of the order or larger than the
equivalent to a phase transition }r(E)~E2’Z‘1. For AE typical Iev_ezl spacmg&E. Nalvely, if the Iowe;t energy states

> e we find thatp(0) becomes analogous to the partition Scale as"“ then dlmerz1§|20nal arguﬁﬁ;ent gives f()zr/ZEhle space
function of a directed polymers on a Cayley tree, and alséver‘i%ed DO$(0)~L* “fore<L*orp(0)~e™ = for
exhibits the freezing transition. It is, however, a strongly€> _
fluctuating quantity in that limit and is interpreted as a typi- 1he local DOS can be expressed from the free fermion
cal value, rather than a disorder average. Further analogigstion with spinorsy(r), ¥(r), projected into a subspace of
with freezing of dynamical exponents in Arrhenius dynamicsenergyE that defines the Dirac problem im2l dimensions.

is presented. Finally, in Sec. IV we include a scalar random

potential with variances, as in the full quantum Hall system. (E.r)= i Im(E(rﬁ/;(r)) 4)

We find that the DOS is noncritical i, however, itso P T Sp’

dependence is critical, i.ep(0)~ 52~2/Z". We also develop

a variational scheme for studying the transport and localiza- :f 2,7 T_iv_ + CE4i
tion exponents. Sp= | drp(Hf{r[—1V-A(r)]+W(r)—E+iety(r).

Although this usually becomes a smooth functionEofor

5
An additional Dirac mass term 47, in Eq. (5) controls the
Il. SINGLE-LAYER MODEL, DEFINITIONS, distance from criticality and is set here to zero.
AND EXACT MAPPINGS The problem can be mapped onto a sine-Gordon model.

Consideringy as an imaginary time variable this action can
be written as 41+1)-dimensional fermion problem. Further
bosonizatioh yields the action

Our aim is first to study the density of states of the ran-
dom Dirac Hamiltonian in two space dimensions

1 .
Hpo=hvg7[—1V—A(r)]+W(r), (1) SBZJ dzr[W[V0(r)]2+2|—7T[Ay(r)c9X—AX(r)ﬁy]H(r)

where r=(x,y) is the two-dimensional(2D) space, 7 - I—[W(r)— E+ie]cosd(r), (6)
=(7y,7y) are Pauli matriced/V(r) is a random scalar poten- ma

tial, andA(r) is a random vector potenti@h units ofe/%),  wherea (which denotesiva) is the momentum cutoff and
both Gaussian with short-range correlatiginsthe following  K=1: K#1 may be generated by RG or correspond to 1D-
we setfivg=1). A can be chosen purely transversg  type interactions. Allowing foK # 1 is mainly instructive as
=d,V, Ay=—d,V, and its potential has logarithmic correla- it allows to interpolate towards the random gaxgé model,
tions [V(r)—V(r')]>~aIn[r—r’|, which defineso. Two  and we call this situation the generalized Dirac model. In Eq.
exact zero-energyunnormalizedl eigenstates are thegt  (6) 4(r) is a nonsingular phase field, which can have solitons
=(e¥,0) andy=(0e7"Y). (but no vorticeggenerated by disorder. Equatit) can also
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be derived from the network model of the QHIEefs. 9—11  model. Clearlye plays the role of the bare vortex fugacity,
where x is discretized, W(x,7) is then the long-range but as shown in Ref. 16 the random vector potential gener-
component of the random potential whiléd (x,7) ates, upon coarse graining, an additional local random poten-
=(—)"W(x,7) is the short wavelength component; both tial resulting in a random fugacity. (r) = ee“Y") for +1
terms couple to slowly varying fields, hence can be consideharges. Some of the physics of the random gatgenodel
ered as independent random variables, though with equal awill thus be relevant here. In particular the local DOS

erages. p(0r) is analougous to the coarse grairedr) and thus
In the sine-Gordon formulation, the loc&moothedl  become broadly distributed @&s—0, as discussed below.
DOS is given exactly by an average of the operator #)os$ It is convenient to perform a replica average Ann Eq.
follows: (6). This yields a Hamiltonian for the replicated fie#g(r)
with replica indicesa,b=1, ... m

1
p(E,r)=——— ImInZ=——Reg(cosé(r)),
L2 SW(r) a H=f dzr[(ll&r)z (K™ 18,0+ o)V 0,-V 6,
ab

(@)

where Z=[D¢D e > and (cos#) is an average oved _ :
with the action Eq(6). < > 2 YInJexp(in- 0)}' ©)
We note that all the above mappings are exact. They are
even exact for a finite-size sample with some specifiedvhere (AZ(q))=(A’(q))=mc, n is a vector of lengthm
boundary conditions for the path integrals. Here we will notyith entries 0+ 1, andY[n]~Hae“§. The terme cosé in Eq.
need to detail the correspondences in boundary condition%) corresponds t&[ n] with Ean§=1 while all othern are
but it can be done in principle. Note that since the action iyenerated by RG. The inclusion of all these terms is essential
complex, the(cose(r)) can be arbitrarily Iarge{wilen the  for treating properly the strong disorder situati§i®*8and
denominator vanishgswhich is the case foe—~0" asE  gpaining the correct scaling dimension of theosé opera-

crosses an eigenvalus, tor, that is what we need here. Sinegs finite, and we are
mostly interested in the regidd>1/2 where the vortices are
[ll. RANDOM VECTOR-POTENTIAL MODEL relevant, they will exist in finite densitiseparated by a scale

€ %). Since we are interested in the end in the behavior as

We now setW(r)=0 and study the model with only a . . :
random vector potential. To determine the dynamical expo-6_>o (dilute limit) we can use the RG method developed in

nentz we will study the smoothed DOS at zero eneigy Ref. 16 and follow the full distribution of fugacities or
—0. Below we will distinguish two limits and study them equivalently all theY[n], up to the length scale at which the

separately. First in the large-size limie%L~?), if we as- vorthle;és separation becomes of order 1, correspondirlg to

sume, as is customary, that there is a well-defined density o?UFC _belt?_vv_t(see Ref. .19 tforda S|m|I_a:_ RGIStuht% d sh
statesp(E) ~E22~ 1, whenL — + o one has or simplicity we use instead a variational method, shown

in our previous studiég to be good enough to describe the
dilute vortex system. In the limits of interest in Secs. Ill and
~ 221 (8) IVA (small E,e€) this variational method is easily seéoy
e?+E? comparison to the above-mentioned R@ give theexact
i . _ result for scaling dimensions. Very much as in Ref. 16 we
for fixed smalle andz>1 (we will see below that for DiraC = gyect the more precise RG treatment to correct only ampli-
fermionsK =1, the exponert is indeed larger than unity for ,ges at weak disorder, powers of logarithmic prefactors at
all 7>0). Thus we can obtainunambiguously fronp(0).  strong disorder and be necessary mostly for detailed descrip-
This observable should be self-averaging in that limit sincg;yns very near the transitions, which we leave for future
the DOS at zero energy receives contributions from many, plication. The results given below for the exponemind
energy levels in a window of sizearounde=0, and thisis 5/ should thus be considered as exact.
what we find below. o , The variationalH, has the form

There is another interesting limit, also studied below,
when e<L "% is small (respectively finite size Then there
are fewer energy levels ang.(0) becomes a strongly fluc- H0=f dzr((ll&r)E [(K18,,+0)V 6,V
tuating quantity, as discussed below, which gives information ab
about the statistics of the lowest energy levEls near E
=0, and thus also about the typical energy-level spacing, +(0eOapt 09) Baﬁb]] (10
found to scale also d8,~L * with the same exponet

€

1
p(0)= ;j dEp(E)

with o, o variational mass parameters. The propagators of

A. Large-size limit the @ field are used to define
Alook at Eq.(6) settingE=0 [with W(r)=0] shows that
the model isidentical to the sine-Gordor{or equivalently i Ol — = 2US.—A
Coulomb-gas formulation®*® of the random gaugeXyY zq: (0a(a) (=)o ab
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u=—(K/2)In(AJ4mK o),

A=oK2In(AJAmKo)+Koglo.— oK? (1)

andA_> o is an integration cutoff. The interaction term is
(el ma— € herg

<E Y[n]exp(in-0)>

=<Z ex;{(uﬂn €2 NitwX N,

n

12

where thew average reproduces the required form with
AS,nZ,

<...>w:f exp[—wZIZA]dw/(ZW\/K). (13
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FIG. 1. Schematic phase diagram for the generalized Dirac
problem (e.g., single-layer disordered Coulomb pas is the
strength of the random gauge disord€is an interaction parameter
so thatK =1 corresponds to free fermions. The full line is the phase
boundary above which single charges become relevant and below
which the model is massless. The dashed-line indicates the freezing

and has the physical interpretation of an average over rarransition between weak and strong disorder regimes. Although the

dom local fugacities®® The sum in Eq(12) can be written
as(Hinyo=(Z™),, with

Z=1+ee" o+ ee"?. (14

The variational free energy is then minimizdd,,,=F,
+(H—Hy)o, whereFg is the free energy of Eq10) and(),
is an average with weights exp{{y). This procedure
yields'® an equation fowr,

et 4 el 042020, do
= e A . (15
(1+ee" @+ e ?) V2mA

K ando axis here are, strictly, renormalized values, these can be set
to bare ones whenever we are interested in the dominant behaviors
ase—0.

yielding the strong disorder form of E¢L6). Note that the
thermodynamic relation ofr, and e, and thus Eq(16) for
the Dirac problem, is valid only in the massive phdis
more general meaning is discussed bglow

The above results now allow to compute straightfor-
wardly thedisorder averagedOS. Indeed we can identify
the disorder average of EQ) asp (0)=(d/de)F o/ mL?
with the overline denoting average disorder. This yields the
replica average

Equation(15) can be solved by steepest descent when the

logarithms are large. A similar equation fery yields that
oolo. in Eq. (11) is at most finite and, therefore, can be

19 _
pel0)=—— ; Y[nlexp(in-6) ). (18)

neglected to determine exponents. The result is a phase dia-

gram shown in Fig. 1 with a massive phasg#0 bounded
by the lines 2K+ oK?=0 and o=1/8. Furthermore, the

Using Eq.(15) for o, and a corresponding equation fap,
we find p _(0)~ (o¢+ o)/ e~ €2 1. Note that Eq(18) has

line o= 2/K? manifests a phase transition corresponding to Beyond the(cosé) term all the higher-order terms ia as

2/z

change in the relatioor.~ €¢““ where

z=2—-K+oK?2, o<2/K?

z=K(\/8c0—1), o>2/K2 (16)

This transition occurs as rare regions of the sample rather

than typical ones start dominating the behavfoas can be
also seen from Eq(15). For 0<2/K? one can discard de-
nominators(as well as thes? term) that immediately yields
Eq. (16). For o> 2/K? the average over the random fugacity
w is dominated by the tail of the distribution and the right-
hand side of Eq(15) can be approximated b

Prodw+u+Ine>0)~exp 8—In o

17

generated by RG. The result differs from just tms6)
average in the strong disorder regime- 2/K?.

In this derivation we have used thitis large compared
with the correlation length 1o~ e~ so that integration
cutoffs are determined by . Hence our result is that

p(0)~€e??t e>L77 (19

exhibits a phase transitiéhat o=2/K?. From Eq.(8) this
also implies that the DOS also exhibits a transition with
p(E)~E??~1, The conditione>L "? can be interpreted as
the typical level spacingAE=1/p_(0)L? being small,AE
<€, so that levels overlap and the DOS is smooth at finite

Our conclusion for the free random Dirac Hamiltonian
(1), obtained by setting =1, is that there is a phase transi-
tion ato=2. We find

p(E)~El=9)A*+0)  for g<2, (20)
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p(E)~EG8/(B-1)  for 5>2. (21) [U(r)—U(0)]2=40K3nr. (25)

The result in the weak disorder phases 2, coincides with ~ The density of states thus takes the form
the exact result obtained in Ref. 1, as it should. The value 1 .
obtained for the threshold coincide with the one for the exact _ = —KInLfa=U() L UM/~ —
zero-energy eigenstat®?? The main novelty here is that we Pe=0(0) L2 Er € (e +em 2 LZZL
show that at this value of disorder a sharp change of behavior (26)
also occurs in the DOS and we obtain the exact result in the

strong disorder phase>2. A more detailed treatment re- O_f th? partiion functiorZ, of a singlgi vortex in a loga-
veals that in the strong disorder phase there are Iogarithmirdthmlcally correlatgd random potential, known to be 7related
p the one of a directed polymer on a Cayley tte&. A

prefactors to the DOS, as was also the case in Ref. 24. For - _ L _
o>2 one has simple average of the partition functicf) , i.e., p.(0) in-

deed leads to Eq(23), however, as is well known in the
p(E)~E?Z"YInE| Y, (22 directed polymer problem only the logarithm of the partition
function InZ is self-averaging. This immediately
where we find folE=i e that y= 29[ V80/(\8a—1)], with  yieldst"?**our result for the typical DOS at finite size
vy=1/2 (see Ref. 2§ Finally, note that since we are studying
only the dominant behavior of the DOS as-0 the o ap- pryp(0)~L %77, (27)
pearing in the above formulas can be set to be the bare ongjty 7 given by Eq.(16).
since tal_<ing perturbqtive corrections into account yields only 1, identify the role ofe we consider the first-order terms
subdominant correctiorsee below. _ efd?r'(exd=6(r) = 6(r")). The typical value of each of
As mentioned above, using the RG of Ref. 16 yields thepege terms scales as the typical valu@?L2 (for opposite
same resul(16) for the dynamical exponerz This is a charges it is true in the massive phase we are interesjed in

result about the true scaling dimensipmf the e cosé op- 1, : - .
. . . . s allows to identify a crossover functidifx), where
erator(notedA,y, in the conclusion of Ref. Jaeing differ- v )

ent, in the strong disorder regime, from the naive (maed ptyp(0)~L72”+ eL™2%224 ... =722 (el ?), (28)
A there, as occurs in th&XY model (see discussion there )
with f(x)=1+x atx—0. Forx>1 we can recover Eq19)

This transition in the scaling dimension is a property of the; i e vy
e=E=0 theory and holds whether or not the operator itselfi| the crossover function satisfieigx)~ (1) i.e., the

is relevant(sign of the scaling dimensirin the (massless  typical valuep,,,(0) crosses over to the averagg(0) at

XY phase of theXY model where it is irrelevant, it still €>L"* with both limits exhibiting a phase transition.
corresponds to a true phase transition, but only for the single This statistics can be described in a simple phenomeno-
vortex problem’ and not for the fullXY model. Finally note ~ logical picture. A finitee provides a length scalghe vortex
that the RG treatment is expected to change the value of thgeparation and in effect cuts the system in independent
exponenty of the logarithmic correctioné.e., y is expected ~ pieces of sizes .= e % One has thus roughly

to change toy=3/2) !’ LiL,

pd0)=7 2 20, (29

B. Finite-size regime i=1

Let us now characterize some aspects of the fluctuationghere the random Variab|é§!> are independent with a log-

of t?]e DOS in a finite-size System.hWithini;chﬁ variational 5 ma) distribution. For large/L ,, however, the above sum
method described above one sees thaefet~ * the system 5.4 ires a normal distribution. A similar picture was used to

is too small to generate the masg hencep(0)~(cosb)o  describe the related random diffusion problem, where the

with oc=00=0 in Eq.(10), i.e., local first-passage times are analogous to the local DOS in
— iok? B the present problem, and an external force produces a finite
p0)~L "7 e<L™Z (23 length scale. Analysis of the various regimes is described

. . . . ... there and are expected to be quite similar here.
Since the system is effectively massless we expect significant P q

fluctuations. In the following we consider a different ap-
proach for thee<L % case that will clarify the nature of
disorder average. It is instructive to compare our results to the one obtained
We proceed to evaluate the DOS by a direct expansion ifior random diffusion problems. As mentioned in the intro-
€. At €e=0 a direct evaluation of the Gaussian average @ver duction, general random Dirac problems can be mapped onto
in a given sampldassuming periodic boundary conditions random diffusion operators, which in general may involve

C. Relation to random diffusion models

for the resulting potentiaV/(r)] yields?® two species, with absorption, creation, and transformation. It
is particularly simple in the casé/=0 (random vector po-
(cosf(r)y=e KInL[e V(N4 V]2 (24)  tential along where it maps onto a random Fokker-Planck

) ) ) diffusion operator of the type
where, in Fourier spaceU(q)=2KV(q)=(2K/q2)(|quy

—igyA,) with correlation of the form HepP=V?P-V.(F;+F )P=—E'P, (30
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which describes the Langevin diffusion of a particlgP In presence of a random scalar potential one Yigs]
=HgpP, whereP(r) is the probability that the particle is at ~(iW—¢€)=n2 in Egs. (9) and (18). We can safely se&
pointr at timet, in the presence of both a potential random=0 in the definitionp.(0)~ dF ,,,/de sinceW(r) provides
force FL.=—VU and a transverse orta random drift, with  a mass parameter. The variational method is similar to the
div Fr=0. Equivalently, settin®=e~ Y2y, previous case, except thats replaced byW(r) in Eq. (15).

, ) 5 oo , Since the integral is dominated by largeand o (for w
Hepy=[V = Fr-V=(VV)*+VV]y=—E"¢, (3D  >0), it has the form

with V=U/2 (K=1 herg. The operator$irp andHr, have el
the same spectrum. In two dimension, taking the square of — e (35)
Eq. (1) with W=0 yields O\ (1+iwett )2 ow
_HZDZVZ_(A>2(+A)2/)+0'z(‘9yAx_‘9xAy) 2\W2e2u+2w
—2\A-V-iV-A (32 :<—(1+W2e2u+2w)2>ww’ (36)

with A=1 identical toHgp with A,=4,V and A= — 4,V
(and V— —V for the other component of the spincand
Fr=2iA. This is thus Arrhenius diffusion in the random
potentialU with an additionaimaginaryrandom drift?® The
diffusion dynamical exponera associated witld -, should

using thex symmetry of théW average® The latter form is
equivalent to the previous integral Ed.6) with e replaced
by the disorder averag&\v?)= § (for the starting QH system

6~ o) andK is replaced by K. Henceo .~ 527" 'where now

thus be simplyzy=2z. Note that all the operators obtained 2'=2-2K+40K2 o<1/2K2
by varying N\ have identical ground-state wave functiah,
~e~V since the additional drift term does vanish in the ZIZZK(\/%_ 1), o>1/2K2 (37)

ground statéin the diffusion context it means that the drift is )
along equipotentials oB)). It is thus reasonable to expect The DOS at zero energy can be written as
that each of these models are described by a line of fixed <

points and that they all do exhibit a freezing transition for = ure

any value ofA at the same valuef o= o0 ,=2. p(E=0)~(cos6)~
In the absence of this additional drifte., settingh =0),

the problem reduces to the one studietf ivhere indeed it where

was found that there is also a freezing transition in the dy-

namical exponenty in d=1 andd=2 with (assuming con- 2 z

ventional dynamical scaling a=——— (39

], o

7z z
z4y(N=0)=2+2(aloy,), o<oy, (33 Sincez’ has a transition ar=1/2K? the DOS haswo tran-
sitions at 0=1/2 and ato=2 (for K=1). The exponent

Z4(A\=0)=4Voloy, o>on. (34 in Eq. (39 is the one expected from a scaling fopmp 5(0)

Although it does indeed exhibit a freezing transition at the= 8“g(e/8?*), which connects with thé=0 case solved in

same thresholdr,,=d, one sees thaty(A\=0)<z4(A=1)  Sec. lll [which requiresg(x)—1 atx—0 andg(x)~x*%2

=2z, i.e., the imaginary drift slow down the diffusion, pre- at x—«]. As we will see below there are, however, three

sumably through interference effects. It would be of interesphases, each with a different scaling functig(ix). Note that

to determinezy(\) as well as to study freezing transitions in z'/z increases from 0 at smatt to z'/z=2 at c=2 and

a generalized class of these diffusion models in two dimenremains equal to this value for stronger disorder.

sions. We have thus shown that the DOS is finite at the quantum
It is possible to consider various one-dimensional restricHall transition, which is a well-established restiitn addi-

tion of the Dirac model, e.g., the so-called supersymmetrigion, however, we have determined the scaling of the zero-

quantum mechanics that also exhibits band-centeenergy density of states with the scalar potential strength in

delocalizatior®™*? With a log correlatedU(x) this model the random Dirac problem. Note that in the previous case

was studied analytically in Ref. 24, thus we know in thatwith e— 0 renormalization oK ando was of higher order in

case the exact=z4/2 dynamical exponent of the random e and could be neglected. Here, however, a fiité?(r))

Dirac operator. renormalizes botlK and o, with o flowing to stronger val-
ues. This does not spoil our result for the exporEnn the
IV. FULL QUANTUM HALL PROBLEM limit 6—0, however, as it would also yield only subleading

corrections iné.
The physics of the problem becomes more apparent when
Finally, we consider the Dirac model where the scalarone notes that the random scalar potential prod(ses e.g.,
random potential in Eq(5) is retained, which describes the Eq. (6)] a random(imaginary fugacity with a random sign.
full quantum Hall system. We will first determine the DOS at One can then again either extend the RG of Ref. 16 to this
zero energy, and later around zero energy. situation or consider the extreme dilute lindingle vortex

A. One layer problem: scaling of the DOS
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as in Eqg.(24). Both considerations lead immediately to a x=f(x)z’2[1—f(x)‘z"2] (48)
mapping onto the directed polymer on the Cayley tree with '
random Boltzmann weight®f random sign(in the bare g(x)=f(x)1~%2, (49)

model the random sign acts only on the leafs of the tree but

since both signs have equal probability one easily sees thR0Ssibly th? exact ones, up to prefactors.

this is equivalent to a random sign on each branch of the Strong disorder phasg 1/2K*< ¢ <2K?. There one can
tree. This model was also solved in Ref. 34 and is known tostill neglect denominators in averages involving the terms
indeed exhibit a transition at half the value of the same sigProportional toe but not in the one involving the terms pro-
problem, due to interference effects that in effect bind twoPortional tow?. One finds

replicas. The value of the’ exponent obtained by this

Y 1-2/2
method is identical to the one given abd\qg. (37)]. It is p(0)~ac "%, (50
remarkable, and encouraging, that the variational method 5 5
also captures this physics. oo=eot P+ af!““” alin ol */(8aK®) (51)

We can now extend these considerations and obtain, in. ) ) ]
implicit form, the crossover function that describes the DOSSIMPple expansion shows that scaling still holds but the scal-

p(E) in the smalls limit. We will obtain explicitly p_(0), ~ ng functions are now implicitly given by
from which p(E) can be extracted inverting E(B). 22 3
The equation that determines and the DOS is now x=F)TL=1(x) "], (52
et @4 (W24 €2)g2ut20 ~, 1
o= fdw ( ) , z’=4 1——\/_ ,
1+Zeeu+w+(w2+62)e2u+2w . 8o
40 _
40 600 =100
_ gut o4 gg2ut2e This scaling function is accurate only up to logarithmic
p(0)= J dw1+25e“+‘°+(W2+62)e2“*2‘” ; prefactors. A more  accurate  form s o
oW (a1) ~ 827 |In 8727 f(e5 7 |In 5277) with y=1/2 but y is

likely to be corrected upon a more careful RG treatment.
the first line is reallyo.+ oy but we can use thatr, is Strong disorder phas#, 2/K2< . At even stronger dis-
subdominant and only dominant exponents foréhe0 are  order, sincez’ =2z, we expect the scaling region to leé
retained?® We immediately see that there are several re— 8. To show that this is the case and to get some approxi-
gimes, according to whether one can neglect all denominamation for f(x) we notice that the equation fer, can be
tors (weak disorder, or whether the averages will be domi- approximated in the scaling region by

nated by the rare events where either the terms proportional

to W2 or to e or both, are of order 1. There are in fact three o.~Prob(ee"" +(e?+ 5)e*( T )> 1), (53
phases, in each of them scaling holds with different scalin

functionsf, g, R, gSolving the quadratic equation &f'*“ yields thato, is in-

deed of the form42), with some form forf (x), which here

is approximate. We have not attempted to solve more pre-
cisely for f(x) or g(x) in this phase.

) , Finally note that this crossover can also be studied at fi-
p(0)=5%"2g(el 577, (43)  nite size, and is there complicated as it will probably be
described as in Ref. 34 by a nontrivial phase diagram.

o= 6% t(el 597, (42)

from which one can extract the DOS scaling function

p(E)=E2/Z_1R(E/52/Z’) (44) B. Transport in the quantum Hall system: the two layer
problem
determined implicitly by the relation We address now the more difficult problem of describing
. transport and localization in the QHE system. Transport is
. X derived by a disorder average of advanced and retarded
—— /z—1
9(x) 'Tl'j dyy’ R(y)x2+y2. (45) propagators, hence two partition sums corresponding to the

action of Eq.(6) with * €. The problem is then of two layers
Weak disorder phase< 1/2K2. Neglecting all denomina- Wwith fields 6, and ¢, and common disordek(r) andW(r).

tors the equation foo. andp(0) become The role of + € is to determine the proper ground state near
which the variational method applies, i.e., fere we shift
p(0)=0t"72, (46)  6,— 6, + 7 so that the nonlinear terms become
1=eo; 22+ 50;2'/2, (47) exp[ —Ea: [(—iW+€)cosb; ,+(IW+e)cosh| ,],
which yield the scaling functions in implicit form (54
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wherea=1, ... m are replica indices for each layer and we
have redefined her®V/ma,el ma—W, e, respectively. Ex-
pansion in powers ofW= e and identifying the dominant
terms of the form expg- @) yields

Hi= S (—iW)Za Ma(iW) > aexg(in- ),  (55)

with € now set to zeron is now a vector of 2n entries
(N1, -« NN g, ... Ny ) and similarly foré.
The Gaussian part of the Hamiltonian can be written as

q2

H :2,3 87K

[16+ a(a)|*+]6- a(@)|*]

+E 0+ ()05 p(—0), (56)

where 6. ,=(0: 5= 6,,)/\/2. Since only thed, mode is af-
fected by the common disordé(r) we expectd. to have
distinct self-masses. The variational Hamiltonian is then

1 . .
Ho=H'+5 2 [0¢]0+a(@)[*a+ 0% 0-a(0)

X 0.p(—a)]. (57

The propagators of thee modes are used to define
20 (0:a(Q)0:5(~)o= ~4U= S5~ 2.,

=—(K/4)In(AJ4mKo, ),
A, =0oKAn(AJ4nKo )+ Koy 20 —oK?,

A_=Kog /207 . (58)

We write the interaction Eq55) in the form
i 2 . 2
<Him>o:<(—|W)EanTa(|W)Eania
XEXL{LM; (nTa+nla)2+w+§ (nTa‘I'nla)

.

+u,§a: (Nja—N )%+ w,}a: (Nja—Nja)

(59
where thew average reproduces the required form with
At(EanTatnia)zv

f f [{ w? do,dw_ 60
ex .
2A+ S 2AC 2mJALA_

The sum in Eq(59) can be written a§H;,)o=(Z™),, with

PHYSICAL REVIEW B55 125323

Z=1—-iWexgu,+Uu_+w,+w_]

+iWexdu, +u_+w,—w_]

—iWexgu, +u_—w, —w_]

+iWexdu, +u_— o, +o_]+W2et+ 20+
+W2e4u,+2w, +W2e4u,—2w, +W264u+_2‘"+
(61)

The masses are to be found by minimizing the variational
free energyF,,,=Fo+(H—Hg)o, as in Sec. IIIA. We ex-
pect to find a massless solution, eq.,=0. This is indeed

a possible solution withu_— — and

Z=1+W?eM+ T 20r p\W2elts m 20 (62)

W? can be replaced by its average and then this has the same
structure as the single-layer problem of Sec. lll A with the
replacemenK — 2K, i.e. the phase diagram is the same as
Fig. 1 with the 1K axis replaced by 1R. The starting line
K=1 is now tangent to the phase boundaryat0. How-
ever, fore>0, 6, is massive.

To find the QH localization exponent we introduce the
mass term that corresponds to

Ag(sing, —sin6,)=2A4co8 6, /\2)sin(6_//2).
(63

Note the opposite signs due to the shiftyfas required by
the sign ofe. Since d, is massive A, can be replaced by
Ag=2A4(cos@, /\2)) and definingd=0_/\2+ /2 leads

to an effective Hamiltonian with

Heffzde[ ! |v 6(r)|>— A 4cosd(r) (64)

This system has a correlation lengéh related to a mass
£2~A2%" which from first-order RG isr=2/(4—K). For

the original QH problem witiK=1 the localization expo-
nent is thenv=2/3 (the numerically known value is-2.3).

We expect, however, th#t is RG driven to a different value.
This is beyond the variational scheme that gives reliable ex-
ponents only for small\{/,€) couplings(but arbitraryo,K),

as in thee—0 case. E.g., to second order in replicated sine-
Gordon RG, the most relevant operatircos @, + 6,) yields

w 2
o = (27 2K+40KAW,

K—l

—gr = 2K- 20K?)W?,

do -
WZ(K_ZUK YW-, (65)
which shows that indeel increases at weak disorder.

We have also looked for other solutions of the variational
scheme of the formrc‘~(a§)“ and found that onlyp=1
exists. This corresponds to decoupled layers with the phase
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diagram of Fig. 1 K replaced by K). Hence aK=1 thisis  step in that direction we have determined the scaling of the
a massive phase and does not correspond to the QH proble@OS (which is then finite at zero energwhen the additional

Our method shows that a subset of the degrees of freedonandom potential is small. There we found two transitions,
can form a massless phase and we hope that it will stimulatene at the same value than the random vector-potential
further progress. model, the other at a much smaller value of disorder. It

would be nice to know whether these transition lines extend
V. CONCLUSION away from the random vector-potential fixed line. Numerical
checks of our predictions as well as a numerical calculation

In conclusion, we have derived an exact formulation ofqf 5 glass order parametée.g.,=,| #(x)|) in the full model
two-dimensional random Dirac fermions in terms of a ran-y,qyld help understand these issues.
dom sine-Gordon model, or equivalently a disordered Cou- e pelieve that such freezing phenomena, originally stud-
lomb gas. The DOS of the Dirac fermion system identifiesigq in the context of disordered Coulomb gas atd mod-
with the expectation value of a cosine operator in the sineg|s il also affect a broader class of disordered fermion
Gordon modelequivalently the charge fugacity in the Cou- models in two dimensions. This can be studied systemati-
lomb gag and the dynamical exponenas its scaling dimen- ¢4y by extending the bosonization approach introduced in
sion. We found that at zero energy and with random vectoghe present paper, and for instance, searching for all pertur-
potential only the Dirac system maps onto the random gauggations around the random gauge fixed plane and computing
XY model with infinitesimal vortex fugacitydilute limit of  theijr (nontrivial) scaling dimensior(here it was done only
the CG. Using methods and results from previous studies ofor the vortex fugacity operathrin particular it is of interest
the XY model, we have computed the exact dynamical €xto know whether the nonlinear models studied in Ref. 8
ponentz for the random vector-potential model at any disor-iso exhibit freezing phenomena. They are indeed generali-
der, and thus obtained the critical behavior of the DOSzations of the Liouville model that captures the single vortex
around zero energy. We found that it exhibits a transition aprohlem and does exhibit a freezing transition. Results are
the same threshold value than the previously known transiy|ready known in related cases. For instance it was shown in
tion in an exact ground-state wave function. It shows that alRef. 19 that if one adds pinning disorder to the random
eigenstates near the band center are affected by this tran 'auge XY model, the vortex densityDOS) acquires a
tion. The physics of this transition is closely related to the~exp(—|ln €23 dependence in the vortex core energy
freezing transition in theXY model in the limit where the In(1/e) with a nontrivial exponent.
vortex core energy is taken very large. As we show here the "Finaly, we have formulated the problem of the transport
density of states in a finite-size sample becomes broadly disp the quantum Hall system as two coupled random sine-
tributed with typical values scaling differently than averagegordon models. We have applied the variational method that
ones with the system size. This corresponds to the eigensould capture some of the nonperturbative effects. We have
states being peaked around some few centers in the Sampl?nalyzed the system using in the plane of t@imension-

It is likely that similar freezing phenomena are of impor- |esq” parameters and were able to find a massless phase.
tance in a broader class of two-dimensional disordered modryoygh qualitatively encouraging, to obtain the quantitative
els. They were recently found to occur in random diffusioncharacteristics of this phase requires to incorporate in a more
models, for instance in the problem of random Arrheniusyrecise way additional renormalizations of these two param-
diffusion of a particle in a log arithmically correlated poten- giers, |t is tantalizing that possible values of these renormal-

tial. We have analyzed the similarities and differences of thg;aq parameteronsistent with numerigseem to lie within
transitions that occur in the dynamical exponentsf both e region near the glass phase boundary.

models. As was shown in Ref. 24 strong disorder renormal-
ization group captures the dynamical behavior in the glass
phase, which suggests that it could be used to study the
present problem as well. We thank Bernard Derrida and Leon Balents for useful

It is of utmost importance to understand what are the condiscussions. B. H. acknowledges support by The Israel Sci-
sequences of this transition when a random potential ignce Foundation founded by the Israel Academy of Science
added, corresponding to the quantum Hall system. As a firsind Humanities.
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