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Freezing transitions and the density of states of two-dimensional random Dirac Hamiltonians
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Using an exact mapping to disordered Coulomb gases, we introduce a method to study two-dimensional
Dirac fermions with quenched disorder in two dimensions that allows us to treat nonperturbative freezing
phenomena. For purely random gauge disorder it is known that the exact zero-energy eigenstate exhibits a
freezinglike transition at a threshold value of disorders5s th52. Here we compute the dynamical exponentz
that characterizes the critical behavior of the density of states around zero energy, and find that it also exhibits
a phase transition. Specifically, we find thatr(E501 i e);e2/z21 @and r(E);E2/z21# with z511s for s
,2 andz5A8s21 for s.2. For a finite system sizeL,e21/z we find large sample to sample fluctuations
with a typical re(0);Lz22. Adding a scalar random potential of small varianced, as in the corresponding
quantum Hall system, yields a finite noncriticalr(0);da whose scaling exponenta exhibits two transitions,
one ats th/4 and the other ats th . These transitions are shown to be related to the one of a directed polymer on
a Cayley tree with random signs~or complex! Boltzmann weights. Some observations are made for the strong
disorder regime relevant to describe transport in the quantum Hall system.

DOI: 10.1103/PhysRevB.65.125323 PACS number~s!: 71.10.Ca, 05.20.2y, 05.50.1q, 64.60.Ak
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I. INTRODUCTION

The critical behavior of the plateau transitions in the
teger quantum Hall effect~QHE! remains an appealing the
oretical challenge. Despite numerous attempts, a calcul
theory remains elusive. An equivalent version of the qu
tum Hall system that is believed to capture the relevant ph
ics corresponds to two-dimensional Dirac fermions in pr
ence of both a random vector and a random scalar poten1

Conventional perturbative methods have failed and it is
lieved that the problem is described by some nonperturba
strong coupling regime.1,2 Recent works using conforma
field theory3–7 or nonlinears models aim at reaching thi
regime.8

One possible route of attack is to use the bos
representation1,9,10based on the network model.11 Indeed, the
model can be mapped exactly, via bosonization, onto a
dom sine-Gordon model or equivalently a Coulomb g
~CG! with a specific type of disorder. Although the calcul
tion of the density of states, via the retarded Green’s fu
tion, corresponds to considering a single CG layer, the
treatment of the quantum Hall transition~both advanced and
retarded Green’s function! requires to study two-couple
Coulomb-gas layers and remains highly nontrivial in the
variables. On the other hand, there has been recent pro
in understanding disordered CG, mainly in the context
random gaugeXY models12–18and in particular the freezing
transitions that occur in these systems. Methods, such
fugacity distribution renormalization group~RG!16,17,19 as
well as variational methods,18 have been developed tha
seem to capture some of the nonperturbative features o
strong disorder regimes. It is thus of interest to search w
can be learned from these methods and to understand,
spective of formal technicalities, whether the~glass transi-
tion! physics that they describe will be part of the QH
strong disorder physics.

In this paper we mainly focus on the detailed understa
0163-1829/2002/65~12!/125323~10!/$20.00 65 1253
-

le
-

s-
-
l.
-
e

n

n-
s

-
ll

e
ess
f

as

he
at
re-

-

ing of the single-layer problem in the Coulomb-gas formu
tion with the practical aim of computing the density of state
We also extend our method to the full QH problem, propo
ing a approach on this venerable problem.

We start by further restricting to the purely rando
vector-potential disorder model, the scalar random poten
will be added later on. This simpler model has been int
sively studied1,7,6,20,21and is believed to be critical, with a
line of fixed points, and a continuously varying dynamic
exponentz(s) as a function of random vector-potential di
order strengths. Some precise results exist for an exac
known zero-energy eigenstate that has the formc(x)
5eU(x)/2c0 whereU(x)/2 is the primitive of the vector po-
tential. It was found22 that averaged moments scale with sy
tem sizeL as(xuc(x)u2q;L2t(q), such that above a thresh
old values5s th of disordert(q)50 for sufficiently largeq
indicating some kind of localized behavior. Further studie17

confirmed the existence of a transition ats5s th in the
~Gibbs-like! probability measureuc(x)u25eU(x) ~equiva-
lently a freezing, i.e., a glass transition!, as well as its rela-
tions, via RG, to the directed polymer on a Cayley tree,14,20,23

and found a nontrivial structure of the strong disorder ph
with ‘‘quasilocalized’’ behavior. Interesting relations to th
Liouville theory, conjectured in21 were reexamined and i
was found that the freezing transition can be directly de
onstrated from renormalization in the Liouville model.17

The known results about the exactE50 eigenstate22 do
not, however, tell anything directly about the density
states. In particular the dynamical exponent has not yet b
calculated in the strong disorder regime, and one wo
guess that it should exhibit some kind of change at the tr
sition s5s th . A freezing in the dynamical exponent wa
indeed demonstrated recently24 in a closely related model
i.e., the classical Arrhenius diffusion in the potentialU(x), in
both one and two dimension at the same values5s th than
the E50 eigenstate transition. In one dimension the squ
of the Dirac Hamiltonian is well known to be identical to th
©2002 The American Physical Society23-1
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BARUCH HOROVITZ AND PIERRE LE DOUSSAL PHYSICAL REVIEW B65 125323
Fokker-Planck operator and there the two problems are
equivalent.25 Thus in one dimension, if one considers a l
correlatedU(x), both problems haveidenticaldynamical ex-
ponents and freezing transitions given in Ref. 24. In t
dimensions, as discussed below, the two differ by an a
tional imaginary random drift term, but still they both hav
line of fixed points and it is reasonable that they would b
undergo freezing transitions, as we find here.

In this paper we start by defining the models~Sec. II! and
by showing that the density of states~DOS! of the Dirac
Hamiltonian can be expressed as an observable in a b
formulation. For convenience we study the DOSre(E) at
energyE50 adding a small but finite imaginaryi e term for
the retarded propagator, thus in effect computing a smoo
DOS, and carefully study the limite→01 ~Sec. III!. At E
50 the model becomes very similar, in the boson formu
tion, to the random gaugeXY model in the phase wher
vortices are relevant. The parametere plays the role of a bare
vortex fugacity and the local DOSre(0,r ) corresponds to the
renormalized vortex fugacityz6(r ) ~or the local density! that
becomes broadly distributed whene→0. We show that the
order of limits e→0 and system sizeL→` is significant.
For L→`, such that the typical level spacingDE,e, we use
a variational scheme and show thatre(0);e2/z21 with z
exhibiting a transition at a critical value of disorder. This
equivalent to a phase transition inr(E);E2/z21. For DE
.e we find thatre(0) becomes analogous to the partitio
function of a directed polymers on a Cayley tree, and a
exhibits the freezing transition. It is, however, a strong
fluctuating quantity in that limit and is interpreted as a ty
cal value, rather than a disorder average. Further analo
with freezing of dynamical exponents in Arrhenius dynam
is presented. Finally, in Sec. IV we include a scalar rand
potential with varianced, as in the full quantum Hall system
We find that the DOS is noncritical inE, however, itss

dependence is critical, i.e.,r(0);d (22z)/z8. We also develop
a variational scheme for studying the transport and local
tion exponents.

II. SINGLE-LAYER MODEL, DEFINITIONS,
AND EXACT MAPPINGS

Our aim is first to study the density of states of the ra
dom Dirac Hamiltonian in two space dimensions

HD5\vFt•@2 i“2A~r !#1W~r !, ~1!

where r5(x,y) is the two-dimensional~2D! space, t
5(tx ,ty) are Pauli matrices,W(r ) is a random scalar poten
tial, andA(r ) is a random vector potential~in units of e/\),
both Gaussian with short-range correlations~in the following
we set \vF51). A can be chosen purely transverseAx
5]yV, Ay52]xV, and its potential has logarithmic correla
tions @V(r )2V(r 8)#2;s lnur2r 8u, which definess. Two
exact zero-energy~unnormalized! eigenstates are thenc
5(eV,0) andc5(0,e2V).
12532
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Since we are also interested in the local density of sta
in a given sample and that this is a fluctuating quantity it
convenient to define the smoothed local density of sta
re(E,r ) as

re~E,r !5
1

p
ImK rU 1

E2HD2 i e Ur L
5

1

p (
n

e

~E2En!21e2
ucn~r !u2 ~2!

whereEn are energy eigenvalues ofHD and cn the eigen-
states. Fore→01 one recovers the standard local DOS, a
for finite e each level is broaden by Lorentzian. The stand
DOS is then defined as the spatial average, for a system
linear sizeL

re~E!5
1

L2E d2rre~E,r !. ~3!

Although this usually becomes a smooth function ofE for
L→` in any given sample, at finite size and for smalle it is
a series of peaks whose locations usually fluctuate stron
from sample to sample. Clearly these fluctuations
smoothed whene becomes of the order or larger than th
typical level spacingDE. Naively, if the lowest energy state
scale asL2z then dimensional argument gives for the spa
averaged DOSre(0);Lz22 for e,L2z or re(0);e2/z21 for
e.L2z.

The local DOS can be expressed from the free ferm
action with spinorsc̄(r ), c(r ), projected into a subspace o
energyE that defines the Dirac problem in 211 dimensions.

re~E,r !5
1

p
Im^c̄~r !c~r !&SD

, ~4!

SD5E d2r c̄~r !$t•@2 i“2A~r !#1W~r !2E1 i e%c~r !.

~5!

An additional Dirac mass termDdtz in Eq. ~5! controls the
distance from criticality and is set here to zero.

The problem can be mapped onto a sine-Gordon mo
Consideringy as an imaginary time variable this action ca
be written as a~111!-dimensional fermion problem. Furthe
bosonization1 yields the action

SB5E d2r H 1

8pK
@“u~r !#21

i

2p
@Ay~r !]x2Ax~r !]y#u~r !

2
i

pa
@W~r !2E1 i e#cosu~r !J , ~6!

wherea ~which denotes\vFa) is the momentum cutoff and
K51; KÞ1 may be generated by RG or correspond to 1
type interactions. Allowing forKÞ1 is mainly instructive as
it allows to interpolate towards the random gaugeXY model,
and we call this situation the generalized Dirac model. In E
~6! u(r ) is a nonsingular phase field, which can have solito
~but no vortices! generated by disorder. Equation~6! can also
3-2
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FREEZING TRANSITIONS AND THE DENSITY OF . . . PHYSICAL REVIEW B 65 125323
be derived from the network model of the QHE~Refs. 9–11!
where x is discretized, W(x,t) is then the long-range
component of the random potential whileAy(x,t)
5(2)xW(x,t) is the short wavelength component; bo
terms couple to slowly varying fields, hence can be cons
ered as independent random variables, though with equa
erages.

In the sine-Gordon formulation, the local~smoothed!
DOS is given exactly by an average of the operator cos(u) as
follows:

re~E,r !52
1

pL2

d

dW~r !
Im ln Z5

1

p2a
Rê cosu~r !&,

~7!

where Z5*Dc̄Dce2SD and ^cosu& is an average overu
with the action Eq.~6!.

We note that all the above mappings are exact. They
even exact for a finite-size sample with some specifi
boundary conditions for the path integrals. Here we will n
need to detail the correspondences in boundary conditi
but it can be done in principle. Note that since the action
complex, the^cosu(r )& can be arbitrarily large~when the
denominator vanishes!, which is the case fore→01 as E
crosses an eigenvalueEn .

III. RANDOM VECTOR-POTENTIAL MODEL

We now setW(r )50 and study the model with only
random vector potential. To determine the dynamical ex
nent z we will study the smoothed DOS at zero energyE
50. Below we will distinguish two limits and study them
separately. First in the large-size limit (e.L2z), if we as-
sume, as is customary, that there is a well-defined densit
statesr(E);E2/z21, whenL→1` one has

re~0!5
1

pE dEr~E!
e

e21E2
;e2/z21, ~8!

for fixed smalle andz.1 ~we will see below that for Dirac
fermionsK51, the exponentz is indeed larger than unity fo
all s.0). Thus we can obtainz unambiguously fromre(0).
This observable should be self-averaging in that limit sin
the DOS at zero energy receives contributions from m
energy levels in a window of sizee aroundE50, and this is
what we find below.

There is another interesting limit, also studied belo
when e,L2z is small ~respectively finite size!. Then there
are fewer energy levels andre(0) becomes a strongly fluc
tuating quantity, as discussed below, which gives informat
about the statistics of the lowest energy levelsE0 near E
50, and thus also about the typical energy-level spac
found to scale also asE0;L2z with the same exponentz.

A. Large-size limit

A look at Eq.~6! settingE50 @with W(r )50# shows that
the model isidentical to the sine-Gordon~or equivalently
Coulomb-gas! formulation16,18 of the random gaugeXY
12532
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model. Clearlye plays the role of the bare vortex fugacit
but as shown in Ref. 16 the random vector potential gen
ates, upon coarse graining, an additional local random po
tial resulting in a random fugacityz6(r )5ee6U(r ) for 61
charges. Some of the physics of the random gaugeXY model
will thus be relevant here. In particular the local DO
re(0,r ) is analougous to the coarse grainedz6(r ) and thus
become broadly distributed ase→0, as discussed below.

It is convenient to perform a replica average onA in Eq.
~6!. This yields a Hamiltonian for the replicated fieldua(r )
with replica indicesa,b51, . . . ,m

H5E d2r H ~1/8p!(
ab

~K21dab1s!“ua•“ub

2(
n

Y@n#exp~ in•u!J . ~9!

where ^Ax
2(q)&5^Ay

2(q)&5ps, n is a vector of lengthm

with entries 0,61, andY@n#;)aena
2
. The terme cosu in Eq.

~6! corresponds toY@n# with (ana
251 while all othern are

generated by RG. The inclusion of all these terms is esse
for treating properly the strong disorder situation,15,16,18and
obtaining the correct scaling dimension of thee cosu opera-
tor, that is what we need here. Sincee is finite, and we are
mostly interested in the regionK.1/2 where the vortices are
relevant, they will exist in finite density~separated by a scal
e2z). Since we are interested in the end in the behavior
e→0 ~dilute limit! we can use the RG method developed
Ref. 16 and follow the full distribution of fugacities o
equivalently all theY@n#, up to the length scale at which th
vortices separation becomes of order 1, corresponding tL
;sc

21/2 below ~see Ref. 19 for a similar RG study!.
For simplicity we use instead a variational method, sho

in our previous studies18 to be good enough to describe th
dilute vortex system. In the limits of interest in Secs. III a
IV A ~small E,e) this variational method is easily seen~by
comparison to the above-mentioned RG! to give theexact
result for scaling dimensions. Very much as in Ref. 16 w
expect the more precise RG treatment to correct only am
tudes at weak disorder, powers of logarithmic prefactors
strong disorder and be necessary mostly for detailed des
tions very near the transitions, which we leave for futu
publication. The results given below for the exponentz and
z8 should thus be considered as exact.

The variationalH0 has the form

H05E d2r H ~1/8p!(
ab

@~K21dab1s!“ua•“ub

1~scdab1s0!uaub#J ~10!

with sc , s0 variational mass parameters. The propagators
the u field are used to define

(
q

^ua~q!ub~2q!&0522udab2A,
3-3
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BARUCH HOROVITZ AND PIERRE LE DOUSSAL PHYSICAL REVIEW B65 125323
u52~K/2!ln~Dc/4pKsc!,

A5sK2ln~Dc/4pKsc!1Ks0 /sc2sK2 ~11!

andDc@sc is an integration cutoff. The interaction term
(e/pa→e here!

K (
n

Y@n#exp~ in•u!L
5K (

n
expF ~u1 ln e!(

a
na

21v(
a

naG L
v

~12!

where thev average reproduces the required form w
A(ana

2 ,

^•••&v5E ••• exp@2v2/2A#dv/~2pAA!. ~13!

and has the physical interpretation of an average over
dom local fugacities.16,18The sum in Eq.~12! can be written
as ^Hint&05^Zm&v with

Z511eeu1v1eeu2v. ~14!

The variational free energy is then minimized,Fvar5F0
1^H2H0&0, whereF0 is the free energy of Eq.~10! and^&0
is an average with weights exp(2H0). This procedure
yields18 an equation forsc

sc5E eeu1v1eeu2v14e2e2u

~11eeu1v1eeu2v!2
e2v2/2A

dv

A2pA
. ~15!

Equation~15! can be solved by steepest descent when
logarithms are large. A similar equation fors0 yields that
s0 /sc in Eq. ~11! is at most finite and, therefore, can b
neglected to determine exponents. The result is a phase
gram shown in Fig. 1 with a massive phasescÞ0 bounded
by the lines 22K1sK250 and s51/8. Furthermore, the
line s52/K2 manifests a phase transition corresponding t
change in the relationsc;e2/z where

z522K1sK2, s,2/K2,

z5K~A8s21!, s.2/K2. ~16!

This transition occurs as rare regions of the sample ra
than typical ones start dominating the behavior,16 as can be
also seen from Eq.~15!. For s,2/K2 one can discard de
nominators~as well as thee2 term! that immediately yields
Eq. ~16!. For s.2/K2 the average over the random fugac
v is dominated by the tail of the distribution and the righ
hand side of Eq.~15! can be approximated by:26

Prob~v1u1 ln e.0!'expS S K12
ln e

ln sc
D 2

8sK2
ln sc

D
~17!
12532
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yielding the strong disorder form of Eq.~16!. Note that the
thermodynamic relation ofsc and e, and thus Eq.~16! for
the Dirac problem, is valid only in the massive phase~its
more general meaning is discussed below!.

The above results now allow to compute straightfo
wardly thedisorder averagedDOS. Indeed we can identify
the disorder average of Eq.~2! as re(0)5(]/]e)Fvar /pL2

with the overline denoting average disorder. This yields
replica average

re~0!5
1

p

]

]e K (
n

Y@n#exp~ in•u!L . ~18!

Using Eq.~15! for sc and a corresponding equation fors0
we find re(0);(sc1s0)/e;e2/z21. Note that Eq.~18! has
beyond the^cosu& term all the higher-order terms ine as
generated by RG. The result differs from just the^cosu&
average in the strong disorder regimes.2/K2.

In this derivation we have used thatL is large compared
with the correlation length 1/Asc;e21/z so that integration
cutoffs are determined bysc . Hence our result is that

re~0!;e2/z21 e.L2z, ~19!

exhibits a phase transition27 at s52/K2. From Eq.~8! this
also implies that the DOS also exhibits a transition w
r(E);E2/z21. The conditione.L2z can be interpreted a
the typical level spacingDE51/re(0)L2 being small,DE
,e, so that levels overlap and the DOS is smooth at finiteL.

Our conclusion for the free random Dirac Hamiltonia
~1!, obtained by settingK51, is that there is a phase trans
tion at s52. We find

r~E!;E(12s)/(11s) for s,2, ~20!

FIG. 1. Schematic phase diagram for the generalized D
problem ~e.g., single-layer disordered Coulomb gas!. s is the
strength of the random gauge disorder.K is an interaction paramete
so thatK51 corresponds to free fermions. The full line is the pha
boundary above which single charges become relevant and b
which the model is massless. The dashed-line indicates the free
transition between weak and strong disorder regimes. Although
K ands axis here are, strictly, renormalized values, these can be
to bare ones whenever we are interested in the dominant beha
ase→0.
3-4
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FREEZING TRANSITIONS AND THE DENSITY OF . . . PHYSICAL REVIEW B 65 125323
r~E!;E(32A8s)/(A8s21) for s.2. ~21!

The result in the weak disorder phase,s,2, coincides with
the exact result obtained in Ref. 1, as it should. The va
obtained for the threshold coincide with the one for the ex
zero-energy eigenstate.20,22The main novelty here is that w
show that at this value of disorder a sharp change of beha
also occurs in the DOS and we obtain the exact result in
strong disorder phases.2. A more detailed treatment re
veals that in the strong disorder phase there are logarith
prefactors to the DOS, as was also the case in Ref. 24.
s.2 one has

r~E!;E2/z21u ln Eu2c, ~22!

where we find forE5 i e thatc5 1
2 g@A8s/(A8s21)#, with

g51/2 ~see Ref. 26!. Finally, note that since we are studyin
only the dominant behavior of the DOS ase→0 the s ap-
pearing in the above formulas can be set to be the bare
since taking perturbative corrections into account yields o
subdominant corrections~see below!.

As mentioned above, using the RG of Ref. 16 yields
same result~16! for the dynamical exponentz. This is a
result about the true scaling dimensionz of the e cosu op-
erator~notedD typ in the conclusion of Ref. 16! being differ-
ent, in the strong disorder regime, from the naive one~noted
D there!, as occurs in theXY model ~see discussion there!.
This transition in the scaling dimension is a property of t
e5E50 theory and holds whether or not the operator its
is relevant~sign of the scaling dimension! in the ~massless!
XY phase of theXY model where it is irrelevant, it still
corresponds to a true phase transition, but only for the sin
vortex problem17 and not for the fullXY model. Finally note
that the RG treatment is expected to change the value o
exponentc of the logarithmic corrections~i.e.,g is expected
to change tog53/2).17

B. Finite-size regime

Let us now characterize some aspects of the fluctuat
of the DOS in a finite-size system. Within the variation
method described above one sees that fore.L2z the system
is too small to generate the masssc hencere(0);^cosu&0
with sc5s050 in Eq. ~10!, i.e.,

re~0!;L2K1sK2
, e,L2z. ~23!

Since the system is effectively massless we expect signifi
fluctuations. In the following we consider a different a
proach for thee,L2z case that will clarify the nature o
disorder average.

We proceed to evaluate the DOS by a direct expansio
e. At e50 a direct evaluation of the Gaussian average oveu
in a given sample@assuming periodic boundary condition
for the resulting potentialV(r )# yields28

^cosu~r !&5e2K ln L@e2U(r )1eU(r )#/2 ~24!

where, in Fourier space,U(q)52KV(q)5(2K/q2)( iqxAy
2 iqyAx) with correlation of the form
12532
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@U~r !2U~0!#254sK2ln r . ~25!

The density of states thus takes the form

re50~0!5
1

L2 (
r

e2K ln L@e2U(r )1eU(r )#/25
1

L2
ZL

~26!

of the partition functionZL of a single6 vortex in a loga-
rithmically correlated random potential, known to be relat
to the one of a directed polymer on a Cayley tree.14,17 A
simple average of the partition functionZL , i.e., r̄e(0) in-
deed leads to Eq.~23!, however, as is well known in the
directed polymer problem only the logarithm of the partitio
function lnZL is self-averaging. This immediatel
yields17,29,30our result for the typical DOS at finite size

r typ~0!;L221z, ~27!

with z given by Eq.~16!.
To identify the role ofe we consider the first-order term

e*d2r 8^exp@6u(r )6u(r 8)&. The typical value of each o
these terms scales as the typical value ofZL

2/L2 ~for opposite
charges it is true in the massive phase we are interested!.
This allows to identify a crossover functionf (x), where

r typ~0!;L221z1eL2212z1•••5L221zf ~eLz!, ~28!

with f (x)511x at x→0. Forx@1 we can recover Eq.~19!
if the crossover function satisfiesf (x);(1/x)122/z, i.e., the
typical valuer typ(0) crosses over to the averager̄e(0) at
e.L2z, with both limits exhibiting a phase transition.

This statistics can be described in a simple phenome
logical picture. A finitee provides a length scale~the vortex
separation! and in effect cuts the system in independe
pieces of sizesLe5e2z. One has thus roughly

re~0!5
1

L2 (
i 51

L/Le

ZLe

( i ) , ~29!

where the random variablesZLe

( i ) are independent with a log

normal distribution. For largeL/Le , however, the above sum
acquires a normal distribution. A similar picture was used
describe the related random diffusion problem, where
local first-passage times are analogous to the local DOS
the present problem, and an external force produces a fi
length scale. Analysis of the various regimes is describ
there and are expected to be quite similar here.

C. Relation to random diffusion models

It is instructive to compare our results to the one obtain
for random diffusion problems. As mentioned in the intr
duction, general random Dirac problems can be mapped o
random diffusion operators, which in general may invol
two species, with absorption, creation, and transformation
is particularly simple in the caseW50 ~random vector po-
tential alone! where it maps onto a random Fokker-Plan
diffusion operator of the type

HFPP5¹2P2“•~FT1FL!P52E8P, ~30!
3-5
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which describes the Langevin diffusion of a particle,] tP
5HFPP, whereP(r ) is the probability that the particle is a
point r at time t, in the presence of both a potential rando
forceFL52“U and a transverse one~a random drift!, with
div FT50. Equivalently, settingP5e2U/2c,

HFP8 c5@¹22FT •“2~“V!21¹2V#c52E8c, ~31!

with V5U/2 (K51 here!. The operatorsHFP andHFP8 have
the same spectrum. In two dimension, taking the squar
Eq. ~1! with W50 yields

2HD
2 5¹22~Ax

21Ay
2!1sz~]yAx2]xAy!

22l iA•“2 i“•A ~32!

with l51 identical toHFP8 with Ax5]yV and Ay52]xV
~and V→2V for the other component of the spinor! and
FT52iA. This is thus Arrhenius diffusion in the random
potentialU with an additionalimaginaryrandom drift.25 The
diffusion dynamical exponentzd associated withHFP8 should
thus be simplyzd52z. Note that all the operators obtaine
by varying l have identical ground-state wave function,c
;e2V since the additional drift term does vanish in t
ground state~in the diffusion context it means that the drift
along equipotentials ofU). It is thus reasonable to expe
that each of these models are described by a line of fi
points and that they all do exhibit a freezing transition
any value ofl at the same valueof s5s th52.

In the absence of this additional drift~i.e., settingl50),
the problem reduces to the one studied in24 where indeed it
was found that there is also a freezing transition in the
namical exponentzd in d51 andd52 with ~assuming con-
ventional dynamical scaling!

zd~l50!5212~s/s th!, s,s th , ~33!

zd~l50!54As/s th, s.s th . ~34!

Although it does indeed exhibit a freezing transition at t
same thresholds th5d, one sees thatzd(l50)<zd(l51)
52z, i.e., the imaginary drift slow down the diffusion, pre
sumably through interference effects. It would be of inter
to determinezd(l) as well as to study freezing transitions
a generalized class of these diffusion models in two dim
sions.

It is possible to consider various one-dimensional rest
tion of the Dirac model, e.g., the so-called supersymme
quantum mechanics that also exhibits band-cen
delocalization.31,32 With a log correlatedU(x) this model
was studied analytically in Ref. 24, thus we know in th
case the exactz5zd/2 dynamical exponent of the rando
Dirac operator.

IV. FULL QUANTUM HALL PROBLEM

A. One layer problem: scaling of the DOS

Finally, we consider the Dirac model where the sca
random potential in Eq.~5! is retained, which describes th
full quantum Hall system. We will first determine the DOS
zero energy, and later around zero energy.
12532
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In presence of a random scalar potential one hasY@n#
;( iW2e)(na

2 in Eqs. ~9! and ~18!. We can safely sete
50 in the definitionre(0);]Fvar /]e sinceW(r ) provides
a mass parameter. The variational method is similar to
previous case, except thate is replaced byiW(r ) in Eq. ~15!.
Since the integral is dominated by largeu and v ~for v
.0), it has the form

sc5K iWeu1v

~11 iWeu1v!2L
v,W

~35!

5K 2W2e2u12v

~11W2e2u12v!2L
v,W

, ~36!

using the6 symmetry of theW average.26 The latter form is
equivalent to the previous integral Eq.~16! with e replaced
by the disorder averagêW2&5d ~for the starting QH system
d;s) andK is replaced by 2K. Hencesc'd2/z8, where now

z85222K14sK2, s,1/2K2,

z852K~A8s21!, s.1/2K2. ~37!

The DOS at zero energy can be written as

r~E50!;^cosu&;K eu1v

11W2e2u12vL
v,W

;da, ~38!

where

a5
2

z8
2

z

z8
. ~39!

Sincez8 has a transition ats51/2K2 the DOS hastwo tran-
sitions, at s51/2 and ats52 ~for K51). The exponenta
in Eq. ~39! is the one expected from a scaling formre,d(0)
5dag(e/dz/z8), which connects with thed50 case solved in
Sec. III @which requiresg(x)→1 at x→0 andg(x);xaz8/z

at x→`#. As we will see below there are, however, thr
phases, each with a different scaling functiong(x). Note that
z8/z increases from 0 at smalls to z8/z52 at s52 and
remains equal to this value for stronger disorder.

We have thus shown that the DOS is finite at the quant
Hall transition, which is a well-established result.33 In addi-
tion, however, we have determined the scaling of the ze
energy density of states with the scalar potential strengt
the random Dirac problem. Note that in the previous ca
with e→0 renormalization ofK ands was of higher order in
e and could be neglected. Here, however, a finite^W2(r )&
renormalizes bothK ands, with s flowing to stronger val-
ues. This does not spoil our result for the exponentz8 in the
limit d→0, however, as it would also yield only subleadin
corrections ind.

The physics of the problem becomes more apparent w
one notes that the random scalar potential produces@see e.g.,
Eq. ~6!# a random~imaginary! fugacity with a random sign.
One can then again either extend the RG of Ref. 16 to
situation or consider the extreme dilute limit~single vortex!
3-6
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as in Eq.~24!. Both considerations lead immediately to
mapping onto the directed polymer on the Cayley tree w
random Boltzmann weightsof random sign~in the bare
model the random sign acts only on the leafs of the tree
since both signs have equal probability one easily sees
this is equivalent to a random sign on each branch of
tree!. This model was also solved in Ref. 34 and is known
indeed exhibit a transition at half the value of the same s
problem, due to interference effects that in effect bind t
replicas. The value of thez8 exponent obtained by thi
method is identical to the one given above@Eq. ~37!#. It is
remarkable, and encouraging, that the variational met
also captures this physics.

We can now extend these considerations and obtain
implicit form, the crossover function that describes the DO
r(E) in the smalld limit. We will obtain explicitly re(0),
from which r(E) can be extracted inverting Eq.~8!.

The equation that determinessc and the DOS is now

sc5K E dv
eeu1v1~W21e2!e2u12v

112eeu1v1~W21e2!e2u12vL
v,W

,

~40!

re~0!5K E dv
eu1v1ee2u12v

112eeu1v1~W21e2!e2u12vL
v,W

,

~41!

the first line is reallysc1s0 but we can use thats0 is
subdominant and only dominant exponents for thev.0 are
retained.26 We immediately see that there are several
gimes, according to whether one can neglect all denom
tors ~weak disorder!, or whether the averages will be dom
nated by the rare events where either the terms proporti
to W2 or to e or both, are of order 1. There are in fact thr
phases, in each of them scaling holds with different sca
functionsf, g, R,

sc5d2/z8 f ~e/dz/z8!, ~42!

re~0!5d (22z)/z8g~e/dz/z8!, ~43!

from which one can extract the DOS scaling function

r~E!5E2/z21R~E/dz/z8! ~44!

determined implicitly by the relation

g~x!5
1

pE dyy2/z21R~y!
x

x21y2
. ~45!

Weak disorder phases,1/2K2. Neglecting all denomina-
tors the equation forsc andre(0) become

re~0!5sc
12z/2 , ~46!

15esc
2z/21dsc

2z8/2 , ~47!

which yield the scaling functions in implicit form
12532
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x5 f ~x!z/2@12 f ~x!2z8/2#, ~48!

g~x!5 f ~x!12z/2, ~49!

possibly the exact ones, up to prefactors.
Strong disorder phaseI, 1/2K2,s,2K2. There one can

still neglect denominators in averages involving the ter
proportional toe but not in the one involving the terms pro
portional toW2. One finds

re~0!;sc
12z/2 , ~50!

sc5esc
12z/21sc

(K1[ ln d/ ln sc]) 2/(8sK2) . ~51!

Simple expansion shows that scaling still holds but the s
ing functions are now implicitly given by

x5 f ~x!z/2@12 f ~x!2 z̃8/2#, ~52!

z̃854S 12
1

A8s
D ,

g~x!5 f ~x!12z/2.

This scaling function is accurate only up to logarithm
prefactors. A more accurate form is sc

;d2/z8u ln du22g/z̃8f(ed2z/z8uln du2g/z̃8) with g51/2 but g is
likely to be corrected upon a more careful RG treatment.

Strong disorder phaseII, 2/K2,s. At even stronger dis-
order, sincez852z, we expect the scaling region to bee2

;d. To show that this is the case and to get some appr
mation for f (x) we notice that the equation forsc can be
approximated in the scaling region by

sc'Prob„eeu1v1~e21d!e2(u1v).1…. ~53!

Solving the quadratic equation ineu1v yields thatsc is in-
deed of the form~42!, with some form forf (x), which here
is approximate. We have not attempted to solve more p
cisely for f (x) or g(x) in this phase.

Finally note that this crossover can also be studied a
nite size, and is there complicated as it will probably
described as in Ref. 34 by a nontrivial phase diagram.

B. Transport in the quantum Hall system: the two layer
problem

We address now the more difficult problem of describi
transport and localization in the QHE system. Transpor
derived by a disorder average of advanced and retar
propagators, hence two partition sums corresponding to
action of Eq.~6! with 6e. The problem is then of two layer
with fields u↑ andu↓ and common disorderA(r ) andW(r ).
The role of6e is to determine the proper ground state ne
which the variational method applies, i.e., for2e we shift
u↓→u↓1p so that the nonlinear terms become

expH 2(
a

@~2 iW1e!cosu↑,a1~ iW1e!cosu↓,a#J ,

~54!
3-7
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wherea51, . . . ,m are replica indices for each layer and w
have redefined hereW/pa,e/pa→W,e, respectively. Ex-
pansion in powers ofiW6e and identifying the dominan
terms of the form exp(in•u) yields

Hint5(
n

~2 iW!(a n↑a
2

~ iW!(an↓a
2

exp~ in•u!, ~55!

with e now set to zero,n is now a vector of 2m entries
(n↑1 , . . .n↑m ,n↓1 , . . . ,n↓m) and similarly foru.

The Gaussian part of the Hamiltonian can be written a

H85(
q,a

q2

8pK
@ uu1,a~q!u21uu2,a~q!u2#

1 (
q,a,b

sq2

4p
u1,a~q!u1,b~2q!, ~56!

whereu6a5(u↑a6u↓a)/A2. Since only theu1 mode is af-
fected by the common disorderA(r ) we expectu6 to have
distinct self-masses. The variational Hamiltonian is then

H05H81
1

2 (
q,6,a,b

@sc
6uu6a~q!u2dab1s0

6u6a~q!

3u6b~2q!#. ~57!

The propagators of the6 modes are used to define

(
q

^u6a~q!u6b~2q!&0524u6dab22A6 ,

u652~K/4!ln~Dc/4pKsc
6!,

A15sK2ln~Dc/4pKsc
1!1Ks0

1/2sc
12sK2,

A25Ks0
2/2sc

2 . ~58!

We write the interaction Eq.~55! in the form

^Hint&05K ~2 iW!(an↑a
2

~ iW!(an↓a
2

3expFu1(
a

~n↑a1n↓a!21v1(
a

~n↑a1n↓a!

1u2(
a

~n↑a2n↓a!21v2(
a

~n↑a2n↓a!G L
v

,

~59!

where thev average reproduces the required form w
A6((an↑a6n↓a)2,

^•••&v5E E expF2
v1

2

2A1
2

v2
2

2A2
G dv1dv2

2pAA1A2

. ~60!

The sum in Eq.~59! can be written aŝHint&05^Zm&v with
12532
Z512 iWexp@u11u21v11v2#

1 iWexp@u11u21v12v2#

2 iWexp@u11u22v12v2#

1 iWexp@u11u22v11v2#1W2e4u112v1

1W2e4u212v21W2e4u222v21W2e4u122v1.

~61!

The masses are to be found by minimizing the variatio
free energyFvar5F01^H2H0&0, as in Sec. III A. We ex-
pect to find a massless solution, e.g.,sc

250. This is indeed
a possible solution withu2→2` and

Z511W2e4u112v11W2e4u122v1. ~62!

W2 can be replaced by its average and then this has the s
structure as the single-layer problem of Sec. III A with t
replacementK→2K, i.e. the phase diagram is the same
Fig. 1 with the 1/K axis replaced by 1/2K. The starting line
K51 is now tangent to the phase boundary ats50. How-
ever, fors.0, u1 is massive.

To find the QH localization exponent we introduce t
mass term that corresponds to

Dd~sinu↑2sinu↓!52Ddcos~u1 /A2!sin~u2 /A2!.
~63!

Note the opposite signs due to the shift ofu↓ as required by
the sign ofe. Sinceu1 is massive,Dd can be replaced by
D̃d52Dd^cos(u1 /A2)& and definingu5u2 /A21p/2 leads
to an effective Hamiltonian with

He f f5E d2r F 1

4pK
u“•u~r !u22D̃dcosu~r !G ~64!

This system has a correlation lengthj, related to a mass
j22;Dd

2n , which from first-order RG isn52/(42K). For
the original QH problem withK51 the localization expo-
nent is thenn52/3 ~the numerically known value is'2.3).
We expect, however, thatK is RG driven to a different value
This is beyond the variational scheme that gives reliable
ponents only for small (W,e) couplings~but arbitrarys,K),
as in thee→0 case. E.g., to second order in replicated si
Gordon RG, the most relevant operatorW cos (ua1ub) yields

dW

dl
5~222K14sK2!W,

dK21

dl
522~K22sK2!W2,

ds

dl
5~K22sK2!W2, ~65!

which shows that indeedK increases at weak disorder.
We have also looked for other solutions of the variation

scheme of the formsc
2;(sc

1)a and found that onlya51
exists. This corresponds to decoupled layers with the ph
3-8
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diagram of Fig. 1 (K replaced by 2K). Hence atK51 this is
a massive phase and does not correspond to the QH prob

Our method shows that a subset of the degrees of free
can form a massless phase and we hope that it will stimu
further progress.

V. CONCLUSION

In conclusion, we have derived an exact formulation
two-dimensional random Dirac fermions in terms of a ra
dom sine-Gordon model, or equivalently a disordered C
lomb gas. The DOS of the Dirac fermion system identifi
with the expectation value of a cosine operator in the si
Gordon model~equivalently the charge fugacity in the Co
lomb gas! and the dynamical exponentz as its scaling dimen-
sion. We found that at zero energy and with random vec
potential only the Dirac system maps onto the random ga
XY model with infinitesimal vortex fugacity~dilute limit of
the CG!. Using methods and results from previous studies
the XY model, we have computed the exact dynamical
ponentz for the random vector-potential model at any diso
der, and thus obtained the critical behavior of the DO
around zero energy. We found that it exhibits a transition
the same threshold value than the previously known tra
tion in an exact ground-state wave function. It shows that
eigenstates near the band center are affected by this tr
tion. The physics of this transition is closely related to t
freezing transition in theXY model in the limit where the
vortex core energy is taken very large. As we show here
density of states in a finite-size sample becomes broadly
tributed with typical values scaling differently than avera
ones with the system size. This corresponds to the eig
states being peaked around some few centers in the sam

It is likely that similar freezing phenomena are of impo
tance in a broader class of two-dimensional disordered m
els. They were recently found to occur in random diffusi
models, for instance in the problem of random Arrhen
diffusion of a particle in a log arithmically correlated pote
tial. We have analyzed the similarities and differences of
transitions that occur in the dynamical exponentsz of both
models. As was shown in Ref. 24 strong disorder renorm
ization group captures the dynamical behavior in the gl
phase, which suggests that it could be used to study
present problem as well.

It is of utmost importance to understand what are the c
sequences of this transition when a random potentia
added, corresponding to the quantum Hall system. As a
in,

,
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step in that direction we have determined the scaling of
DOS~which is then finite at zero energy! when the additional
random potential is small. There we found two transitio
one at the same value than the random vector-poten
model, the other at a much smaller value of disorder.
would be nice to know whether these transition lines exte
away from the random vector-potential fixed line. Numeric
checks of our predictions as well as a numerical calculat
of a glass order parameter~e.g.,(xuc(x)u4) in the full model
would help understand these issues.

We believe that such freezing phenomena, originally st
ied in the context of disordered Coulomb gas andXY mod-
els, will also affect a broader class of disordered ferm
models in two dimensions. This can be studied system
cally by extending the bosonization approach introduced
the present paper, and for instance, searching for all pe
bations around the random gauge fixed plane and compu
their ~nontrivial! scaling dimension~here it was done only
for the vortex fugacity operator!. In particular it is of interest
to know whether the nonlinears models studied in Ref. 8
also exhibit freezing phenomena. They are indeed gene
zations of the Liouville model that captures the single vor
problem and does exhibit a freezing transition. Results
already known in related cases. For instance it was show
Ref. 19 that if one adds pinning disorder to the rando
gauge XY model, the vortex density~DOS! acquires a
;exp(2uln eu2/3) dependence in the vortex core ener
ln(1/e) with a nontrivial exponent.

Finally, we have formulated the problem of the transp
in the quantum Hall system as two coupled random si
Gordon models. We have applied the variational method
should capture some of the nonperturbative effects. We h
analyzed the system using in the plane of two~dimension-
less! parameters and were able to find a massless ph
Though qualitatively encouraging, to obtain the quantitat
characteristics of this phase requires to incorporate in a m
precise way additional renormalizations of these two para
eters. It is tantalizing that possible values of these renorm
ized parameters~consistent with numerics! seem to lie within
the region near the glass phase boundary.
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